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Abstract: Stair climb power (SCP) is a clinical measure of leg muscular function assessed in-clinic
via the Stair Climb Power Test (SCPT). This method is subject to human error and cannot provide
continuous remote monitoring. Continuous monitoring using wearable sensors may provide a more
comprehensive assessment of lower-limb muscular function. In this work, we propose an algorithm
to classify stair climbing periods and estimate SCP from a lower-back worn accelerometer, which
strongly agrees with the clinical standard (r = 0.92, p < 0.001; ICC = 0.90, [0.82, 0.94]). Data were
collected in-lab from healthy adults (1 = 65) performing the four-step SCPT and a walking assessment
while instrumented (accelerometer + gyroscope), which allowed us to investigate tradeoffs between
sensor modalities. Using two classifiers, we were able to identify periods of stair ascent with >89%
accuracy [sensitivity = >0.89, specificity = >0.90] using two ensemble machine learning algorithms,
trained on accelerometer signal features. Minimal changes in model performances were observed
using the gyroscope alone (+0-6% accuracy) versus the accelerometer model. While we observed a
slight increase in accuracy when combining gyroscope and accelerometer (about +3—-6% accuracy),
this is tolerable to preserve battery life in the at-home environment. This work is impactful as it
shows potential for an accelerometer-based at-home assessment of SCP.

Keywords: stair climb power; accelerometer; gyroscope; inertial measurement units; machine learning;

remote monitoring; gait

1. Introduction

The use of digital technology in medicine can improve patient monitoring, diagnosis,
and treatment through the use of novel devices and algorithms. While clinical assessments
provide only a single snapshot in time, digital devices offer the opportunity for continuous
monitoring of physical function and physiological measures [1-3]. To this end, inertial
measurement unit (IMU) devices, generally consisting of both a triaxial accelerometer and
gyroscope, have been used extensively to quantify motor function and quality of life in
the home environment [4,5]. Specifically, IMU-based algorithms have been developed and
validated for measuring various clinically relevant metrics, including physical activity, gait,
and sleep [2,6-12].

One important aspect of physical mobility currently lacking a digital measurement
solution is stair climbing performance. Muscle strength is a valuable clinical measure to
evaluate disease state and treatment effect [13,14]. By extension, leg muscular strength
is a health attribute related to falls, balance, and functional independence in community-
dwelling older adults [15]. In order to measure leg muscular strength, conventional exercise
equipment requiring trained personnel is often used. The Stair Climb Power Test (SCPT)
was developed to estimate leg muscular strength and has become a standard clinical
assessment commonly applied to various disease populations, including cachexia [16],
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osteoarthritis [15,17], diabetes [15], Parkinson’s disease [18], and cardiopulmonary disor-
ders [15-19]. Stair climb power (SCP), the clinical metric estimated from the SCPT, is a
function of muscular work per unit of time, and only requires a stopwatch, knowledge of
the participant’s weight, and a staircase to estimate [19]. The SCPT was originally validated
on a 10-11 step staircase, however, since a large staircase is not feasible in many clinical
settings, the test has been adapted and validated to a four-step staircase. Prior work has
established a functional response threshold of >10% increase in stair climb power after 12
weeks of selective androgen receptor modulator treatment in non-small cell lung cancer
patients [16]. A decrease in stair climb power, in elderly populations, has been associated
with changes in balance, falls, and morbidity and mortality, while increases have shown
an improvement in quality of life [16]. Additionally, stair climbing performance has been
shown to positively correlate with cardiorespiratory efficiency, VO, max, and lower limb
strength [20].

Despite the SCPT’s clinically relevant benefits for quantifying muscle strength and
mobility performance, the clinical assessment has drawbacks. The SCPT requires a trained
clinician to manually record time on a stopwatch, introducing an element of human error,
and can only be conducted periodically in-clinic [21]. Therefore, there is a need for a low
burden, quantitative, and continuous assessment of leg muscle strength. The SCPT is
frequently assessed due to its association with activities of everyday living [22]. In fact, due
to the repetitive nature of the SCPT, and the test’s application in everyday living, the SCPT
is well suited for an at-home assessment, provided that the participant can climb stairs [21].
In this case, wearable technologies may provide a feasible solution for at-home evaluation
of the SCPT.

Estimation of stair climb performance in the at-home environment requires both the
continuous detection of stair ascending events and estimation of stair climb power. Prior
works have attempted to identify stair walking events using IMUs positioned at various
locations, including waist, shank, chest, wrist, foot, and demonstrated varying degrees of
accuracy [17,23,24]. Several studies have investigated the classification of stair climbing
events from a lumbar worn IMU [21,25-29]. A lumbar worn IMU is minimally obtrusive
and suitable for remote patient monitoring of physical activity, such as gait and sit-to-stand,
in various disease populations [21,30,31]. It is unclear whether both a gyroscope and
accelerometer positioned at the lumbar are needed to detect ascending stair climbing in
an at-home environment. The added requirement of a gyroscope significantly increases
data size and shortens device battery life, and thus requires frequent data transfers and
charging, impacting patient burden and compliance. Furthermore, there have been limited
attempts and a lack of publicly accessible methods for estimating stair climb power from
periods of stair ascent [32].

To address current shortcomings, in this work we (a) present StairPy, a sensor-based
software package for estimating stair climb power from a lumbar-positioned accelerometer
and (b) investigate the tradeoffs of sensor modality and classifier for distinguishing stair
ascending from stair descending, and stair walking from level walking (gait). Currently,
there are no end-to-end methods for stair climb detection and estimation of stair climb
power using wearable sensors. The method proposed in this work demonstrates feasibility
for sensor-based stair climbing performance measurement.

1.1. Materials and Methods
1.1.1. Participants and Procedure

Data were collected in a Pfizer Inc. internal study, enrolling healthy volunteers [11].
Study participants (n = 65) covered two age groups: younger [18—40 yo, n = 33] and older
[65-85 yo, n = 32]. Participants were equally distributed by sex in the older and younger
age groups. The mean age for the younger group was 29.2 £ 4.54 yo and older group
72.3 £ 5.51 yo. The mean BMI for the younger group was 23.4 & 2.62 and 24.5 & 2.60 for
the older group. The distribution of subject height and weight are shown in Figure S1.
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Sixty-four participants were used for analysis as one participant had a sensor recording
error. These participants were recruited from the surrounding area of Cambridge, MA, USA.

Inclusion criteria included male or female participants aged 18—40 or 65-85 yo in-
clusive, who had no significant health problems as reviwed by a certified clinician at
intake. Additionally, participants were required to have a body mass index (BMI) between
18.5 kg/m? and 30 kg/m?, or an absolute weight < 125 kg. Lastly, the participants had to
be able to read, understand, and provide informed consent. This was evidenced through a
personally signed and dated informed consent document indicating that the participant
has been informed of all pertinent aspects of the study.

Exclusion criteria included participants who self-report any medical condition, recre-
ational substance use, or medication use which would prevent them from completing
study tasks or impair the providing of informed consent. Additionally, any participants
with a VES13 (Vulnerable Elders Survey) total score > 3, including a 0 in all ADLs (Ac-
tivities of Daily Living), were excluded from the study. Furthermore, participants with
skin nickel, scilicone or adhesive allergies, or any participants with implanted devices
(pacemakers, electric pumps, etc.) were excluded from the study. Lastly, any participants
with relationships to the study staff or clinicians were excluded from the study.

Each participant had two in-clinic visits, where they performed a battery of tasks includ-
ing the Short Physical Performance Battery (SPPB) [33] and SCPT, while instrumented with
a six sensor IMU set (OPALs by APDM, Inc.—Mobility Lab Software v2.0.0.201903301644
ERT Technologies (Portland, OR, USA)) [34]. The APDM OPAL sensors were placed on the
participant’s sternum, lower back (lumbar), both wrists and both feet. These sensors contain
a tri-axial accelerometer and gyroscope, which collect data at 128 Hz. Data were collected
and stored on each sensor, and then locally downloaded using the Mobility Lab software,
and exported as deidentified H5 files.

While instrumented, participants were instructed to climb a four-step staircase at
their natural pace, using the handrails as necessary. Once both feet reached the top step,
participants were instructed to pause, then turn around and descend the stairs. A trained
technician timed the ascending portion using a stopwatch, from saying “go” until the
participant’s second foot touched the top step. The SCPT was completed three times with a
30 s break in between each trial in order to reduce fatigue.

Subjects also performed the SPPB during their in-clinic visits [33]. The SPPB included
a gait task, which required participants to walk three laps on a 6 m (~20 feet) GAITRite
mat [35] in one recording, at a comfortable pace. These gait tasks were used to produce
negative training class data.

1.1.2. Feature Extraction

Video from the in-clinic visit was used to annotate periods of stair ascending and
descending, for each SCPT performed. Annotations were used to segment the time-series
signal from the lumbar position IMU into stair climb ascending and descending events.
Periods of ascending and descending events, containing time-series triaxial-accelerometer
and triaxial-gyroscope data, were segmented into 1.5 s windows with 50% overlap, similar
to the method used in Hellmers et al. [21]. These segments were then downsampled to
50 Hz in order to make the results generalizable to other sensors with lower sampling
frequencies. The same method was used to extract 1.5 s segments from a structured level
walking task, which were used as a negative training class.

Signal features were derived from each 1.5 s segment of stair ascent, stair descent, and
gait activity. The signal features derived included a combination of features from previous
literature, including signal mean, min, max, variance, root mean square, standard deviation,
entropy, autocorrelation, correlation coefficient, and dominant frequency [21,25,36]. Each
feature was derived from the three accelerometer and gyroscope axes. Several features
were also derived from accelerometry data, including signal range and wavelet derived
measures, noted by Weiss et al. (2016) as being important for distinguishing stair climbing
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from gait [25]. This feature extraction process can be found in the code for the StairPy
module in Link S1.

1.1.3. Stair Climbing Classification

Two machine learning binary classifiers were trained; one to distinguish stair walking
from gait events, and one to distinguish stair ascent and descent. To determine the best
algorithm for the training, four supervised machine learning algorithms were trained
(Python 3.7, Scikit-learn (0.24.2)) for each classifier: K-Nearest Neighbors (Knn), Random
Forest (RF), Logistic Regression (LogReg), and an Ensemble Voting Classifier (Ensemble)
which used a combination of these three models [37]. Knn, RF, and LogReg are widely
used supervised machine learning models, are easily trained, and commonly used for
classification problems [38-40]. The Ensemble model leverages the outputs of all three
classifiers to make predictions. Separate models were trained on only accelerometer
features, only gyroscope features, and a combined accelerometer and gyroscope feature set
to compare tradeoffs and synergy between sensors. A total of 148 features were generated
for each 1.5 s segment; 72 gyroscope features and 76 accelerometer features (Table S1).
The dataset used for the stair walking vs. gait classifier contained 4808 total observations
(positive and negative classes combined) and the stair ascending vs. descending classifier
dataset contained 2384 total observations.

Positive and negative classes were balanced (1:1) across subjects per visit and task.
This was carried out by combining the number of stair ascending and descending segments
to be used as a positive class for a particular task, and then randomly selecting the same
number of gait segments (performed during the same visit, by the same subject) to be
used as a negative class. A similar method was used to balance the stair ascending vs.
descending classifier, where the positive and negative classes were stair ascending and
descending, respectively. Features with correlation values > 90% were removed first, and
the remaining features were further reduced using Recursive Feature Elimination (Scikit-
learn—RFECYV, version 0.24.2) [37,41]. Ten-fold cross-validation was performed on the final
featureset to determine overall model performance. Subjects were partitioned 80% and 20%
for training and testing respectively. During each round of 10-fold cross-validation, a grid
search approach was used to determine the best hyperparameters for each model. Sklearn
feature importances were used to assess the importance of model features and their impact
on classification [37].

1.1.4. Stair Climb Power Calculation (StairPy)

Raw accelerometer segments from stair ascending events were used to develop a step
detection algorithm for stair climbing (StairPy) (Link S1). Only the acceleration in the
vertical direction was used to detect steps. The raw vertical acceleration signal was first
transformed using a Continuous Wavelet Transformation (CWT) function to detrend the
data. Next, the signal was filtered using a low-pass butterworth filter and the output was
integrated using the composite trapezoidal rule. Finally, a gaussian wavelet transform
was applied to the signal and the resulting transformed signal underwent peak detection,
and the corresponding peaks were identified as steps. This method was adapted from
previous CWT based algorithms, using the vertical axis of a lumbar worn accelerometer, to
identify gait step times [7,8,11]. The height of each step on the staircase used in this study
was 0.154 m [42]. The difference in time between each step (step time) was calculated and
used in power estimation. Standard stair climb power computation follows Equation (1) in
which Powers. is the stair climb power in Watts, m is the participant’s mass in kg, g is the
acceleration due to gravity (9.81 m/s?), I is the height climbed in meters, and ¢ is time in
seconds to climb the height h:

Powers, = ngh, h = heightof staircase (~0.6 m) 1)
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More specifically, StairPy power calculation follows Equation (2) in which details of
time and height calculation are clarified:

mg(% * steps detected)

Powers. =
¥ b+ (b —t) + (B3 —t2) + (ta — t3)

, Z = step height (~0.15m), tg = mean(ty —t1, t3 —tp, ts —t3) (2)

In this equation, the sum of the step heights % and step times (tn —t,_1, n = 2,3,4) for
each detected step by the algorithm are used. Equation (2) includes a term (f() for the time it
takes the participant to reach the first step, a time which is included in the clinical assessment
but not able to be detected by our algorithm. This ¢, term is estimated as the mean of detected
step times (mean(t; — t1, t3 — tp, t4 — t3)) and accounts for the time to first step.

Figure 1 outlines the differences in stair climb power estimation between the Standard
(four-step) SCP estimation (Figure 1A) and StairPy SCP estimation (Figure 1B). Standard
SCP is estimated using the mass of the participant, gravity, total height of the staircase, and
the time it takes for the participant to reach the top of the stairs. Similarly, StairPy calculates
stair climb power as a function of number of detected step times (time between alternating
initial contacts), height of each step, the sum of detected step times, mass of the participant,
and gravity (Figure 1B).

A B

mgh Power.. mg(pusteps detected)
(tf—to) ST LAt (G- ()

Power,. =

h = height of staircase h/4 = step height (~0.15 meters)
o= mean((¢2 — 1) + (¢3 — £2) + (t4 — 3))

Figure 1. Schematic view of (A) Standard (four-step) SCP, where the participant starts with both feet on
the ground at time f, which is the time when the clinician says “go”, and finishes at time {f when both
feet touch the top step, and (B) StairPy SCP estimation, where the participant starts climbing when the
clinician says “go”, and finishes when both feet reach to last step at ¢4. In this method, the each step (1,
ty, t3, t4) are derived from the StairPy, and the time between the clinican says “go” and the 1st step (tp) is
estimated as the average time between steps (mean ((t, — t1) + (f3 — fp) + (f4 — t3)). [42].

To reduce misidentified steps derived from the step detection algorithm, the distri-
bution of stair climb step times was visualized across participants. Given the four-step
staircase used in the study, we expected four foot-contacts to be detected by the algorithm,
assuming all participants alternated steps. All step times exceeding 1200 ms (1.2 s) cor-
responded with misdetection of steps (Figure 2A,B). Therefore, a threshold of 1.2 s was
used to reduce misidentified steps. An example of a task with correctly identified steps
can be seen in Figure 3A. All the time intervals between detected steps were below t. In
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contrast, Figure 3B shows failure to detect the second stair climb step (next detected step is
the 3rd step). In this case, we would not use the time interval between the first and second
detected step because it was above 1200 ms. We would use the time interval between
the 2nd and 3rd detected steps and use that for power computation. StairPy was able to
correctly identify four initial contacts in 92.9% of trials (n = 378).

o

Step Time vs Steps Detected (StairPy) B Distribution of Step Times
[ ]
. 2001
° ° » 1501
[ €
e 3
© 1001
! .
' H 501
2.0 25 3.0 3.5 4.0 4.5 5.0 400 600 800 1000 1200 1400 1600 1800
Steps Detected Step Time (ms)
Figure 2. (A) Steps greater than 1200 ms (1.2 s) were misidentified as either 2, 3, or 5 total steps and
(B) Distribution of step times across participants.
StairPy Correctly Identified Steps B StairPy Incorrectly Identified Steps
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Figure 3. (A) Example of correctly identified steps, as four contacts were identified (red) and (B) An
example of misidentified second step, where only 3 contacts were identified (red) (second step not
identified).

1.2. Statistical Analyses

Statistical analysis was performed in R version 4.0.4 with following main packages:
“Bland AltmanLeh” for Bland—-Altman plots, and “irr” for intraclass correlation coefficient
(ICC). ICC is a statistical measure of reliability, measuring not only the correlation between
measures, but also their absolute agreement [43]. The mean SCP values across trials and
visits were used for statistical analysis. A Bland—Altman plot and 95% limits of agreement
were used to evaluate the agreement between StairPy and clinically-derived SCP values.
Agreement between the two SCP values was further characterized with ICC, ; (two-way
random effects, absolute agreement, with respect to single measurement) with lower and
upper confidence bounds, reported as ICC (lower, upper). Pearson’s correlation coefficient
was also computed to test for the consistency in the SCP estimation by the two methods.
Group comparisons to test of age and sex effects were performed using 2-sample t-tests.



Sensors 2022, 22, 6600 7 of 16

2. Results
2.1. Stair Climb Power Can Be Accurately Measured Using a Lumbar-Worn Accelerometer

The calculated stair climb power using StairPy showed a strong relationship with
the Standard method (Pearson’s r = 0.92, p < 0.001) (Figure 4A). Furthermore, using ICC
analysis, StairPy showed good agreement compared to the gold standard (ICC = 0.90, [0.82,
0.94]), with a systematic bias of —4.11 watts (Figure 4B). There was no significant difference
between younger and older cohorts for both power methods (Standard SCP: £(57.99) = 0.05,
p = 0.96; StairPy SCP: #(56.37) = —0.87, p = 0.39); Figure 5A. Male participants exhibited
higher stair climb power than female participants and the effect was similar for both power
estimation methods (Standard SCP: t(56.84) = 3.22, p = 0.002; StairPy SCP: £(61.75) = 3.21,
p = 0.002); Figure 5B.

200 - R=0.92 p<0.001

20+ [ ®

150 =

100 -

-40

199 150 200 B’O 1 éO 160 260

Figure 4. (A) Comparison of StairPy derived stair climb power (SCP) and Standard SCP calculation.
The stair climb powers were highly correlated (Pearson’s » = 0.92, p < 0.001. (B) Bland Altman
(Standard SCP—StairPy SCP) showed minimal mean difference (mean difference = —4.11, blue solid
line; LoA = [—-24.9, 16.7], green solid line; zero bias reference line (mean difference = 0), red solid
lines; corresponding confidence intervals are dashed lines).

A Standard SCP B StairPy SCP Cc Standard SCP D StairPy SCP

N
=1
S
IN]
=]
=]

Stair Climb Power (Watts)
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Stair Climb Power (Watts)
g
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——
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I

o
=
o
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Figure 5. (A) The Standard SCP showed no significant differences between younger and older groups
(p = 0.96). (B) The StairPy derived SCP also showed no significant differences between younger
and older groups (p = 0.39). (C) The Standard SCP showed a significant effect between sex groups
(p =0.002), with males exhibiting higher SCP values and likewise (D) the StairPy SCP showed a
similar significant difference between sex groups (p = 0.002).

2.2. A Lumbar-Mounted Accelerometer Can Distinguish Stair Walking from Gait, and Stair
Ascending from Descending

A particularly challenging problem for identifying periods of stair walking using
an IMU is distinguishing stair walking from periods of gait, due to the similarity of the
two physical activities [44]. Therefore, to evaluate classification performance for detecting
stair walking events, machine learning models were trained using periods of stair walking
and gait as positive and negative classes, respectively. Using various accelerometry signal
features, deemed important for stair walking classification from prior literature [21,25], our
optimal model for distinguishing stair walking and gait was an Ensemble model which
achieved an accuracy of 91% [sensitivity = 0.91, specificity = 0.92]. The RF model also
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achieved high accuracy, 89% [sensitivity = 0.90, specificity = 0.89]. A Knn model achieved a
slightly lower accuracy of 87% [sensitivity = 0.85, specificity = 0.89], and likewise a LogReg
model achieved a slightly lower accuracy of 88% [sensitivity = 0.89, specificity = 0.88].

Since the ascending portion of stair walking is typically used to measure leg strength, a
second group of models were trained to distinguish stair ascending from descending. Clas-
sifying stair ascending and descending was achievable using the Ensemble model, which
achieved an accuracy of 89% [sensitivity = 0.89, specificity = 0.90]. The RF binary classifier
achieved a slightly lower accuracy of 87% [sensitivity = 0.87, specificity = 0.88]; similar to
the LogReg model which achieved an accuracy of 88% ([sensitivity = 0.87 specificity = 0.89],
and the Knn model which achieved a slightly lower accuracy of 88% [sensitivity = 0.89,
specificity = 0.87].

2.3. Tolerable Difference in Classification Performance Using Gyroscope or Accelerometer Signal
Features Alone

To evaluate the tradeoff between using gyroscope or accelerometer features for clas-
sifying stair walking events from gait, accelerometer feature-based model results were
compared to model results using gyroscope features alone. Compared to the accelerometer
based models, model performance decreased for all models when using gyroscope features
alone to distinguish gait and stair walking (Figure 6A). The RF model decreased in accuracy
by 5%, the LogReg model decreased by 6%, the Knn model decreased by 3%, and the
Ensemble model decreased 6% in accuracy when using gyroscope features only (Table 1).

Stair Walking vs Gait B Ascending vs Descending Stairs
0.95-
D
.. 090
)
o
3
Q
£ 085-
D
. RF
¢ ¢ 0 0.80- E=1 knn
. I LogReg A
‘. BN Ensemble
Gyro Accel Accel + Gyro Gyro Accel

Figure 6. (A) Stair walking vs. gait classification was able to achieve the highest performance accuracy
using an Ensemble voting classifier model trained on features of the accelerometer and gyroscope
signal; however, this accuracy has minimal difference compared to the accelerometer based Ensemble
model. (B) Stair ascending vs. descending classification was able to achieve the highest performance
accuracy using an Ensemble voting classifier model trained on features of the accelerometer and
gyroscope signal; however, this accuracy has minimal difference compared to the accelerometer based
Ensemble model.

Table 1. Stair walking vs. gait classifier results.

Metric (Mean

Model (std)) Accel Gyro Accel + Gyro
RF accuracy 0.892 (0.044) 0.841 (0.032) 0.920 (0.019)
RF specificity 0.892 (0.080) 0.869 (0.046) 0.928 (0.049)
RF sensitivity 0.895 (0.058) 0.826 (0.044) 0.908 (0.035)

Knn accuracy 0.869 (0.035) 0.838 (0.030) 0.908 (0.023)
Knn specificity 0.888 (0.065) 0.861 (0.040) 0.948 (0.029)
Knn sensitivity 0.850 (0.034) 0.807 (0.052) 0.864 (0.046)

LogReg accuracy 0.878 (0.041) 0.818 (0.031) 0.914 (0.028)

LogReg specificity 0.882 (0.076) 0.829 (0.045) 0.910 (0.059)

LogReg sensitivity 0.885 (0.061) 0.805 (0.060) 0.925 (0.030)

Ensemble accuracy 0.908 (0.035) 0.846 (0.033) 0.938 (0.023)
Ensemble specificity 0.916 (0.068) 0.875 (0.041) 0.949 (0.038)
Ensemble sensitivity 0.906 (0.065) 0.824 (0.048) 0.928 (0.034)
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Minimal differences were seen between using the accelerometer or gyroscope-based
features alone to distinguish between stair ascent and descent (Figure 6B). Compared to
the accelerometer based model, there were minimal differences when training models on
gyroscope features alone. The RF model accuracy inceased in accuracy by 1%, the Knn
model decreased by 2%, the LogReg model decreased by 5%, and the Ensemble model
decreased by 1% in accuracy when using gyroscope features alone (Table 2).

Table 2. Stair climb ascending vs. descending classifier results.

Metric (Mean

Model (std)) Accel Gyro Accel + Gyro
RF accuracy 0.868 (0.059) 0.880 (0.038) 0.933 (0.024)

RF specificity 0.884 (0.093) 0.886 (0.054) 0.943 (0.053)

RF sensitivity 0.866 (0.081) 0.866 (0.083) 0.928 (0.055)
Knn accuracy 0.877 (0.055) 0.859 (0.047) 0.935 (0.041)
Knn specificity 0.874 (0.082) 0.854 (0.056) 0.925 (0.073)
Knn sensitivity 0.893 (0.075) 0.869 (0.068) 0.956 (0.023)
LogReg accuracy 0.876 (0.049) 0.826 (0.037) 0.921 (0.035)
LogReg specificity 0.885 (0.068) 0.818 (0.045) 0.917 (0.062)
LogReg sensitivity 0.872 (0.077) 0.843 (0.063) 0.932 (0.049)
Ensemble accuracy 0.888 (0.054) 0.878 (0.040) 0.948 (0.032)
Ensemble specificity 0.901 (0.076) 0.887 (0.046) 0.945 (0.064)
Ensemble sensitivity 0.886 (0.081) 0.872 (0.071) 0.958 (0.027)

2.4. Classification Performance Is Slightly Enhanced Using Gyroscope and Accelerometer Together

The stair walking vs. gait classifier accuracy was slightly improved when gyroscope
and accelerometer features were combined (Figure 6A). Compared to the accelerometer
feature based RF model, the accelerometer and gyroscope feature RF model increased
accuracy by 3%, the Knn model increased accuracy by 4%, the LogReg model increased
accuracy by 4% (Table 1), and the Ensemble model increased in accuracy by 3%.

Similarly, stair ascending and descending classification accuracy was improved using
a combination of gyroscope and accelerometer signal features (Figure 6B). The RF model
accuracy was increased by 7%, the LogReg model accuracy was increased by 5%, the Knn
model accuracy increased 6% (Table 2), and the Ensemble model increased in accuracy by 6%.

2.5. Feature Investigation

Figure 7A shows feature importance values for the top 20 accelerometer features based
on their impact on the ensemble stair walking vs. gait classifier. Several predominant
features for stair walking event classification were observed, including: accelerometer x au-
tocorrelation, accelerometer x maximum, accelerometer x standard deviation, accelerometer
z median, accelerometer z skewness, accelerometer y autocorrelation, and accelerometer y
20th percentile.

On the contrary, Figure 7B shows feature importance values for the top 20 features
based on their importance for the ensemble ascending vs. descending classifier, trained on
accelerometer features. In this model, classification was dominated by several predominant
features: accelerometer xz correlation coefficient, accelerometer x FFT energy, accelerometer
z minimum, accelerometer z standard deviation, accelerometer x mean, accelerometer x
maximum, and accelerometer z median.
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Figure 7. (A) Feature importances for accelerometer feature based ensemble stair walking vs. gait
classifier. Accelerometer x autocorrelation, accelerometer x maximum, accelerometer x standard
deviation, accelerometer z median, accelerometer z skewness, accelerometer y autocorrelation, and
accelerometer y 20th percentile were the most predominant features (B) Feature importances for
ensemble stair ascending vs. descending classifier. Accelerometer xz correlation coefficient, accelerom-
eter x FFT energy, accelerometer z minimum, accelerometer z standard deviation, accelerometer x
mean, accelerometer x maximum, and accelerometer z median were the most predominant features.

3. Discussion
3.1. Main Findings

This work is significant as it: 1. Presents a novel open source python package for the
estimation of stair climb power, 2. Compares different sensing modalities for the classifica-
tion of stair walking and stair ascent vs. level walking and stair descent respectively, and 3.
Demonstrates the ability for a ensemble classifier to exceed 89% accuracy for stair walking
and stair ascent classification. In this work, we developed and tested a method to estimate
stair climb power from a lumbar worn accelerometer that has strong agreement (Pearson’s
r=0.92, p <0.001, ICC =0.90, [0.82, 0.94]) with the traditional clinical assessment. Sensor-
based stair climb power estimation showed similar age and sex stratified results compared
to the clinical assessment. In addition, we demonstrate the ability to classify ascending
stair climbing using an accelerometer sensor. Our results suggest there is minimal tradeoff
in model performance between using accelerometer or gyroscope sensors alone. Specifi-
cally, for distinguishing between stair walking and gait, the use of accelerometer features
alone resulted in an accuracy of 91%, only 3% lower than the combined accelerometer and
gyroscope model. Similarly, for distinguishing between stair ascending and descending,
using accelerometer or gyroscope features alone yielded an accuracy of 89%, which was
only 6% lower than the combined accelerometer and gyroscope feature trained model.
The slight difference in classification accuracy between the sensor combinations suggests
accelerometry alone may be sufficient to classify stair ascending events, although slightly
superior accuracy can be achieved by adding a gyroscope signal. However, there is a slight
benefit to using both accelerometer and gyroscope signals combined, this improvement is
tolerable compared to the accelerometer model. In the at-home environment, maximizing
battery life is critical. Increasing the number of sensors (gyroscope plus accelerometer) has
worse battery life compared to an accelerometer alone. With this in mind, a slight decrease
in classification accuracy to maximize battery life is a worthy tradeoff. Our results support



Sensors 2022, 22, 6600 11 of 16

the feasibility for sensor-based stair climbing assessment, which could be expanded to
monitoring of free-living physical activity in an at-home environment.

These results are relatively consistent with prior works using a waist worn accelerom-
eter to classify stair walking events. Hellmers et al. was able to distinguish stair walking
from gait and ascending from descending stairs with about 86-90% accuracy, and estimated
stair climb power with a mean deviation of 2.35% compared to the clinical assessment [21].
Weiss et al. was also able to achieve about 94% accuracy when distinguish stair ascent from
stair descent and gait using an accelerometer worn on the waist [25]. While our model
achieves a slightly lower accuracy, it is important to note that the models used in these
previous works are performed on 10- to 12-step staircases, which may allow for more stair
climbing periods for training data, and only used healthy elderly participants.

3.2. Accuracy of Stair Climb Power from Acceleration Data

The stair climb power package (StairPy) presented in this paper shows a strong relation-
ship with the gold standard, clinical timed assessment (r = 0.92, p < 0.001, ICC = 0.90, [0.82,
0.94]). However, the algorithm minimally overestimated stair climb power (—4.11 watts),
as shown in Figure 4B following application of a correction factor. This bias is minimal and
irrelevant in a clinical trial context. In clinical trials, change over time is needed to express
effect. With this in mind, this bias is inconsequential as long as the patient shows change
over time from baseline.

The correction factor was applied due to inherent differences between the accelerometer-
based method and the clinical stopwatch approach. This mean difference between StairPy
and the clinical stair climb power assessment is due to variation in how power is estimated
between the two methods (Figure 1). For example, the clinical assessment is timed from
“go” until both feet touch the top stair, which includes the period between “go” and the
participants first step on the staircase. However, the period between “go” and the first
step does not include body movement in the vertical direction, and thus leads to an un-
derestimation of vertical muscular work and stair climbing power. To account for this
difference, StairPy estimates the added time between the moment the clinician says “go”
and the participant’s first step (tp) on the staircase as the mean of the detected step times
and includes this in the total stair climbing duration. Figure S2 shows the average first step
time (f() across subjects vs. ICC score, a measure of agreement between StairPy SCP and
the clinical SCP. The average first step time across all subjects was 0.64 s, which achieves a
high ICC score and a reliable estimation of SCP, as shown in Figure S2.

In the context of studies conducted outside of the laboratory, it may be reasonable to
remove this bias correction step. The uncorrected stair climb power estimate is likely a
more accurate estimate of true stair climb power and the effect of a consistent bias may be
inconsequential in the context of clinical studies, as stair climb power change over time
would likely not be affected.

3.3. Tradeoffs between Sensor Modalities for Classifying Stair Climb Events

Classifying periods of stair climbing behavior is necessary for evaluating stair climb
performance. To this end, we observe limited tradeoff between using accelerometer or
gyroscope signals alone for distinguishing both stair walking from gait and stair ascending
from descending. Furthermore, we find that a combination of accelerometer and gyroscope
signals provided slightly improved ability (~3-6% improvement in accuracy) to distinguish
both stair walking from gait and stair ascending from descending, compared to accelerom-
eter or gyroscope signals alone. This is understandable given the sensors ability to not
only measure acceleration during stair walking, but also the rotation of the torso. While, a
3-6% improvement in classification accuracy is desirable, our work shows the feasibility of
using an accelerometer alone for stair ascent classification. The addition of gyroscope and
other sensors, such as barometers or magnetometers, may improve results in detecting stair
climbing [17,45,46], but commercially available devices that include additional sensors are
limited, significantly reduce battery life, and thus may not be as well suited for long-term
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continuous at-home assessment. Our findings suggest that accelerometers can provide
a solution for sensor-based classification of stair climbing and assessment of free-living
activity in at-home environments.

3.4. Discussion of Features

For the stair walking versus gait classifier, we chose to include level walking as the sole
negative class and stair walking as the positive class due to the challenge of distinguishing
the two similar movements. Even so, there are indeed slight differences between level
walking and stair walking, particularly in the movement of the hips and trunk, where our
lumbar sensor was instrumented in this study.

During level walking, the gait cycle starts with an extended knee followed by a
continued stance and swing phase, with limited hip flexion. On the contrary, during stair
walking, there is a 50-60° flexion of the hip to start the gait cycle, followed by decreased
hip flexion (10-15°) during the weight acceptance phase as the participant ascends to the
next step [21,47]. Additionally, approximately 10-20° of additional range of motion from
the lower limb joints is required for stair walking compared to level walking [21]. Stair
walking also requires more trunk stability and lower limb muscle activity in order to propel
the participant up the staircase.

Slight differences in lower limb biomechanical movements between gait and stair
walking were reflected in our results. For example, distinguishing stair walking from gait
relied on a combination of accelerometer signal features from the vertical (x), anterior—-
posterior (z) and medial-lateral (y) axes. The features we observed that best captured
differences in trunk movement between stair walking and level walking were statistical
features (accelerometer x autocorrelation, accelerometer x maximum, accelerometer x
standard deviation, accelerometer z median, accelerometer z skewness, accelerometer y
autocorrelation, and accelerometer y 20th percentile). These features likely capture the
vertical movement and additional trunk flexion required as participants shift weight to
transfer their foot to the next step when ascending or descending stairs.

Additionally, the most important features for stair ascending vs. descending classi-
fication were centered around the vertical (x) and the anterior—posterior (z). The vertical
axis captures the acceleration up or down during stair ascending or descending. The
anterior—posterior axis is also a major component of stair climbing as the torso bends
along the anterior—posterior axis with limited medial-lateral movement. The most impor-
tant features for distinguishing stair ascending and descending were statistical features
(accelerometer xz correlation coefficient, accelerometer z minimum, accelerometer z stan-
dard deviation, accelerometer x mean, accelerometer x maximum, and accelerometer z
median), and frequency domain features (accelerometer x FFT energy), all of which were
derived from the accelerometer’s x and z axes. These features likely capture the vertical and
anterior—posterior movement of the torso as participants ascend or descend the staircase.

Our results show that a combination of all three accelerometer axes is important for
distinguishing stair walking and gait, though only the vertical and anterior-posterior axes
were most important when distinguishing between stair ascent and descent.

3.5. Limitations

While this work shows good agreement with the current clinical standard, it is im-
portant to acknowledge some of the study’s limitations. The SCPT performed in-clinic
was completed using a four-step staircase, which is regarded as an acceptable method for
measuring stair climb power, but limited data capture during stair walking events. Our
stair walking time-series signals were about 4 s in duration (per task), which limited our
training data. Furthermore, our findings are limited in that we only use structured gait
as a negative training class and structured stair walking as a positive training class for
classifying stair climbing. Including other unstructured, free-living classes would give a
more comprehensive understanding of the model’s ability to distinguish stair ascending
from other real-world activities. Additionally, it is important to note that the algorithm
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presented in this paper assumes alternating ascending steps on the staircase and a constant
normal-paced walking speed, which may not be feasible for some patient populations.
Future work will investigate the ability of the algorithm to generalize to pauses, different
walking speeds, and irregular stepping patterns. Lastly, the gold-standard comparator used
in assessing the accuracy of our sensor-based stair climbing power estimation is subject
to human error. Since a trained technician is responsible for stopping and starting the
stopwatch, there can be slight differences between when the participant starts and stops
the task versus when the technician initiates and terminates the stopwatch.

3.6. Future Work

Future work will include investigating multiclass classification and context detection,
which will allow our model to distinguish stair ascending from other physical activities
and daily movements, such as standing, running, and swimming. Furthermore, it would
be of interest to look at other machine learning models which may be able to enhance
classification accuracy. We also intend to apply this algorithm to alternate datasets. Our
dataset was gathered from a controlled in-clinic assessment, and it would be of interest to
apply this work to separate clinical populations, and observe differences between healthy
and disease groups. This creates a more robust classifier which might be better suited
for an at-home assessment. Future work will also include evaluation of the classifier in
an at-home setting and testing the algorithm’s ability to estimate stair climb power in
free-living conditions. While investigating this classifier’s ability in an at home setting, it
would be of interest to explore other data collection methods, such as smartphones and
smartwatches, which also contain accelerometers and can be positioned around the waist.

4. Conclusions

In the findings presented, stair climb power was estimated using a single lumbar-
worn accelerometer with strong agreement compared to the clinical assessment. This
work demonstrates the feasibility of using a wearable sensor to estimate stair climb power,
and highlights the benefits and limitations for using accelerometer and gyroscope sensor
modalities for identifying periods of stair walking from level walking, and classifying stair
ascending from descending.

The SCPT is an important clinical assessment for measuring exercise capacity in clinical
populations, such as cachexia or osteoarthritis [15,48]. The stair climb power package
(StairPy) presented in this paper can provide an estimation of stair climb power outside of
the clinic, and shows strong agreement with the current clinical standard. If patients are
instrumented with a lumbar positioned accelerometer at home, this algorithm potentially
provides an end-to-end solution for observing continuous stair climbing performance in
free-living conditions. To this end, longer observation of physical function at-home may
provide a more comprehensive estimation of true leg muscle functional capacity, as patients
may be inclined to over-perform while observed in-clinic due to the Hawthorne effect [49].
We hope the work presented will lead to at-home assessment of stair climb power, and
provide enhanced assessment of physical function out of the clinic, as well as a more
objective assessment in a clinic setting, not subject to human error.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/s22176600/s1, Figure S1: (A) Distribution of participant height
(cm) and (B) the distribution of participant mass (kg); Figure S2: Time (s) to first step (ty) vs. ICC
value (Equation (2)). This figure shows the relationship between values for the time to first step (tp) vs.
the ICC value, which is a measure of agreement between Clinical SCP and StairPy SCP. The time to
first step (fp) shown were applied to all subject’s StairPy SCP estimation; Table S1: Features used for
ML classifier training; Link S1: (Code Availability)—The StairPy module outlined in this publication
is available on GitHub: https:/ /github.com/PfizerRD/Stair_Climbing DMTI/tree/main/stairpy/
StairPy_Notebook.
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