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Abstract: Metalens has the advantages of high design freedom, light weight and easy integration,
thus provides a powerful platform for infrared detection. Here, we numerically demonstrated a
broadband achromatic infrared all-dielectric metalens over a continuous 800 nm bandwidth, with
strong environmental adaptability in air, water and oil. By building a database with multiple 2π
phase coverage and anomalous dispersions, optimizing the corrected required phase profiles and
designing the sizes and spatial distributions of silicon nanopillars, we numerically realized the design
of broadband achromatic metalens. The simulation results of the designed metalens show nearly
constant focal lengths and diffraction-limited focal spots over the continuous range of wavelengths
from 4.0 to 4.8 µm, indicating the ability of the designed metalens to detect thermal signals over
a temperature range from various fault points. Further simulation results show that the metalens
maintains good focusing performance under the environment of water or oil. This work may facilitate
the application of metalens in ultra-compact infrared detectors for power grid faults detection.

Keywords: metalens; achromatic; infrared detection

1. Introduction

Electric energy is an indispensable part of national production and life. In order to
ensure the power supply quality of the power grid, it is necessary to detect faults in the
power grid in time. Using optical method to detect power grid faults not only meets
the requirements of detection without power cut, but also has the advantage of easy
determination of the fault points. Thermal signals from fault points can be detected by
means of infrared detection. However, the traditional optical systems of infrared detection
are bulky and heavy, which is not convenient for practical applications, especially for the
intelligent inspection with drones.

The development of metasurfaces provides a new paradigm for optical wavefront
control. A metasurface is an artificially designed functional device with subwavelength
structures arranged in a specific way on a two-dimensional plane [1]. The amplitude,
phase and polarization of the incident wave can be controlled by adjusting the size and
spatial distribution of the subwavelength structures. Metasurfaces have the advantages of
excellent interfaces-control ability, high design freedom, small thickness, light weight, easy
integration and simple fabrication. Purposedly designed metasurface functioning as a lens
is named as metalens, which realizes light focusing and imaging [2–33]. Benefit from the
advantages of metasurface, metalens is suitable for infrared detection. Thanks to its planar
configuration, metalens is also suitable for integration with CMOS image sensor to realize
ultra-compact optical system. To be further utilized in practical applications, the operating
band of metalens should be enlarged to detect thermal signals over a temperature range
from various fault points.
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Several achromatic metalenses have been studied [8,16–25,30–33]. In 2015, Federico Ca-
passo et al. proposed a multiwavelength achromatic metalens at wavelengths of 1330, 1550
and 1800 nm by dispersive phase compensation, based on low-loss dielectric resonators, [8].
In 2017, Xiangang Luo et al. realized a multiwavelength achromatic metalens working at vis-
ible wavelengths of 473 nm, 532 nm and 632.8 nm [17]. In the same year, Federico Capasso
et al. proposed a narrow-band achromatic reflective metalens realizing a continuous 60 nm
bandwidth in the visible, using titanium dioxide nanopillar (with a square cross-section)
on a metallic mirror with a thin layer of silicon dioxide in-between [16]. In 2018, Nanfang
Yu et al. developed a design methodology and created libraries of meta-units—building
blocks of metasurfaces—with complex cross-sectional geometries to provide diverse phase
dispersions (phase as a function of wavelength), creating broadband achromatic metalens,
with operating band from 1200 nm to 1650 nm [19]. In the same year, Federico Capasso et al.
demonstrated diffraction-limited achromatic focusing and achromatic imaging from 470
to 670 nm [18], while almost at the same time Din Ping Tsai et al. demonstrated complete
elimination of chromatic aberration from 400 to 660 nm [20]. In 2021, Shumin Xiao et al.
reported a broadband achromatic metalens with operating band from 650 nm to 1000 nm
for near-infrared biological imaging window [32].

Most of the previous reports in recent years have focused on visible and near-infrared
regions. However, mid-infrared broadband achromatic metalenses are also worth studying
due to their potential applications in intelligent inspection. In this work, we numerically
demonstrated a broadband achromatic infrared all-dielectric metalens over a continuous
800 nm bandwidth, with environmental adaptability in air, water and oil. Here, particle
swarm optimization algorithm is employed to optimize the phase profile of achromatic
metalens and the sizes and spatial distribution of thousands of silicon nanoposts. Then,
three-dimensional finite-difference time-domain (FDTD) method is employed to simulate
the optical characteristics of the metalens, showing near-diffraction-limit focal spots for
normally incident light at the same focal plane over a continuous range of wavelengths
from 4.0 to 4.8 µm. The broad bandwidth makes the metalens able to detect thermal
signals over a temperature range from various fault points. To give a general view of
the environmental adaptability of the proposed metalens, the background material is
changed from air to water and oil, and the simulation results show that the metalens
maintains good focusing performance under these environments. The cases of metalenses
serving as elements of sensors or measurement systems are demonstrated in previous
reports [34], including depth sensor using spatially multiplexed micro-metalens array
based on light field imaging principles by Din Ping Tsai et al. [24], compact single-shot
metalens three-dimensional (3D) depth sensor inspired by the eyes of jumping spiders using
defocused images to reconstruct depth information by Federico Capasso et al. [35], single-
shot quantitative phase gradient microscopy with phase gradient sensitivity better than
92.3 mradµm−1 using a double-sided flat optic system with three optimized metalenses by
Andrei Faraon et al. [36], dielectric metalens realizing wide-field depth retrieval with 3D
imaging and distance measurements based on specially engineered point spread function
(PSF) by Frank Setzpfandt et al. [37], Hartmann-Shack wavefront sensor using arrays
of silicon-based metalenses realizing phase-gradient profiles detection by Jinsong Xia
et al. [38], and compact spectrometer composed of three reflective dielectric metalenses
resolving more than 80 spectral points from 760 to 860 nm by Andrei Faraon et al. [39].
This work may facilitate the application of metalens in ultra-compact infrared detectors for
power grid faults detection.

2. Methods

As mentioned above, metalens is a two-dimensional array composed of optical scat-
tering structures with subwavelength feature sizes. The main function of a metalens is to
control the wavefront of light according to the phase profile induced by the spatial distribu-
tions of scattering structures of various sizes. The schematic structure of the metalens is
shown in Figure 1. The unit cell of the metalens, i.e., the optical scattering structure, is a
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silicon nanopillar on fused silica substrate, shown in Figure 2a. The height of the silicon
nanopillar is fixed as 8.7 µm, and the diameters of the nanopillars vary from 0.4 to 2.2 µm,
and the size of unit cell is 2.4 µm. The refractive indexes of silicon nanopillar and fused
silica substrate in the mid-infrared are 3.84 and 1.38, respectively. The large refractive index
of silicon nanopillar compared to its environment (air, water or oil) makes it possible to
provide large phase manipulation and thus regulate light effectively. The phase shifts were
calculated by finite-difference time-domain (FDTD) method using a commercial simulation
software EastWave. The simulated phase shifts (folded between 0 and 2π) as functions
of the nanopillar diameters at wavelengths of 4.0 µm, 4.2 µm, 4.4 µm, 4.6 µm and 4.8
µm are shown with different colors in Figure 2b, named as database in this work, clearly
showing that both multiple 2π phase coverage and anomalous dispersions are achieved
at these wavelengths, which provide more choices to find adequate silicon nanopillars in
database to meet the phase requirements at different wavelengths, thus are crucial to the
realization of broadband achromatic metalens. Here, anomalous dispersions mean that
unfolded phase shifts do not always decrease or increase monotonically with nanopillar
diameters, while phase shifts at some diameters experience a contrary variation tendency
to most others.
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Figure 2. (a) Schematic of the unit cell, composed of a silicon nanopillar on fused silica substrate.
(b) Simulated phase shifts (folded between 0 and 2π) as functions of the nanopillar diameters at
wavelengths of 4.0 µm (blue), 4.2 µm (black), 4.4 µm (red), 4.6 µm (green) and 4.8 µm (yellow),
i.e., the database.

For normal incident light, the required phase profile of a metalens to achieve diffraction-
limited focusing is a function of wavelength:

ϕ(λ) =
2π

λ
( f −

√
r2 + f 2) (1)
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where ϕ(λ) is the phase profile, λ is the wavelength of incident light, r is the distance from
arbitrary unit cell on the metalens to the center of the metalens, and f is the focal length [8].
As Equation (1) shows, the required phase profile varies with wavelength. If we design
the sizes and spatial distributions of silicon nanopillars according to the phase profile at
a certain wavelength, it may not satisfy the required phase profiles at other wavelengths.
Moreover, it is difficult to find an adequate spatial distribution of silicon nanopillars with
various cross-section sizes that simultaneously satisfies the required phase profiles at all
wavelengths in the operating band.

Therefore, we introduced a phase correction to the required phase profile:

ϕ(λ) =
2π

λ
( f −

√
r2 + f 2) + C(λ) (2)

where ϕ(λ) is the corrected required phase profile, and C(λ) is the phase correction, which
is a function of wavelength [16]. The role of C(λ) is to significantly reduce the difficulty
of finding an adequate spatial distribution of silicon nanopillars with various sizes that
simultaneously satisfies the corrected required phase profiles at all wavelengths in the
operating band. First, we optimized the phase correction by multi-objective optimization
methodology based on particle swarm optimization (PSO) algorithm. The flowchart of
PSO algorithm is shown in Figure 3a. Then, we designed the sizes and spatial distributions
of silicon nanopillars according to the corrected required phase profile and the database
mentioned above. After optimization, the total phase difference (referred to ∆ϕtotal in
Equation (3)) at all positions of the metalens and all wavelengths between the corrected
required phase profile (referred to ϕrequired in Equation (3)) and the phase profile induced
by the designed metalens (referred to ϕmetalens in Equation (3)) is minimized. The total
phase difference is calculated as follows:

∆ϕtotal = ∑
i

∑
n

∣∣∣ϕrequired(ri, λn) − ϕmetalens(ri, λn)| (3)

where subscript i represents different positions of the designed metalens, and subscript n
represents different wavelengths in the operating band.
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Figure 3. (a) Flowchart of PSO algorithm. (b–f) Comparisons between the corrected required phase
profiles (blue line) and the phase profiles induced by the designed metalens (red point) at wavelengths
of 4.0 µm (b), 4.2 µm (c), 4.4 µm (d), 4.6 µm (e) and 4.8 µm (f), as functions of the radial coordinate of
the metalens.

To verify our method, we designed a broadband achromatic metalens over a continu-
ous range of wavelengths from 4.0 to 4.8 µm. The operating band is discretized into five
equally spaced wavelengths. The metalens has a diameter of 200 µm, a focal length of
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200 µm, giving a numerical aperture of 0.45. The optimized phase correction corresponding
to each wavelength is listed in Table 1.

Table 1. Optimized phase correction at wavelengths from 4.0 to 4.8 µm.

Wavelength (µm) 4.0 4.2 4.4 4.6 4.8

C(λ) (rad) −2.174 −0.141 −15.872 0.0949 29.065

It is worth noting that, the average phase difference at each position of the metalens and
at each wavelength, i.e., the total phase difference divided by the number of all positions
and all wavelengths, is merely 0.06 * 2π, which indicates nearly perfect focusing and
imaging according to the well-known Rayleigh criterion. Figure 3b–f show the comparisons
between the corrected required phase profiles (blue line) and the phase profiles induced
by the designed metalens (red point) at different wavelengths, as functions of the radial
coordinate of the metalens. The phase profiles induced by the designed metalens are
consistent with the corrected required phase profiles.

3. Results

We analyzed the optical response of the achromatic metalens by FDTD method using
the above-mentioned commercial simulation software EastWave. Figure 4 shows the simu-
lated normalized intensity profiles of the normally incident light transmitted through the
metalens in the xz-plane at wavelengths from 4.0 to 4.8 µm (spaced by 0.1 µm), where z-axis
is the optical axis and x-axis is the radial direction of the metalens. According to Figure 4,
the focal length (shown in Table 2) over the whole operating band is nearly constant, which
is consistent with the designed focal length (200 µm), with standard deviations of 4 µm, or
2% of focal length. Therefore, the effectiveness of the above optimization method and the
broadband achromatism of the designed metalens are verified.
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Figure 4. Simulated normalized intensity profiles of the normally incident light transmitted through
the metalens in the xz-plane at wavelengths from 4.0 µm to 4.8 µm (spaced by 0.1 µm), where z-axis
is the optical axis and x-axis is the radial direction of the metalens.

Table 2. Focal lengths at wavelengths from 4.0 to 4.8 µm.

Wavelength (µm) 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

Focal length (µm) 202 202 200 198 198 202 207 210 207

To further verify the performance of the achromatic metalens, we simulated the
normalized intensity profiles in the xy-plane at the fixed position of z = 200 µm, i.e., the
designed focal plane, at wavelengths from 4.0 to 4.8 µm (spaced by 0.1 µm). The strong focal
spots with weak sidelobes over the whole operating band are clearly shown in Figure 5.
According to the normalized light intensity along the x-axis, i.e., the horizontal cuts of the
focal spots at z = 200 µm plane, the full widths at half-maximum (FWHMs) at wavelengths
from 4.0 to 4.8 µm are calculated and listed in Table 3, revealing near-diffraction-limited
focusing performance of the broadband achromatic metalens.
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Figure 5. Simulated normalized intensity profiles in the xy-plane (left panels of (a–i)) at the fixed
position of z = 200 µm, i.e., the designed focal plane, at wavelengths from 4.0 µm to 4.8 µm (spaced by
0.1 µm) (a–i), showing strong focal spots with weak sidelobes. Simulated normalized light intensity
along the x-axis (right panels of (a–i)) at the focal plane, i.e., the horizontal cuts of the focal spots.

Table 3. FWHMs at wavelengths from 4.0 to 4.8 µm.

Wavelength (µm) 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

FWHM (µm) 4.6 5.0 5.0 5.0 5.4 5.6 6.2 6.6 5.8

To verify the environmental adaptability of the designed metalens, we changed the
background material from air to water and oil, corresponding to the case of outdoors
equipment exposed to rain and equipment covered by electric insulating oil, respectively.
Figure 6 shows the simulated normalized intensity profiles of the normally incident light
transmitted through the metalens in the xz-plane at wavelengths of 4.0 µm (a), 4.2 µm (b),
4.4 µm (c) and 4.6 µm (d), where z-axis is the optical axis and x-axis is the radial direction of
the metalens. As shown in Figure 6, when the metalens is under the environment of water
or oil, the focusing performance of the designed metalens maintains well overall, with
slight changes in focal lengths, but the depths of foci still cover the designed focal plane
z = 200 µm. These results numerically verify the environmental adaptability of the designed
metalens. Compared to the previous reports of achromatic metalens [16–25,30–33], which
only worked in the air environment, the notable point of this work is providing the
feasibility of constructing an all-dielectric mid-infrared metalens with appreciable focusing
performance when it is surrounded with air, water and oil, thus further facilitates the
practical application of metalens.

To practically obtain the proposed metalens, the feasible fabrication steps are as
follows. First, amorphous silicon is deposited on the fused silica substrate by chemical
vapor deposition (CVD). Second, PMMA4 photoresist is spin-coated on the wafer. Third,
patterns of the metalens are developed on the wafer by electron beam lithography (EBL)
and the following steps of developing and removing the exposed photoresist. Fourth, hard
mask is developed on the pattern by depositing a layer of chromium by electron beam
evaporation and removing the remaining photoresist. Fifth, etching of the metalens is
performed by inductively coupled plasma (ICP). Sixth, the hard mask is removed. After
these steps, the metalens is fabricated and can be used in practical application. The
flowchart of the fabricating method is shown in Figure S1.
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4. Conclusions

In this work, we numerically demonstrated a broadband achromatic infrared all-
dielectric metalens over a continuous 800 nm bandwidth, with environmental adaptability
in air, water and oil. By building a database with multiple 2π phase coverage and anoma-
lous dispersions, optimizing the corrected required phase profiles using particle swarm
optimization algorithm, and designing the sizes and spatial distributions of silicon nanopil-
lars according to the corrected required phase profile and the database, we numerically
realized the design and optimization of a broadband achromatic all-dielectric metalens.
The simulation results of the designed metalens show nearly constant focal lengths with
standard deviations of merely 2% of focal length and diffraction-limited focal spots over
the continuous range of wavelengths from 4.0 µm to 4.8 µm, revealing the achromatic
response of the metalens. The broad bandwidth indicates the ability of the designed metal-
ens to detect thermal signals over a temperature range from various fault points. Further
simulation results show that the metalens maintains good focusing performance under
the environment of water or oil. This work may facilitate the application of metalens in
ultra-compact infrared detectors for power grid faults detection.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s22176590/s1, Figure S1. The flowchart of fabricating method. Figure
S2. The set-up diagram of measuring method.
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