
Citation: Shin, D.-H.; Kim, G.-Y.;

Euom, I.-C. Vulnerabilities of the

Open Platform Communication

Unified Architecture Protocol in

Industrial Internet of Things

Operation. Sensors 2022, 22, 6575.

https://doi.org/10.3390/s22176575

Academic Editors: Habtamu Abie

and Ethiopia Nigussie

Received: 23 July 2022

Accepted: 30 August 2022

Published: 31 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Vulnerabilities of the Open Platform Communication Unified
Architecture Protocol in Industrial Internet of Things Operation
Dong-Hyuk Shin 1,† , Ga-Yeong Kim 1,† and Ieck-Chae Euom 2,*

1 System Security Research Center, Chonnam National University, Gwangju 61186, Korea
2 Department of Data Science, Chonnam National University, Gwangju 61186, Korea
* Correspondence: iceuom@jnu.ac.kr
† These authors contributed equally to this work.

Abstract: Recently, as new threats from attackers are discovered, the damage and scale of these
threats are increasing. Vulnerabilities should be identified early, and countermeasures should be
implemented to solve this problem. However, there are limitations to applying the vulnerability
discovery framework used in practice. Existing frameworks have limitations in terms of the analysis
target. If the analysis target is abstract, it cannot be easily applied to the framework. Therefore, this
study proposes a framework for vulnerability discovery and countermeasures that can be applied to
any analysis target. The proposed framework includes a structural analysis to discover vulnerabilities
from a scenario composition, including analysis targets. In addition, a proof of concept is conducted
to derive and verify threats that can actually occur through threat modeling. In this study, the open
platform communication integrated architecture used in the industrial control system and industrial
Internet of Things environment was selected as an analysis target. We find 30 major threats and
four vulnerabilities based on the proposed framework. As a result, the validity of malicious client
attacks using certificates and DoS attack scenarios using flooding were validated, and we create
countermeasures for these vulnerabilities.

Keywords: open platform communication (OPC) unified architecture (UA); vulnerability discovery
framework; vulnerability analysis; industrial control system; industrial Internet of Things

1. Introduction
1.1. Background and Motivation

As processes become more precise and complex, the importance of communication to
transmit data between the equipment controlling the process increases. Before the advent of
open platform communication (OPC), industrial communication protocols, such as Modbus
or PROFINET, were different for each equipment manufacturer. Hence, all equipment
required for the process was unified with products of the same manufacturer using the
same communication protocol. However, because communication between devices was
essential according to the demand for various functions, the interface capability has been
increased through intensive investment in collecting communication protocols through
partnership with equipment manufacturers.

In addition, a human–machine interface (HMI) with an integrated protocol was cre-
ated, requiring the user to purchase and use the HMI program to reduce the communication
and convenience burden of process management. However, although the communication
problem was solved in this manner, the user was forced to only use products from major
manufacturers linked to the HMI or had to purchase an expensive license for communi-
cation even in an environment that did not require an HMI. In addition, the need for a
standard communication protocol with high versatility, rather than the HMI, was empha-
sized for small-scale or late-stage equipment manufacturers because of communication
entry barriers created by major manufacturers and HMI companies [1].

Sensors 2022, 22, 6575. https://doi.org/10.3390/s22176575 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22176575
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2384-3380
https://orcid.org/0000-0002-9034-0257
https://orcid.org/0000-0002-8224-1996
https://doi.org/10.3390/s22176575
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22176575?type=check_update&version=2

Sensors 2022, 22, 6575 2 of 30

A technology born in response to this demand, OPC, was introduced in 1996. It is an
industrial standard protocol created to facilitate communication between all equipment
controlling a process. Based on component object model/distributed component object
model (COM/DCOM), a technology developed by Microsoft for Windows, OPC enables
data communication between production systems and automation devices from other
vendors via a Windows PC. In addition, the OPC Unified Architecture (UA), an integrated
architecture, was released by the OPC Foundation in 2008 to improve the initial OPC, which
can only be operated based on the Windows operating system. As a result, the OPC UA
with improved interoperability can be deployed on Windows, Linux, VxWorks, and various
real-time operating systems. Hence, it is evaluated as a machine-to-machine protocol for
industrial automation with the advantage of being unaffected by the operating system.

1.2. Problem Setup

The OPC UA protocol was designed with security in mind according to the OPC UA
security architecture specified in OPC 10000-2 [2]. Furthermore, the Practical Security
Recommendations were presented by the OPC Foundation [3]. The German Federal Office
for Information Security (BSI) published the Security Analysis Report for the OPC UA [4].
However, to use the OPC UA, the user must actively configure the security settings, and
the system might be vulnerable or unsecured due to improper security settings. Therefore,
13 OPC UA vulnerabilities reported from July 2017 to May 2021 were investigated. This
investigation included cases of exploiting vulnerabilities in OPC UA applications. Recently,
cases of exploiting the vulnerabilities of the NET Framework in OPC UA applications
have been increasing. Therefore, although the OPC UA protocol design is secure, it can
be significantly affected by various security setting options, resulting in actual security
threats [5].

1.3. Goal and Purpose

In this study, operationally possible control system vulnerabilities were analyzed
through virtual simulations using the OPC UA protocol. After developing a five-step
analysis framework, the environment configuration, data flow analysis, threat modeling,
and attack verification were performed according to the framework Then, a response plan
was mapped to each attack scenario.

A previous study evaluated the security level of Internet-connected OPC UA deploy-
ments and configurations and found that 92% of OPC UA servers were misconfigured be-
cause of missing access controls, disabled security features, use of dedicated cryptographic
primitives, or reuse of certificates. Although the author mentioned that the configuration of
the OPC UA is complicated [6], other studies have suggested that such issues are attributed
to the OPC UA standard supporting insecure operations [7].

Moreover, studies have demonstrated denial-of-service (DoS) attacks, packet sniff-
ing, and man-in-the-middle (MiTM) attacks through attack simulations on OPC UA
networks [8–14]. However, they focused on the impact assessment of industrial Inter-
net of Things (IoT) systems and verified possible attack types for known security threats
specified in the OPC UA system specifications. The current study identified the data flow
for the environment configuration based on a real industry model using the OPC UA
protocol. Then, the STRIDE (spoofing, tampering, repudiation, information disclosure,
Dos, and elevation of privilege) threat modeling technique was applied to possible threats
during the operation to identify them and construct and demonstrate attack scenarios.

The contributions can be summarized as follows:

• We propose a framework for discovering vulnerabilities and creating countermeasures
for analysis targets.

• We selected the OPC UA as an analysis target and applied it to the framework through
a case study to derive results.

• We analyzed the attack scenario from the attacker’s viewpoint to identify the attack
path and create countermeasures.

Sensors 2022, 22, 6575 3 of 30

This paper details the cybersecurity attack scenarios that can occur during operations
by implementing a virtual plant using the OPC UA, an industrial control protocol. The
sections are organized as follows. Section 1 introduces the necessity of OPC according to the
need for integrating control protocols used in industrial control systems (ICSs), and explains
the problem and motivation for this study. Section 2 analyzes the security elements of
major control protocols based on an understanding of ICSs. In addition, Section 2 explains
and discusses the background of the OPC protocol, the OPC UA, the communication
structure between a client and server, and the security architecture. Section 3 proposes a
framework for vulnerability discovery and countermeasures. The framework consists of
five steps: environment configuration, structural analysis, threat modeling, vulnerability
analysis, and countermeasures. Section 4 presents a case study conducted to apply to
the proposed framework. The analysis target is the OPC UA, including its environment.
We derived vulnerabilities through analysis and verified them through attack scenarios.
Finally, Section 5 summarizes the study and discusses future research.

2. Related Work
2.1. Trends in Protocols for Industrial Control

Potential security threats to ICSs increase as digital transformation and connectivity
through information technology (IT) technologies increase. In addition, as the interest in
smart factories has recently increased, many articles and materials on ICS security can be
found. In fact, ICS security operations have been in progress for a long time, but the interest
in security is on the rise after the risks and ripple effects of many recent breaches have
been recognized. The ICS refers to several control systems, including supervisory control
and data acquisition (SCADA), distributed control systems (DCSs), programmable logic
controllers (PLCs), and field devices used in industrial production. Figure 1 illustrates the
structure of the ICS specified in IEC 62264 [15], an international standard for integration.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 32

Figure 1. Structure of an ICS.

Then, ICS security standards are addressed in a broad context. Considering that the

production technology varies from system to system, the ICS configuration varies for each

manufacturing plant. Table 1 summarizes the comparison results of the main characteris-

tics and security goals of the ICS with those of the IT system.

Table 1. Difference between IT and an ICS.

 IT ICS

Configuration

environment

- Standardized equipment (PC, server)

- Short equipment replacement cycle

- Easy to patch and repair

- Use a universal operating system

- Network speed and performance

- Specialized equipment according to the pro-

cess

- Few equipment replacement cycles

- Difficult to patch and repair due to equipment

availability

- General-purpose OS customized (e.g., embed-

ded and kernel) or self-developed OS operation

- Real-time network communication is im-

portant

Critical security

objectives

- Block the leakage of important

data and service interruption

- Block the possibility of production and process

disruption

- Prevention of personal accidents in case of ac-

cidents

Effect on security

threats

- Damage caused by leaking important data

- Legal issues and damage to company trust

- Direct damage caused by production and hu-

man casualties

- Damage to product reliability

Unlike the general IT environment, an ICS is an environment in which safety and

continuity are more important than security. In the case of a security incident in an ICS,

the physical operation can be controlled, so safety and continuity cannot be guaranteed.

Therefore, physical damage may occur, which may cause personal injury. Cyberattacks

Figure 1. Structure of an ICS.

Then, ICS security standards are addressed in a broad context. Considering that the
production technology varies from system to system, the ICS configuration varies for each
manufacturing plant. Table 1 summarizes the comparison results of the main characteristics
and security goals of the ICS with those of the IT system.

Sensors 2022, 22, 6575 4 of 30

Table 1. Difference between IT and an ICS.

IT ICS

Configuration
environment

- Standardized equipment (PC, server)
- Short equipment replacement cycle
- Easy to patch and repair
- Use a universal operating system
- Network speed and performance

- Specialized equipment according to the process
- Few equipment replacement cycles
- Difficult to patch and repair due to
equipment availability
- General-purpose OS customized
(e.g., embedded and kernel) or self-developed
OS operation
- Real-time network communication is important

Critical security
objectives

- Block the leakage of important
data and service interruption

- Block the possibility of production and
process disruption
- Prevention of personal accidents in case
of accidents

Effect on security threats - Damage caused by leaking important data
- Legal issues and damage to company trust

- Direct damage caused by production and
human casualties
- Damage to product reliability

Unlike the general IT environment, an ICS is an environment in which safety and
continuity are more important than security. In the case of a security incident in an ICS,
the physical operation can be controlled, so safety and continuity cannot be guaranteed.
Therefore, physical damage may occur, which may cause personal injury. Cyberattacks on
ICSs cannot simply be regarded as cyber damage and can cause human casualties during
a production process interruption or accident. However, the security of ICSs has not yet
been strengthened, and many vulnerabilities exist. Tables 2 and 3 summarize the results
of identifying the characteristics of the major protocols used in the control system and
possible network security threats and analyzes the security requirements reflecting the
characteristics of the control system.

Table 2. Types and characteristics of major control protocols.

Industrial Control Protocol Protocol Characteristics

PROFINET Abbreviation for process field net, an open industry standard Ethernet-based
protocol built and maintained by PROFINET International (PI)

Siemens S7 Siemens PLC control protocol
Modbus PLC open standard serial communication protocol developed by Modicon
OPC-DA Protocol for real-time data communication between client and server
OPC UA Machine-to-machine communication protocol for industrial automation

Table 3. Analysis of the security elements of key control protocols.

Industrial Control Protocol Encryption Authentication Security Features at
Application Level

Modbus-TCP - - Modbus (No security)
DNP3 Secure DNP Secure DNP Secure DNP

PROFINET - - -
OPC OPC UA OPC UA OPC UA

S7Comm - - -

According to Hardware Meets Software (HMS) Networks of industrial control protocol
trends in 2021, the industrial Ethernet (e.g., PROFINET and Modbus-TCP) accounts for
approximately 65% of the network [16]. The OPC UA, a standard for integrating these
industrial Ethernet communication protocols, provides vertical and horizontal communica-
tion from field-level sensors and actuators to enterprise-level enterprise resource planning
(ERP), as depicted in Figure 2.

Sensors 2022, 22, 6575 5 of 30

Sensors 2022, 22, x FOR PEER REVIEW 5 of 32

on ICSs cannot simply be regarded as cyber damage and can cause human casualties dur-

ing a production process interruption or accident. However, the security of ICSs has not

yet been strengthened, and many vulnerabilities exist. Tables 2 and 3 summarize the re-

sults of identifying the characteristics of the major protocols used in the control system

and possible network security threats and analyzes the security requirements reflecting

the characteristics of the control system.

Table 2. Types and characteristics of major control protocols.

Industrial Control Protocol Protocol Characteristics

PROFINET
Abbreviation for process field net, an open industry standard Ethernet-based

protocol built and maintained by PROFINET International (PI)

Siemens S7 Siemens PLC control protocol

Modbus PLC open standard serial communication protocol developed by Modicon

OPC-DA Protocol for real-time data communication between client and server

OPC UA Machine-to-machine communication protocol for industrial automation

Table 3. Analysis of the security elements of key control protocols.

Industrial Control Protocol Encryption Authentication
Security Features at

Application Level

Modbus-TCP - - Modbus (No security)

DNP3 Secure DNP Secure DNP Secure DNP

PROFINET - - -

OPC OPC UA OPC UA OPC UA

S7Comm - - -

According to Hardware Meets Software (HMS) Networks of industrial control pro-

tocol trends in 2021, the industrial Ethernet (e.g., PROFINET and Modbus-TCP) accounts

for approximately 65% of the network [16]. The OPC UA, a standard for integrating these

industrial Ethernet communication protocols, provides vertical and horizontal communi-

cation from field-level sensors and actuators to enterprise-level enterprise resource plan-

ning (ERP), as depicted in Figure 2.

Figure 2. Architecture with integrated OPC in facility automation. Figure 2. Architecture with integrated OPC in facility automation.

2.2. OPC Protocol

The OPC is an international industry standard communication protocol created to
facilitate communication between all equipment controlling a process. The OPC’s object
linking and embedding (OLE) function can use each object of the window in various ways
in the application program. From the description of OLE, OPC Classic, the original OPC,
works based on Windows. Subsequently, the OPC UA was developed, bridging the gap
between the Internet protocol (IP)-based world of IT and the production site. It supports
various operating systems (OSs), not limited to Windows, enables communication between
various platforms, and supports a wide range of platforms from embedded systems or
devices to mobile, enterprise systems, and the cloud. In terms of security, OPC UA offers
(1) user and application instance (software) authentication, (2) confidentiality and integrity
through message signing and encryption, and (3) availability through minimal processing
prior to authentication. In addition, it is (4) defined for OPC UA operation, providing
auditability via audit events, and is different from OPC Classic.

The OPC technology consists of a server and client. The server provides an interface for
obtaining measurement values of network devices and turning individual motor switches
on and off. A client is a user program that reads, writes, and controls data provided by
the server. The server connects to the equipment and operates in the background, and the
client primarily comprises the HMI and transmits the device status and user control input
to the server.

2.2.1. OPC Classic

Moreover, OPC Classic communicates using Microsoft’s DCOM technology, which
communicates between components on network computers and is the underlying protocol
of OPC. Although the first COM technologies were only available for homogeneous systems,
DCOM enables interprocess interactions on heterogeneous systems. In addition, OPC
Classic was primarily used by HMI and SCADA systems to access data from devices from
multiple vendors and other types of automation hardware using one defined software
interface provided by the hardware vendor. With the successful application of OPC Classic
in numerous products, it has been used as a standardized interface between automation
systems at different levels. However, if one wants to use a standard, such as OPC, more
products become unavailable because of the OPC’s COM dependency or remote access
using DCOM [17].

Sensors 2022, 22, 6575 6 of 30

2.2.2. OPC UA

The OPC UA emerged owing to the barriers of Microsoft’s technologies COM and
DCOM, which are problems for OPC Classic. In addition, because data access between
DCOM and TCP is often strictly restricted by various security policies, security issues
have been raised. Consequently, the OPC UA has emerged to substantially replace all
existing COM-based specifications without losing functionality or performance. In addition,
complex systems must meet the constraints of having scalable modeling capabilities and all
the requirements for platform-independent system interfaces. Moreover, it can be extended
from embedded systems in SCADA and DCS to manufacturing execution system MES and
ERP systems [18]. The main requirements are as follows:

1. Operation on Windows PC and various automation devices;
2. Exchange of structured data, semantic information, simple numerical values, and

memory data;
3. Enhanced security.

The differences in the communication methods of OPC Classic and OPC UA are
compared in Figure 3 [19].

Sensors 2022, 22, x FOR PEER REVIEW 7 of 32

Figure 3. Comparison between OPC Classic and OPC UA.

2.2.3. OPC UA Security Model

Most security issues of OPC Classic are related to data access restrictions between

DCOM and the transmission control protocol (TCP). The security of OPC Classic is set by

the Windows DCOM-based user and authorization method for the user, which is difficult

when OSs other than Windows are involved. The OPC UA is an interface between com-

ponents at different levels of the industrial automation model, from high-level enterprise

management to low-level field equipment control. Accordingly, the OPC Foundation pro-

vides a standard definition of the security of OPC UA, as presented in Figure 4 [2].

Figure 4. OPC UA security architecture.

Transport layer: The lowest layer of the OPC UA security architecture uses a firewall

to defend against external threats and rejects the connection itself. This layer also manages

the IP addresses used by the server and client.

Communication layer: This layer provides confidentiality, integrity, and application

authentication functions for security purposes. The OPC UA server and client negotiate

security functions and create a secure channel. This layer transmits data after generating

encryption to implement confidentiality, a signature to provide integrity, and a certificate

of data received from the application layer.

Figure 3. Comparison between OPC Classic and OPC UA.

2.2.3. OPC UA Security Model

Most security issues of OPC Classic are related to data access restrictions between
DCOM and the transmission control protocol (TCP). The security of OPC Classic is set by the
Windows DCOM-based user and authorization method for the user, which is difficult when
OSs other than Windows are involved. The OPC UA is an interface between components at
different levels of the industrial automation model, from high-level enterprise management
to low-level field equipment control. Accordingly, the OPC Foundation provides a standard
definition of the security of OPC UA, as presented in Figure 4 [2].

Transport layer: The lowest layer of the OPC UA security architecture uses a firewall
to defend against external threats and rejects the connection itself. This layer also manages
the IP addresses used by the server and client.

Communication layer: This layer provides confidentiality, integrity, and application
authentication functions for security purposes. The OPC UA server and client negotiate
security functions and create a secure channel. This layer transmits data after generating
encryption to implement confidentiality, a signature to provide integrity, and a certificate
of data received from the application layer.

Application layer: Communication, settings, and commands between client and server
applications are provided in this layer. This layer is also responsible for user authentication
and authorization for security purposes.

Sensors 2022, 22, 6575 7 of 30

Sensors 2022, 22, x FOR PEER REVIEW 7 of 32

Figure 3. Comparison between OPC Classic and OPC UA.

2.2.3. OPC UA Security Model

Most security issues of OPC Classic are related to data access restrictions between

DCOM and the transmission control protocol (TCP). The security of OPC Classic is set by

the Windows DCOM-based user and authorization method for the user, which is difficult

when OSs other than Windows are involved. The OPC UA is an interface between com-

ponents at different levels of the industrial automation model, from high-level enterprise

management to low-level field equipment control. Accordingly, the OPC Foundation pro-

vides a standard definition of the security of OPC UA, as presented in Figure 4 [2].

Figure 4. OPC UA security architecture.

Transport layer: The lowest layer of the OPC UA security architecture uses a firewall

to defend against external threats and rejects the connection itself. This layer also manages

the IP addresses used by the server and client.

Communication layer: This layer provides confidentiality, integrity, and application

authentication functions for security purposes. The OPC UA server and client negotiate

security functions and create a secure channel. This layer transmits data after generating

encryption to implement confidentiality, a signature to provide integrity, and a certificate

of data received from the application layer.

Figure 4. OPC UA security architecture.

2.3. OPC UA Security Analysis

The security scope of the OPC UA is divided into reliable information and access
control and is defined as the elements of the confidentiality, integrity, and availability
(CIA) triad and the authentication, authorization, and accounting (AAA) framework. The
OPC UA security architecture described in Section 2.2.3 is defined to achieve the security
objective and is summarized in Table 4.

Table 4. OPC UA security requirements.

Security Purposes Implementation

Reliable information
(CIA triad)

Confidentiality Encryption at the transport layer
Integrity Signing at the transport layer

Availability Message size limit

Access control
(AAA framework)

Authentication
Use of X.509 certificates and user

account-based authentication at the
application layer

Authorization User role-based access control

Accounting Generate audit events for
security-related actions

The security model defined in the OPC UA standard was implemented [20]. The
authors defined the security requirements according to the OPC UA system construction
environment, such as local networks, virtual networks, or Internet connections, and a
distributed firewall-based security strategy was presented. The BSI reviewed the OPC UA
security mechanisms and issued an evaluation report. The analysis report demonstrates that
the OPC UA provides a high level of security, unlike other industrial protocols, and has no
system errors based on the results of four security tests (certificate test, static code analysis,
fuzzing, and dynamic code analysis). In addition, the Practical Security Recommendations
for Building OPC UA Applications published by the OPC Foundation presents a guide on
security modes, encryption algorithm selection, user authentication, certificate and private
key storage, certificate usage, and certificate management and maintenance.

Nevertheless, safe OPC UA construction and operation are not performed in real
industrial environments [6]. The study indicated that 92% of OPC UA servers had problems
with security settings, such as missing access controls, disabled security mode, use of
insecure encryption, and reuse of certificates. The authors suggested that the complexity
of the OPC UA security settings was the cause and that the default values of the security
configuration should be applied as a recommendation for OPC UA deployment. Other
studies [14,21] that have assessed the security of OPC UA deployments have reported

Sensors 2022, 22, 6575 8 of 30

that the OPC UA standard protocol guarantees a high level of security, emphasizing the
importance of correct security settings in OPC UA deployments.

Owing to the influence of the OPC UA security mechanism on performance [22,23],
the use of message authentication and data encryption is not compulsory. This flexibility
makes the OPC UA vulnerable to cyberattacks.

A security analysis of the OPC UA protocol was performed in [8,9]. In [8], most
security vulnerabilities were due to products and libraries that did not meet the OPC UA
standard specifications through fuzzing, and 17 security vulnerabilities in OPC UA prod-
ucts were identified. In [9], confidentiality and authentication properties were reviewed
using ProVerif, an encryption protocol verification tool, and confidentiality and authenti-
cation requirements were satisfied when using the signing/encryption mode. Moreover,
Erba et al. investigated 48 artifacts composed of products and libraries for the OPC UA
and suggested that 38 of them had one or more security problems [10].

A study was conducted on an attack simulation for insecure OPC UA security config-
uration [11]. In addition, Varadarajan [12] focused on three major cyberattacks occurring in
the industrial IoT [11]: packet sniffing, MiTM, and DoS. An attack scenario was constructed,
and a penetration test was performed through a simulation [12]. Both studies verified the
attack scenario through a cyberattack simulation that could occur in an insecure security
configuration; however, it was only a penetration test for a single threat.

In addition, Hildebrandt et al. demonstrated that a command injection attack through
a hidden channel could be performed on a packet transmitted from a server to a client (PLC)
in an OPC UA protocol-based communication environment, a potential supply chain attack.
Attack vectors have also been described [13]. For example, Polge et al. identified new
threats that can occur using the OPC UA protocol based on IoT security threat modeling [14].
The attack identified from their proposed OPC UA threat model verified the possibility
of two types of DoS attacks using MiTM and TCP, synchronization (SYN) flood attacks.
Table 5 summarizes the corresponding studies and attack types and characteristics.

Table 5. Summary of papers related to OPC UA penetration testing.

Author Year Attack Type Description

[8] Pavel Cheremushkin et al. 2018 DoS,
Remote code execution

OPC UA penetration testing using
fuzzing techniques

[9] Puys, Maxime et al. 2016 Privilege escalation
Validation of OPC UA confidentiality and

security of authentication attributes using a
cryptographic protocol verification tool

[10] Erba, Alessandro et al. 2021 MiTM Security evaluation and vulnerability attack
verification for commercial OPC UA products

[11] Neu, Charles Varlei et al. 2019 DoS
Implementation and evaluation of DoS attack

scenarios for OPC UA clients not using the
secure mode

[12] Varadarajan, Vaishnavi 2022 Packet sniffing,
MiTM, DoS

Implementing attack simulations for the three
most common types of attacks in the IoT

[13] Hildebrandt, Mario et al. 2020 Supply chain attack Supply chain attack verification through the OPC
UA server–client hidden channel

[14] Polge, Julien et al. 2019 MiTM, message flooding OPC UA threat modeling and attack scenario
implementation based on IoT threat modeling

In this study, we propose a framework for analyzing vulnerabilities in the OPC UA
protocol and modeling threats. We also present scenarios for vulnerabilities identified
according to threat modeling and suggest countermeasures through the proof-of-concept
process for each configured scenario.

Sensors 2022, 22, 6575 9 of 30

2.4. Threat Modeling

The threat modeling phase is configured to perform three tasks. Based on the created
data flow chart, threat modeling is applied to identify threats. When a threat is iden-
tified, a threat that can attack the analyzed target is derived. If common items among
the derived threats are grouped and visualized, an attack tree, the basis of an attack sce-
nario, can be created. Threat modeling typically includes the STRIDE [24–26], Process
for Attack Simulation and Threat Analysis (PASTA) [27], Operationally Critical Threat
Asset and Vulnerability Evaluation (OCTAVE) [28], Trike [29] and LINDDUN (linking,
identifiability, nonrepudiation, detectability, disclosure of information, unawareness, and
noncompliance) [30,31] methods.

1. STRIDE

Microsoft developed STRIDE, a security threat modeling method, in 1999. Threats
of STRIDE include spoofing, tampering, repudiation, information disclosure, DoS, and
elevation of privilege. The security attributes are displayed in Table 6.

Table 6. Attributes and description of the threat modeling method STRIDE.

STRIDE Security Attributes Description

Spoofing Authentication Acquiring privileges using an
illegal account

Tampering Integrity Illegal changing of data

Repudiation Non-repudiation Disclaiming failure to perform certain
services or disclaiming liability

Information disclosure Confidentiality Giving information to someone who does
not have access

DoS Availability Preventing a service or application from
performing normally

Elevation of privilege Authorization Authorizing someone to perform an
unauthorized service

2. PASTA

Next, PASTA is a threat modeling framework developed in 2012. The purpose of
PASTA is to provide an attacker-centric view of the applications and infrastructure that
defenders can use to develop asset-centric mitigation strategies. In addition, PASTA defines
a seven-step process for identifying, enumerating, and scoring dynamic threats.

3. OCTAVE

The Software Engineering Institute at Carnegie Mellon University developed OCTAVE
as a threat analysis and risk assessment methodology in 2003. The purpose of OCTAVE
is to provide an operations-centric threat modeling method to evaluate organizational
risks systematically. Further, OCTAVE identifies critical assets, threats, and vulnerabilities
of assets necessary to conduct an organization’s business, which defines the process of
developing a strategy to mitigate risks.

4. Trike

Trike is an integrated framework for security inspection from a risk management
security perspective through the creation of threat models in a reliable and repeatable
manner. It is a threat modeling technique that identifies users and assets in the data
flow and usage flow and derives the risk to the asset by analyzing the frequency of user
execution of the four elements of the asset: create, read, update, and delete.

5. LINDDUN

Next, LINDDUN addresses seven privacy-related threats and identifies the following:
linkability, identifiability, non-repudiation, detectability, information disclosure, unaware-
ness, and non-compliance. The LINDDUN threat model focuses on systematizing personal

Sensors 2022, 22, 6575 10 of 30

information threats by identifying external objects, processes, data storage, and data flows
expressed in DFDs and representing each threat as a threat tree.

In the architecture standard described in OPC 10000-2, security threats to OPC UA
systems are classified into 12 categories as 1. Denial of Service, 2. Eavesdropping, 3. Mes-
sage spoofing, 4. Message alteration, 5. Message replay, 6. Malformed messages, 7. Server
profiling, 8. Session hijacking, 9. Rogue Server, 10. Rogue Publisher, 11. Compromising
user credentials, 12. Repudiation as follows. The security attributes affected by these threats
can be countered, and compared to the scope of threat modeling listed in this paragraph.
They are summarized in Table 7:

Table 7. Comparison of the scope of OPC UA and threat modeling in response to security objectives.

Threat

Object
Confidentiality Integrity Availability Authentication Authorization Auditability Non-

Repudiation

OPC UA 2, 7, 8, 9, 10, 11 3, 4, 6, 7, 8, 9 1, 6, 7, 8, 9,10 2, 4, 5, 7, 8, 9,
10, 11

2, 3, 4, 5, 7, 8, 9,
10, 11 4, 7, 8, 9, 10 4, 7, 8, 12

STRIDE I T D E S - R

Trike Elevation of
Privilege

Elevation of
Privilege

Denial of
Service

Elevation of
Privilege

OCTAVE - - - - - - -

LINDDUN

Disclosure of
information

(D),
Detectability

(D)

- - Identifiability(I),
Linkability(L) Identifiability(I)

Non-
compliance

(N)

Non-
repudiation

(N)

PASTA - - - - - - -

Each threat model has a different focus and analysis perspective. Therefore, selecting
an appropriate threat modeling technique based on the target to be analyzed for vulner-
abilities is important. For example, STRIDE is design-focused and focuses on software
vulnerabilities. In contrast, PASTA focuses on requirement analysis and enterprise risk
management assessment. OCTAVE is a threat modeling technique focusing on organi-
zational risks, such as financial ones. Instead of evaluating and quantifying identified
threats, Trike is used to classify threats in line with asset risk management. Like STRIDE,
LINDDUN focuses on design, but it evaluates personal information. In this study, we focus
on identifying vulnerabilities in the test bed using the OPC UA. Accordingly, STRIDE was
employed as a threat modeling technique.

3. Vulnerability Discovery and Countermeasure Framework
3.1. Overview of the Vulnerability Discovery Methodology

The Open-Source Security Testing Methodology Manual (OSSTMM) [32], National Institute
of Standards and Technology (NIST) SP800-115 [33], and Open Web Application Security
Project (OWASP) [34] are the existing vulnerability discovery methodologies and include
appropriate guidelines for penetration testing:

1. OSSTMM

The OSSTMM is one of the most widely used penetration testing standards developed
by the Institute for Security and Open Methodologies. The OSSTMM provides detailed test
plans, metrics to evaluate the current security level, and recommendations for creating a
final report, ensuring that all tests are detailed and comprehensive. The OSSTMM proposes
five main directions for operational security testing, as listed in Table 8.

2. NIST SP800-115

NIST SP800-115 provides an overview of the key elements of security testing. Techni-
cally, it provides a way to plan, conduct, analyze results, and develop remediation strategies
for information security testing. This methodology includes the following:

1. Inspection of documents, logs, system configuration, network sniffing, and file integrity;
2. Evaluation of vulnerabilities through password cracking, social engineering, and

penetration testing;

Sensors 2022, 22, 6575 11 of 30

3. Self-assessment of security through reconciliation, data processing, analysis,
and evaluation;

4. Post-assessment actions with recommendations for risk reduction, assessment reports,
and vulnerability patching.

Table 8. Types and characteristics of major control protocols.

Main Direction Description

Human security Security aspects that deal with direct physical or
psychological interactions between people

Physical security A security aspect that covers all material elements of security,
whether physically or electromechanically actuated

Wireless communications Security of all wireless communications and devices from
Wi-Fi to infrared sensors

Telecommunications Tests all communications over the network, whether the
communications network is digital or analog

Data networks
Data network security testing involves electronic systems and
data networks used to communicate or interact over cable and

wired network lines

3. OWASP

The OWASP provides a methodology for testing applications, websites, and applica-
tion programming interfaces (APIs). This document is useful for IT companies that intend
to develop security software and includes the following:

5. OWASP Top 10: A document describing the most well-known vulnerabilities in web
and mobile applications, IoT, and APIs. Threats are described in terms of complexity
and business impact.

6. OWASP Testing Guide (TG): This document contains various techniques for testing
web application security.

7. OWASP Developer Guide: This guide provides recommendations for developing
safe and reliable code.

8. OWASP Code Review: This guide is distributed for use by web developers and prod-
uct managers. It provides an effective method to test the security of existing code.

3.2. Proposed Vulnerability Discovery and Countermeasure Framework

Discussed in Section 3.1, existing methods for discovering vulnerabilities perform
analysis from the perspective of advanced persistent threat attacks as part of a penetration
test. This study aims to discover vulnerabilities applicable to any analysis target and
establish countermeasures. Therefore, the existing vulnerability discovery methodology
cannot be applied; hence, a new framework is proposed. Figure 5 presents the vulnerability
discovery and countermeasure framework proposed in this study, consisting of five steps.

3.2.1. Environment Configuration

The environment configuration consists of three steps. First, an analysis target is
selected. The analysis target can be an aspect that can cause threat or risk, such as the
corporate environment, smart factories, and smart devices. If the analysis target is ab-
stract, a scenario including it can be constructed. In this case, requirement development
and management techniques of software engineering are used. Usually, requirements in
software engineering range from high-level abstract statements about system functions
or compositions to detailed mathematical functional specifications. However, because the
purpose of this framework is not to develop software, the requirements are interpreted as
an analysis target.

Accordingly, scenarios are constructed through three processes. The first step in
constructing a scenario is planning. It aims to plan the environment, including the object of
the analysis. It also determines the type of system that the environment consists of. Then, it
includes the functions that the system should include and what it does. The second step is

Sensors 2022, 22, 6575 12 of 30

development, which implements the plan. The third step is verifying that all conditions in
the planning stage are met.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 32

Figure 5. Proposed vulnerability discovery and countermeasure framework.

3.2.1. Environment Configuration

The environment configuration consists of three steps. First, an analysis target is se-

lected. The analysis target can be an aspect that can cause threat or risk, such as the cor-

porate environment, smart factories, and smart devices. If the analysis target is abstract, a

scenario including it can be constructed. In this case, requirement development and man-

agement techniques of software engineering are used. Usually, requirements in software

engineering range from high-level abstract statements about system functions or compo-

sitions to detailed mathematical functional specifications. However, because the purpose

of this framework is not to develop software, the requirements are interpreted as an anal-

ysis target.

Accordingly, scenarios are constructed through three processes. The first step in con-

structing a scenario is planning. It aims to plan the environment, including the object of

the analysis. It also determines the type of system that the environment consists of. Then,

it includes the functions that the system should include and what it does. The second step

is development, which implements the plan. The third step is verifying that all conditions

in the planning stage are met.

3.2.2. Structural Analysis

The test scenario created through environmental configuration is structurally ana-

lyzed in the structural analysis stage. First, the system constituting the test scenario is dis-

assembled. Through the decomposition of the system, major components, such as pro-

cesses and external objects, can be represented, as presented in Table 9. Through this pro-

cess, the data flow between entities can be identified. Finally, a data flow diagram (DFD)

is created to gain visibility and identify threats.

Table 9. Components of a DFD.

Component Symbol Description

External entity

External objects create data inputs and check outputs

Figure 5. Proposed vulnerability discovery and countermeasure framework.

3.2.2. Structural Analysis

The test scenario created through environmental configuration is structurally analyzed
in the structural analysis stage. First, the system constituting the test scenario is disassem-
bled. Through the decomposition of the system, major components, such as processes and
external objects, can be represented, as presented in Table 9. Through this process, the data
flow between entities can be identified. Finally, a data flow diagram (DFD) is created to
gain visibility and identify threats.

Table 9. Components of a DFD.

Component Symbol Description

External entity

Sensors 2022, 22, x FOR PEER REVIEW 13 of 32

Figure 5. Proposed vulnerability discovery and countermeasure framework.

3.2.1. Environment Configuration

The environment configuration consists of three steps. First, an analysis target is se-

lected. The analysis target can be an aspect that can cause threat or risk, such as the cor-

porate environment, smart factories, and smart devices. If the analysis target is abstract, a

scenario including it can be constructed. In this case, requirement development and man-

agement techniques of software engineering are used. Usually, requirements in software

engineering range from high-level abstract statements about system functions or compo-

sitions to detailed mathematical functional specifications. However, because the purpose

of this framework is not to develop software, the requirements are interpreted as an anal-

ysis target.

Accordingly, scenarios are constructed through three processes. The first step in con-

structing a scenario is planning. It aims to plan the environment, including the object of

the analysis. It also determines the type of system that the environment consists of. Then,

it includes the functions that the system should include and what it does. The second step

is development, which implements the plan. The third step is verifying that all conditions

in the planning stage are met.

3.2.2. Structural Analysis

The test scenario created through environmental configuration is structurally ana-

lyzed in the structural analysis stage. First, the system constituting the test scenario is dis-

assembled. Through the decomposition of the system, major components, such as pro-

cesses and external objects, can be represented, as presented in Table 9. Through this pro-

cess, the data flow between entities can be identified. Finally, a data flow diagram (DFD)

is created to gain visibility and identify threats.

Table 9. Components of a DFD.

Component Symbol Description

External entity

External objects create data inputs and check outputs External objects create data inputs and check outputs

Data store

Sensors 2022, 22, x FOR PEER REVIEW 14 of 32

Data store

Data stores store data temporarily or permanently

Process

Processes are responsible for taking data input and generating output

Data flow

Data flow refers to the movement of data between objects

Trust boundary

Trust boundaries represent changes in privilege levels

3.2.3. Threat Modeling

Threats are identified by applying STRIDE threat modeling based on the data flow

diagram generated in the Structural Analysis step. It then analyzes the identified threats

to create an attack tree on which the attack scenario is based. Thus, the threats identified

by each entity were configured for use in an attack scenario. The attack tree produced by

threat modeling determines which elements are needed for each attack from the main

threats identified. Based on STRIDE threat modeling focused on software vulnerabilities,

vulnerabilities are identified for each system component that attackers can exploit to com-

promise the entire system.

3.2.4. Vulnerability Analysis

The vulnerability analysis stage uses a previously created attack tree. Possible vul-

nerabilities in the analysis target are deduced. Subsequently, an attack scenario that ex-

ploits the vulnerability in the analysis target is configured. The attack scenario should be

configured according to the environment, including the analysis target determined in Step

1 of the framework. The validity of the vulnerability is verified through a proof-of-concept

step that executes the attack scenario.

3.2.5. Countermeasures

The last step is to establish a countermeasure against the attack performed in the

previous step. First, the method of detecting and protecting using a function of the ana-

lyzed object is addressed. It is a countermeasure against the vulnerabilities verified in the

previous step and may also be a countermeasure against the tools used in the attack sce-

nario. The case study described in Section 4 suggests countermeasures according to each

scenario.

4. Case Study

4.1. Environment Configuration

Data stores store data temporarily or permanently

Process

Sensors 2022, 22, x FOR PEER REVIEW 14 of 32

Data store

Data stores store data temporarily or permanently

Process

Processes are responsible for taking data input and generating output

Data flow

Data flow refers to the movement of data between objects

Trust boundary

Trust boundaries represent changes in privilege levels

3.2.3. Threat Modeling

Threats are identified by applying STRIDE threat modeling based on the data flow

diagram generated in the Structural Analysis step. It then analyzes the identified threats

to create an attack tree on which the attack scenario is based. Thus, the threats identified

by each entity were configured for use in an attack scenario. The attack tree produced by

threat modeling determines which elements are needed for each attack from the main

threats identified. Based on STRIDE threat modeling focused on software vulnerabilities,

vulnerabilities are identified for each system component that attackers can exploit to com-

promise the entire system.

3.2.4. Vulnerability Analysis

The vulnerability analysis stage uses a previously created attack tree. Possible vul-

nerabilities in the analysis target are deduced. Subsequently, an attack scenario that ex-

ploits the vulnerability in the analysis target is configured. The attack scenario should be

configured according to the environment, including the analysis target determined in Step

1 of the framework. The validity of the vulnerability is verified through a proof-of-concept

step that executes the attack scenario.

3.2.5. Countermeasures

The last step is to establish a countermeasure against the attack performed in the

previous step. First, the method of detecting and protecting using a function of the ana-

lyzed object is addressed. It is a countermeasure against the vulnerabilities verified in the

previous step and may also be a countermeasure against the tools used in the attack sce-

nario. The case study described in Section 4 suggests countermeasures according to each

scenario.

4. Case Study

4.1. Environment Configuration

Processes are responsible for taking data input and generating output

Data flow

Sensors 2022, 22, x FOR PEER REVIEW 14 of 32

Data store

Data stores store data temporarily or permanently

Process

Processes are responsible for taking data input and generating output

Data flow

Data flow refers to the movement of data between objects

Trust boundary

Trust boundaries represent changes in privilege levels

3.2.3. Threat Modeling

Threats are identified by applying STRIDE threat modeling based on the data flow

diagram generated in the Structural Analysis step. It then analyzes the identified threats

to create an attack tree on which the attack scenario is based. Thus, the threats identified

by each entity were configured for use in an attack scenario. The attack tree produced by

threat modeling determines which elements are needed for each attack from the main

threats identified. Based on STRIDE threat modeling focused on software vulnerabilities,

vulnerabilities are identified for each system component that attackers can exploit to com-

promise the entire system.

3.2.4. Vulnerability Analysis

The vulnerability analysis stage uses a previously created attack tree. Possible vul-

nerabilities in the analysis target are deduced. Subsequently, an attack scenario that ex-

ploits the vulnerability in the analysis target is configured. The attack scenario should be

configured according to the environment, including the analysis target determined in Step

1 of the framework. The validity of the vulnerability is verified through a proof-of-concept

step that executes the attack scenario.

3.2.5. Countermeasures

The last step is to establish a countermeasure against the attack performed in the

previous step. First, the method of detecting and protecting using a function of the ana-

lyzed object is addressed. It is a countermeasure against the vulnerabilities verified in the

previous step and may also be a countermeasure against the tools used in the attack sce-

nario. The case study described in Section 4 suggests countermeasures according to each

scenario.

4. Case Study

4.1. Environment Configuration

Data flow refers to the movement of data between objects

Trust boundary

Sensors 2022, 22, x FOR PEER REVIEW 14 of 32

Data store

Data stores store data temporarily or permanently

Process

Processes are responsible for taking data input and generating output

Data flow

Data flow refers to the movement of data between objects

Trust boundary

Trust boundaries represent changes in privilege levels

3.2.3. Threat Modeling

Threats are identified by applying STRIDE threat modeling based on the data flow

diagram generated in the Structural Analysis step. It then analyzes the identified threats

to create an attack tree on which the attack scenario is based. Thus, the threats identified

by each entity were configured for use in an attack scenario. The attack tree produced by

threat modeling determines which elements are needed for each attack from the main

threats identified. Based on STRIDE threat modeling focused on software vulnerabilities,

vulnerabilities are identified for each system component that attackers can exploit to com-

promise the entire system.

3.2.4. Vulnerability Analysis

The vulnerability analysis stage uses a previously created attack tree. Possible vul-

nerabilities in the analysis target are deduced. Subsequently, an attack scenario that ex-

ploits the vulnerability in the analysis target is configured. The attack scenario should be

configured according to the environment, including the analysis target determined in Step

1 of the framework. The validity of the vulnerability is verified through a proof-of-concept

step that executes the attack scenario.

3.2.5. Countermeasures

The last step is to establish a countermeasure against the attack performed in the

previous step. First, the method of detecting and protecting using a function of the ana-

lyzed object is addressed. It is a countermeasure against the vulnerabilities verified in the

previous step and may also be a countermeasure against the tools used in the attack sce-

nario. The case study described in Section 4 suggests countermeasures according to each

scenario.

4. Case Study

4.1. Environment Configuration

Trust boundaries represent changes in privilege levels

3.2.3. Threat Modeling

Threats are identified by applying STRIDE threat modeling based on the data flow
diagram generated in the Structural Analysis step. It then analyzes the identified threats
to create an attack tree on which the attack scenario is based. Thus, the threats identified

Sensors 2022, 22, 6575 13 of 30

by each entity were configured for use in an attack scenario. The attack tree produced
by threat modeling determines which elements are needed for each attack from the main
threats identified. Based on STRIDE threat modeling focused on software vulnerabilities,
vulnerabilities are identified for each system component that attackers can exploit to
compromise the entire system.

3.2.4. Vulnerability Analysis

The vulnerability analysis stage uses a previously created attack tree. Possible vulnera-
bilities in the analysis target are deduced. Subsequently, an attack scenario that exploits the
vulnerability in the analysis target is configured. The attack scenario should be configured
according to the environment, including the analysis target determined in Step 1 of the
framework. The validity of the vulnerability is verified through a proof-of-concept step
that executes the attack scenario.

3.2.5. Countermeasures

The last step is to establish a countermeasure against the attack performed in the
previous step. First, the method of detecting and protecting using a function of the analyzed
object is addressed. It is a countermeasure against the vulnerabilities verified in the previous
step and may also be a countermeasure against the tools used in the attack scenario. The
case study described in Section 4 suggests countermeasures according to each scenario.

4. Case Study
4.1. Environment Configuration

The target of the vulnerability analysis in this study is the OPC UA. Because the
OPC UA is not an independent device or environment, it can be considered an abstract
object. Therefore, a scenario that includes the OPC UA was configured. The first stage
involves planning the environment including the OPC UA. The scenario of water and
sewage facilities was implemented considering that the OPC UA is mainly used in an ICS
environment as a control protocol.

The Pure Water Technology company is in charge of water purification in water
and sewage. The water treatment process is performed as detailed in Figure 6. Water
treatment refers to the process of purifying water. Generally, water is purified using
chlorine disinfection and filtration methods. First, the water intake process is performed
to obtain water from a water source. Chlorine, calcium carbonate, and aluminum sulfate
are administered to the water to kill germs, eliminate odors, and settle solids in the water.
The grains undergo coagulation and agglomeration to form large grains in the water in
which the drug is administered. The agglomerated grains and water flow into the settling
basin, where the grains settle. From the clarifier, the water flows through a filter of sand
and gravel. Chlorine is again added as a disinfectant. Finally, the treated water is stored in
reservoirs, called tanks or water tanks.

Among the scenarios, the configuration for the water intake and chemical treatment
steps was set, and the system environment was configured. Water intake and chemical
processing are performed using automated on-site equipment. As illustrated in Figure 7,
the main water tanks are filled with water at a rate of one tank per second, and after filling
20 water tanks, the chemical treatment stage is performed. In the chemical treatment stage,
chlorine, calcium carbonate, and aluminum sulfate are added in amounts of five each, and
if it is less than or more than five, water quality problems occur. The OPC UA protocol
ensures interoperability because the equipment supplied for measuring the amount of
water and the chemical processing equipment are different.

The server consists of a water tank and PLC in the chemical processing stage. As
depicted in Figure 8, the water tank is connected to a sensor that measures the amount of
water, and the chemical treatment PLC is connected to an actuator that injects chlorine,
calcium carbonate, and aluminum sulfate. The client is connected to the water quality
management system. The client receives information from the server about the amount of

Sensors 2022, 22, 6575 14 of 30

water in the tank and whether the chemical treatment has been implemented according to
the set amount. The connection uses the OPC UA protocol, consisting of the GetEndPoint,
OpenSecureChannel, CreateSession, and ActivateSession steps.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 32

The target of the vulnerability analysis in this study is the OPC UA. Because the OPC

UA is not an independent device or environment, it can be considered an abstract object.

Therefore, a scenario that includes the OPC UA was configured. The first stage involves

planning the environment including the OPC UA. The scenario of water and sewage fa-

cilities was implemented considering that the OPC UA is mainly used in an ICS environ-

ment as a control protocol.

The Pure Water Technology company is in charge of water purification in water and

sewage. The water treatment process is performed as detailed in Figure 6. Water treatment

refers to the process of purifying water. Generally, water is purified using chlorine disin-

fection and filtration methods. First, the water intake process is performed to obtain water

from a water source. Chlorine, calcium carbonate, and aluminum sulfate are administered

to the water to kill germs, eliminate odors, and settle solids in the water. The grains un-

dergo coagulation and agglomeration to form large grains in the water in which the drug

is administered. The agglomerated grains and water flow into the settling basin, where

the grains settle. From the clarifier, the water flows through a filter of sand and gravel.

Chlorine is again added as a disinfectant. Finally, the treated water is stored in reservoirs,

called tanks or water tanks.

Figure 6. Water treatment process by the Pure Water Technology company.

Among the scenarios, the configuration for the water intake and chemical treatment

steps was set, and the system environment was configured. Water intake and chemical

processing are performed using automated on-site equipment. As illustrated in Figure 7,

the main water tanks are filled with water at a rate of one tank per second, and after filling

20 water tanks, the chemical treatment stage is performed. In the chemical treatment stage,

chlorine, calcium carbonate, and aluminum sulfate are added in amounts of five each, and

if it is less than or more than five, water quality problems occur. The OPC UA protocol

ensures interoperability because the equipment supplied for measuring the amount of

water and the chemical processing equipment are different.

Figure 6. Water treatment process by the Pure Water Technology company.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 32

Figure 7. Water intake and chemical treatment phases.

The server consists of a water tank and PLC in the chemical processing stage. As

depicted in Figure 8, the water tank is connected to a sensor that measures the amount of

water, and the chemical treatment PLC is connected to an actuator that injects chlorine,

calcium carbonate, and aluminum sulfate. The client is connected to the water quality

management system. The client receives information from the server about the amount of

water in the tank and whether the chemical treatment has been implemented according

to the set amount. The connection uses the OPC UA protocol, consisting of the GetEnd-

Point, OpenSecureChannel, CreateSession, and ActivateSession steps.

Figure 8. Connection structure between server–client and server–PLC in the scenario.

The OPC technology consists of a server and client. Therefore, to implement an envi-

ronment that includes the OPC, it is necessary to implement a server and client. Table 10

lists the open-source implementations of the OPC UA.

Table 10. OPC UA open-source implementation list.

No. Name Language Client/Server

1 Open62541 [35] C Client and server

2 UA.NET Standard [36] C# Client and server

3 node-opcua [37] JavaScript Client and server

4 FreeOpcUa [38] C++ Client and server

5 Python FreeOpcUa [39] Python Client and server

6 OpenScada UA Interface [40] C++ Server

7 ASNeG [41] C++ Client and server

Figure 7. Water intake and chemical treatment phases.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 32

Figure 7. Water intake and chemical treatment phases.

The server consists of a water tank and PLC in the chemical processing stage. As

depicted in Figure 8, the water tank is connected to a sensor that measures the amount of

water, and the chemical treatment PLC is connected to an actuator that injects chlorine,

calcium carbonate, and aluminum sulfate. The client is connected to the water quality

management system. The client receives information from the server about the amount of

water in the tank and whether the chemical treatment has been implemented according

to the set amount. The connection uses the OPC UA protocol, consisting of the GetEnd-

Point, OpenSecureChannel, CreateSession, and ActivateSession steps.

Figure 8. Connection structure between server–client and server–PLC in the scenario.

The OPC technology consists of a server and client. Therefore, to implement an envi-

ronment that includes the OPC, it is necessary to implement a server and client. Table 10

lists the open-source implementations of the OPC UA.

Table 10. OPC UA open-source implementation list.

No. Name Language Client/Server

1 Open62541 [35] C Client and server

2 UA.NET Standard [36] C# Client and server

3 node-opcua [37] JavaScript Client and server

4 FreeOpcUa [38] C++ Client and server

5 Python FreeOpcUa [39] Python Client and server

6 OpenScada UA Interface [40] C++ Server

7 ASNeG [41] C++ Client and server

Figure 8. Connection structure between server–client and server–PLC in the scenario.

Sensors 2022, 22, 6575 15 of 30

The OPC technology consists of a server and client. Therefore, to implement an
environment that includes the OPC, it is necessary to implement a server and client.
Table 10 lists the open-source implementations of the OPC UA.

Table 10. OPC UA open-source implementation list.

No. Name Language Client/Server

1 Open62541 [35] C Client and server
2 UA.NET Standard [36] C# Client and server
3 node-opcua [37] JavaScript Client and server
4 FreeOpcUa [38] C++ Client and server
5 Python FreeOpcUa [39] Python Client and server
6 OpenScada UA Interface [40] C++ Server
7 ASNeG [41] C++ Client and server

Table 11 presents the requirements for the server–client implementation.

Table 11. Server–client requirement features.

No. Server Client

1© Connection with the server
(Channel and session) Create channels and sessions

2© View and read property values Get the path and node
3© Add/remove nodes Events
4© Call method Methods
5© Username/password Encryption
6© Certificate login Certificate handling
7© Communication encryption Change data

Table 12 lists the OPC UA open-source implementations that satisfy the requirements.
The open-source implementations that satisfy all requirements are Nos. 2 and 5, and No. 5
was used to implement the scenario. A server–client pair was implemented in Linux using
the Python FreeOpcUa open-source software. Figure 9 depicts the screen on which the
scenario was executed using the open-source software.

Table 12. Checklist for open-source implementations that meet the requirements.

Open-Source List Server Client

1© 2© 3© 4© 5© 6© 7© 1© 2© 3© 4© 5© 6© 7©

Open62541 3 3 3 3 - - 3 3 3 3 3 3 - 3

UA.NET Standard 3 3 3 3 3 3 3 3 3 3 3 3 3 3

node-opcua 3 3 3 3 3 3 3 3 3 3 3 3 3 3

FreeOpcUa 3 3 3 3 - - - 3 3 3 3 - - 3

Python
FreeOpcUa 3 3 3 3 3 3 3 3 3 3 3 3 3 3

OpenScada UA
Interface 3 3 3 3 3 3 3 - - - - - - -

ASNeG 3 3 3 3 - - - 3 3 3 3 - - 3

4.2. Structural Analysis

The configuration diagram for the scenario implemented in the environment configu-
ration stage is presented in Figure 10.

The part where the server and client communicate with the OPC UA protocol is
designated as the main object. The OPC UA operates as a server–client system. The server
and client undergo authentication, secure channel opening, session creation, and session
activation processes. The server and client exchange keys and tokens through requests and
responses in each process. Accordingly, the entities comprise client and server certificates.

Sensors 2022, 22, 6575 16 of 30

The process consists of authentication, secure channel opening, session creation, and session
activation. Table 13 summarizes the entities to be analyzed in the OPC UA.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 32

Figure 9. Scenario configuration using Python FreeOpcUa.

4.2. Structural Analysis

The configuration diagram for the scenario implemented in the environment config-

uration stage is presented in Figure 10.

Figure 10. Configuration diagram for the scenario.

The part where the server and client communicate with the OPC UA protocol is des-

ignated as the main object. The OPC UA operates as a server–client system. The server

and client undergo authentication, secure channel opening, session creation, and session

activation processes. The server and client exchange keys and tokens through requests

and responses in each process. Accordingly, the entities comprise client and server certif-

icates. The process consists of authentication, secure channel opening, session creation,

and session activation. Table 13 summarizes the entities to be analyzed in the OPC UA.

Figure 9. Scenario configuration using Python FreeOpcUa.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 32

Figure 9. Scenario configuration using Python FreeOpcUa.

4.2. Structural Analysis

The configuration diagram for the scenario implemented in the environment config-

uration stage is presented in Figure 10.

Figure 10. Configuration diagram for the scenario.

The part where the server and client communicate with the OPC UA protocol is des-

ignated as the main object. The OPC UA operates as a server–client system. The server

and client undergo authentication, secure channel opening, session creation, and session

activation processes. The server and client exchange keys and tokens through requests

and responses in each process. Accordingly, the entities comprise client and server certif-

icates. The process consists of authentication, secure channel opening, session creation,

and session activation. Table 13 summarizes the entities to be analyzed in the OPC UA.

Figure 10. Configuration diagram for the scenario.

Table 13. Entities to be analyzed in the OPC UA.

Element Name Sign

External object Client E1
Server E2

Process

Certificate P1
Open Secure Channel P2

Create Session P3
Activate Session P4

Sensors 2022, 22, 6575 17 of 30

• P1 (Certificate): The server and client exchange requests and responses in the first process.
• P2 (Open secure channel): The client signs its private key through the OpenSe-

cureChannel process, encrypts it with a public key, and sends it to the server. After
receiving the transmission, the server signs its private key, encrypts it with a public
key, and sends it to the client.

• P3 (Create session): After receiving the transmission, the server signs its private key,
encrypts it with a public key, and sends it to the client. After creating a session, the
client signs the client signing key, encrypts it with the server’s encryption key, and
transmits it to the server. In addition, the server receives the message, signs the
server’s signing key, encrypts the client’s encryption key, and delivers it to the client.

• P4 (Activate session): A user authentication token is sent to the server to activate a
session, which the server receives when creating a session and sends it back to the
client. A DFD is created based on identifying of the data flow between objects, as
illustrated in Figure 11. The external objects are the server and client, and the main
processes are authenticating, opening a secure channel, and creating and activating
a session. The data flow of the OPC UA server–client system can be monitored
by utilizing the Wireshark tool, which is discussed in Section 4.4.3, attack scenario
proof-of-concept.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 32

Table 13. Entities to be analyzed in the OPC UA.

Element Name Sign

External object
Client E1

Server E2

Process

Certificate P1

Open Secure Channel P2

Create Session P3

Activate Session P4

 P1 (Certificate): The server and client exchange requests and responses in the first

process.

 P2 (Open secure channel): The client signs its private key through the OpenSe-

cureChannel process, encrypts it with a public key, and sends it to the server. After

receiving the transmission, the server signs its private key, encrypts it with a public

key, and sends it to the client.

 P3 (Create session): After receiving the transmission, the server signs its private key,

encrypts it with a public key, and sends it to the client. After creating a session, the

client signs the client signing key, encrypts it with the server’s encryption key, and

transmits it to the server. In addition, the server receives the message, signs the

server’s signing key, encrypts the client’s encryption key, and delivers it to the client.

 P4 (Activate session): A user authentication token is sent to the server to activate a

session, which the server receives when creating a session and sends it back to the

client.

A DFD is created based on identifying of the data flow between objects, as illustrated

in Figure 11. The external objects are the server and client, and the main processes

are authenticating, opening a secure channel, and creating and activating a session.

The data flow of the OPC UA server–client system can be monitored by utilizing the

Wireshark tool, which is discussed in 4.4.3, attack scenario proof-of-concept.

Figure 11. DFD of the OPC UA server–client system.
Figure 11. DFD of the OPC UA server–client system.

4.3. Threat Modeling

In this study, threat modeling was performed using the STRIDE technique. This
threat model was proposed by Microsoft and has six goals of authentication, integrity,
non-repudiation, confidentiality, availability, and authorization that provide information
protection on the elements of spoofing, tampering, repudiation, information disclosure,
DoS, and elevation of privilege. The threat modeling stage proceeds based on the DFD
derived in the previous stage. Table 14 lists the threats according to the components of
STRIDE based on the derived DFD.

This study uses the Microsoft Threat Modeling Tool v7.3.10801.1. The threats mapped
to STRIDE can be automatically identified using the reporting function. Accordingly,
88 threats were derived from this analysis, and the main 30 threats are summarized in
Table A1.

Sensors 2022, 22, 6575 18 of 30

Table 14. Threats available in DFD components.

Threat S T R I D E

External entity 3 3

Data flow 3 3 3 3 3 3

Figure 12 demonstrates the attack tree generated based on the identified threats.
Four attacks were derived based on the attack tree: repudiation, rogue server/client, DoS,
and information disclosure.

Sensors 2022, 22, x FOR PEER REVIEW 20 of 32

4.3. Threat Modeling

In this study, threat modeling was performed using the STRIDE technique. This

threat model was proposed by Microsoft and has six goals of authentication, integrity,

non-repudiation, confidentiality, availability, and authorization that provide information

protection on the elements of spoofing, tampering, repudiation, information disclosure,

DoS, and elevation of privilege. The threat modeling stage proceeds based on the DFD

derived in the previous stage. Table 14 lists the threats according to the components of

STRIDE based on the derived DFD.

Table 14. Threats available in DFD components.

Threat S T R I D E

External entity ✓ ✓

Data flow ✓ ✓ ✓ ✓ ✓ ✓

This study uses the Microsoft Threat Modeling Tool v7.3.10801.1. The threats

mapped to STRIDE can be automatically identified using the reporting function. Accord-

ingly, 88 threats were derived from this analysis, and the main 30 threats are summarized

in Table A1.

Figure 12 demonstrates the attack tree generated based on the identified threats. Four

attacks were derived based on the attack tree: repudiation, rogue server/client, DoS, and

information disclosure.

Figure 12. Derived attack tree.

4.4. Vulnerability Analysis

Step 4 is the vulnerability analysis. The vulnerability analysis proceeds with the vul-

nerability derivation, attack scenario configuration, and proof of concept.

4.4.1. Vulnerability Derivation

The first step is to identify vulnerabilities. Table 15 presents descriptions of the attack

types for the attack tree. An attack scenario was constructed based on attacks A1, A2, A3,

and A4.

Figure 12. Derived attack tree.

4.4. Vulnerability Analysis

Step 4 is the vulnerability analysis. The vulnerability analysis proceeds with the
vulnerability derivation, attack scenario configuration, and proof of concept.

4.4.1. Vulnerability Derivation

The first step is to identify vulnerabilities. Table 15 presents descriptions of the attack
types for the attack tree. An attack scenario was constructed based on attacks A1, A2, A3,
and A4.

Table 15. Attack types and descriptions based on the attack tree.

Attack Types Attack Descriptions

A1 Creates trust issues through denial of data by the sender and receiver
A2 Manipulates clients by stealing credentials

A3
An untrusted client/server exists on the same network and continuously

sends messages to flood the network and OPC UA server to perform a
DoS attack

A4 Steals server/client information

4.4.2. Attack Scenario

The Pure Water Technology company is inspected by a maintenance company once a
month. An employee of the maintenance company introduces a script that captures packets
at regular intervals in the system of the Pure Water Technology company through a USB
connection to the internal system for sabotage. In the internal system, the script in the
USB is automatically executed to capture packets at regular intervals. After a month, the
maintenance staff analyzes the packets by placing the packet capture file on a USB. The

Sensors 2022, 22, 6575 19 of 30

network configuration diagram, IP address, and system port are determined through the
analysis, and an attack is executed using them. The attack scenarios consist of message
manipulation by impersonating clients and DoS attacks through flooding attacks. We
address the first scenario, manipulating messages through impersonated clients. The files
comprising the server and client are listed in Table 16.

Table 16. Attack types and attack descriptions based on the attack tree.

Server Client

Python file opcuaServer.py opcuaClient.py

Certification
certificate-example.der my_cert.der

private-key-example.pem client_private_key.pem

Symmetric key storage file serverkey.txt serverkey.txt
client.txt client.txt

The attack scenario process of Scenario 1 is as follows:

1. The server runs opcuaServer.py to open port 4840 and waits for a client connection.
2. A normal client communicates with the server through socket communication and

exchanges keys using the Diffie–Hellman algorithm.
3. The rogue client detects the secret key between the server and the normal client.
4. The rogue client exchanges the key with the server through the detected secret key

and then engages in the authentication process through the forged certificate.
5. After the connection process is complete, the rogue client manipulates the sensor and

actuator values of the server into abnormal values to perform an attack.

Scenario 2 is a DoS attack through a flooding attack, which is an attack scenario that
causes a DoS attack by attempting multiple connections while the server remains in a
listening state. In addition, hping3 was employed as the attack tool. The parameters used
in hping3 and their descriptions are summarized in Table 17. The IP addresses and statuses
of attackers and victims are presented in Table 18.

Table 17. Main parameters and their descriptions for hping3.

Parameters Descriptions

-S SYN flag setting
<IP_ADDRESS> Destination IP

–scan SCAN mode
-p Set destination port number

–rand-source Send source IP randomly
–flood Sending many packets in a short time

Table 18. IP address and status of the attacker and victim.

Attacker Victim

IP Address 192.168.188.143 192.168.188.142
Condition Attack using hping3 Listening status

4.4.3. Proof of Concept

First, a proof of concept was conducted for message manipulation through the spoofed
client in Scenario 1. Before executing a rogue client, an attacker uses eavesdropping. The
attacker employs Wireshark to capture packets exchanged between the server and client.
The key exchange process in the first step can be viewed as plain text, and, as indicated in
Figure 13, the rogue client can determine the symmetric key. The second step in implement-
ing a rogue client is certificate manipulation. The certificate used by the OPC UA is X.509,
and anyone can create it using OpenSSL. Both “my_cert.der” and “client_private_key.pem”

Sensors 2022, 22, 6575 20 of 30

were created using OpenSSL for authentication. If the authentication is successful, then the
server and client start communication.

Sensors 2022, 22, x FOR PEER REVIEW 22 of 32

-p Set destination port number

--rand-source Send source IP randomly

--flood Sending many packets in a short time

Table 18. IP address and status of the attacker and victim.

 Attacker Victim

IP Address 192.168.188.143 192.168.188.142

Condition Attack using hping3 Listening status

4.4.3. Proof of Concept

First, a proof of concept was conducted for message manipulation through the

spoofed client in Scenario 1. Before executing a rogue client, an attacker uses eavesdrop-

ping. The attacker employs Wireshark to capture packets exchanged between the server

and client. The key exchange process in the first step can be viewed as plain text, and, as

indicated in Figure 13, the rogue client can determine the symmetric key. The second step

in implementing a rogue client is certificate manipulation. The certificate used by the OPC

UA is X.509, and anyone can create it using OpenSSL. Both “my_cert.der” and “client_pri-

vate_key.pem” were created using OpenSSL for authentication. If the authentication is

successful, then the server and client start communication.

Figure 13. Rogue client eavesdrops on the key exchange process (capturing the “Server shared secret

19” packet).

If the connection is successful, the rogue client can observe a screen similar to that in

Figure 14 and directly input commands to manipulate the values (Figure 15).

Figure 14. Rogue client manipulates values (normal value: 10; manipulated value: 100).

Figure 13. Rogue client eavesdrops on the key exchange process (capturing the “Server shared secret
19” packet).

If the connection is successful, the rogue client can observe a screen similar to that in
Figure 14 and directly input commands to manipulate the values (Figure 15).

Sensors 2022, 22, x FOR PEER REVIEW 22 of 32

-p Set destination port number

--rand-source Send source IP randomly

--flood Sending many packets in a short time

Table 18. IP address and status of the attacker and victim.

 Attacker Victim

IP Address 192.168.188.143 192.168.188.142

Condition Attack using hping3 Listening status

4.4.3. Proof of Concept

First, a proof of concept was conducted for message manipulation through the

spoofed client in Scenario 1. Before executing a rogue client, an attacker uses eavesdrop-

ping. The attacker employs Wireshark to capture packets exchanged between the server

and client. The key exchange process in the first step can be viewed as plain text, and, as

indicated in Figure 13, the rogue client can determine the symmetric key. The second step

in implementing a rogue client is certificate manipulation. The certificate used by the OPC

UA is X.509, and anyone can create it using OpenSSL. Both “my_cert.der” and “client_pri-

vate_key.pem” were created using OpenSSL for authentication. If the authentication is

successful, then the server and client start communication.

Figure 13. Rogue client eavesdrops on the key exchange process (capturing the “Server shared secret

19” packet).

If the connection is successful, the rogue client can observe a screen similar to that in

Figure 14 and directly input commands to manipulate the values (Figure 15).

Figure 14. Rogue client manipulates values (normal value: 10; manipulated value: 100). Figure 14. Rogue client manipulates values (normal value: 10; manipulated value: 100).

Figure 15 shows the changed result when the rogue client in Figure 14 executes the
command to inject 100 chlorine, which is 10 times the normal value.

Sensors 2022, 22, x FOR PEER REVIEW 23 of 32

Figure 15. Screen manipulated by a rogue client.

Second, a proof of concept for the DoS attack through the flooding attack, Scenario 2,

was conducted. The process in Scenario 2 is as follows (Figure 16):

1. Port scan step: Scan open ports using the scan parameter.

Figure 16. Attacker check open ports.

2. The SYN flooding attack using hping3: execute the SYN flooding attack using the

following command.

ubuntu@ubuntu-linux:~$ sudo hping3 –S 192.168.188.142 –p 4840

Through the attack, the server continuously receives packets with the SYN flag, the

set waiting queue becomes full, and availability is lost. Figure 17 reveals that a packet with

the SYN flag is specified to the source IP address (192.168.188.138) through Wireshark

from the point of the victim (192.168.188.137).

Figure 17. Wireshark screen of the victim under an SYN flooding attack.

Figure 15. Screen manipulated by a rogue client.

Second, a proof of concept for the DoS attack through the flooding attack, Scenario 2,
was conducted. The process in Scenario 2 begins with port scanning using hping as shown
in Figure 16:

Sensors 2022, 22, 6575 21 of 30

1. Port scan step: Scan open ports using the scan parameter.

Sensors 2022, 22, x FOR PEER REVIEW 23 of 32

Figure 15. Screen manipulated by a rogue client.

Second, a proof of concept for the DoS attack through the flooding attack, Scenario 2,

was conducted. The process in Scenario 2 is as follows (Figure 16):

1. Port scan step: Scan open ports using the scan parameter.

Figure 16. Attacker check open ports.

2. The SYN flooding attack using hping3: execute the SYN flooding attack using the

following command.

ubuntu@ubuntu-linux:~$ sudo hping3 –S 192.168.188.142 –p 4840

Through the attack, the server continuously receives packets with the SYN flag, the

set waiting queue becomes full, and availability is lost. Figure 17 reveals that a packet with

the SYN flag is specified to the source IP address (192.168.188.138) through Wireshark

from the point of the victim (192.168.188.137).

Figure 17. Wireshark screen of the victim under an SYN flooding attack.

Figure 16. Attacker check open ports.

2. The SYN flooding attack using hping3: execute the SYN flooding attack using the
following command.

ubuntu@ubuntu-linux:~$ sudo hping3 -S 192.168.188.142 -p 4840

Through the attack, the server continuously receives packets with the SYN flag, the
set waiting queue becomes full, and availability is lost. Figure 17 reveals that a packet with
the SYN flag is specified to the source IP address (192.168.188.138) through Wireshark from
the point of the victim (192.168.188.137).

Sensors 2022, 22, x FOR PEER REVIEW 23 of 32

Figure 15. Screen manipulated by a rogue client.

Second, a proof of concept for the DoS attack through the flooding attack, Scenario 2,

was conducted. The process in Scenario 2 is as follows (Figure 16):

1. Port scan step: Scan open ports using the scan parameter.

Figure 16. Attacker check open ports.

2. The SYN flooding attack using hping3: execute the SYN flooding attack using the

following command.

ubuntu@ubuntu-linux:~$ sudo hping3 –S 192.168.188.142 –p 4840

Through the attack, the server continuously receives packets with the SYN flag, the

set waiting queue becomes full, and availability is lost. Figure 17 reveals that a packet with

the SYN flag is specified to the source IP address (192.168.188.138) through Wireshark

from the point of the victim (192.168.188.137).

Figure 17. Wireshark screen of the victim under an SYN flooding attack.

Figure 17. Wireshark screen of the victim under an SYN flooding attack.

4.5. Countermeasures

Finally, employing the security function or attack detection method in the analysis
target was suggested as a countermeasure. The countermeasures for attack Scenario 1 are
as follows:

1. Using of encryption algorithms

OPC UA uses encryption to ensure confidentiality for security. Symmetric encryp-
tion protects all messages transmitted between OPC UA applications, and asymmetric
encryption is conducted through key exchange. The algorithm presented in Table 19 is
recommended for the OPC UA security policy [42].

2. Certificate management and distribution

Two functions exist in the OPC UA for certificate management and distribution. First,
all entities communicating in the OPC UA network establish a trusted certificate list (certifi-
cate trust list). Second, application authentication is executed using the CertificateManager

Sensors 2022, 22, 6575 22 of 30

function. For further details, refer to 6.1.3 Determining if a Certificate is Trusted from OPC
10000-4 [43]. An application in the OPC UA must determine whether to trust another
application instance certificate by verifying whether it can be trusted. The evaluation
criteria include a list of trusted applications and a list of trusted certification authorities.
If the application cannot be trusted directly (the certificate is not on the list of trusted
applications), then the certificate chain must be rebuilt with a trusted certificate authority.
Establishing a chain of trust requires access to all certificates in the chain, which are stored
locally or with the certificate authority. Table A2 specifies the steps taken to validate the
certificate for compliance.

Table 19. OPC UA security policy algorithm.

Algorithm Name Description

PolicyUri URI assigned to the security policy
SymmetricSignatureAlgorithm Symmetric signature algorithm

SymmetricEncryptionAlgorithm Symmetric encryption algorithm
AsymmetricSignatureAlgorithm Asymmetric signature algorithm

AsymmetricEncryptionAlgorithm Asymmetric encryption algorithm
MinAsymmetricKeyLength Minimum length of the asymmetric key
MaxAsymmetricKeyLength Maximum length of the asymmetric key

KeyDerivationAlgorithm Key derivation algorithm
DerivedSignatureKeyLength Bit length of the derived key to authenticate a message

CertificateSignatureAlgorithm Asymmetric signing algorithm to sign certificates

SecureChannelNonceLength Length (in bytes) of nonces exchanged when creating a
secure channel

The following are countermeasures for attack Scenario 2.

1. OpenSecureChannel request control

Due to server signing and encryption processing, responses to OpenSecureChannel
require significant server resources. Therefore, most DoS attacks occur at the OpenSe-
cureChannel service level. Therefore, two methods have been proposed on the server side.
First, the server may intentionally delay the OpenSecureChannel request processing if it
receives malicious OpenSecureChannel requests exceeding the specified minimum value.
In addition, it sets an alarm indicating that a malicious request has occurred and sends it to
the administrator. Second, when an OpenSecureChannel request attempts to exceed the
number of simultaneous access channels specified by the server, the server sends an error
response without performing signature and encryption processing. An authorized OPC
UA server shall specify the maximum number of simultaneous channels specified in OPC
10000-7 [44].

2. Authenticated client

An unauthenticated client performs a flooding attack to cause DoS attacks. Therefore,
it is possible to apply the recommended guideline for the session activation service of OPC
10000-4. The client uses session activation to specify the ID of the user associated with
the session. The client must request the main service before generating service requests
other than session creation and termination. When a client calls this service, it must prove
that it is the same application that called the session creation service. The client performs
the verification process by signing with a private key associated with the client certificate
specified in the session creation request. The nonce received from the server is added to
the server certificate, and the byte order is calculated to generate a signature. Because the
server creates a new nonce every time the session activation service is called and sends it
to the client, the old nonce cannot be reused. When the session activation service is called
and the secure channel is not related to the session creation request, the server rejects the
session activation service request. Subsequent calls for session activation can connect to
other secure channels. In this case, the server must ensure that the certificate used by the
client to create the new secure channel is the same as that used to create the current secure

Sensors 2022, 22, 6575 23 of 30

channel. In addition, the server must ensure that the client’s user ID is the same as that
associated with the current session.

The session activation service associates a user ID with a session. When a client
provides a user ID, it must prove that it is authorized to use it. The mechanism used to
provide this evidence depends on the type of user identity. In the case of UserNameIdentity,
it is the mechanism that contains the token; in the case of X509Identity, the token is a
signature generated by the private key associated with the certificate. The data to be signed
are written by adding the nonce received from the server to the serverCertificate. If the
token requires encryption, it must be encrypted using the public key of the certificate.
Servers must take appropriate measures to protect against attacks on user ID tokens. An
attack occurs when repeated connection attempts are made using a malformed user ID
token. A workaround is to lock the OPC UA client for a certain period if the user ID token
validation fails multiple times. The OPC UA clients detect unsecured connections via IP
addresses or secure connections using ApplicationInstanceUri. Another measure is to delay
the service response if the user ID validation fails.

4.6. Compare the Conventional and Proposed Method

Comparing the conventional method described in Chapter 3 and the method proposed
in this study, it can be summarized as shown in Table 20. Conventional methods identify
vulnerabilities in general IT environments or web applications. In the method proposed in
this study, vulnerability discovery and countermeasure steps are performed in terms of OT
systems, including industrial IoT.

Table 20. Compare the conventional and proposed method.

Conventional Method
Proposed Framework

OSSTMM OWASP-TG

Testing Steps 6 phases 5 phases 5 phases
Countermeasure X O O

Features Applicable to IT systems Applicable to Web Applicable to operational
technology (OT) system

5. Conclusions

The number of threats discovered yearly is increasing, and it is critical to detect them
in advance. Therefore, configuring the environment in which one wants to discover threats
and vulnerabilities and identify countermeasures is necessary. In this paper, a framework
for vulnerability discovery and response was presented. Existing vulnerability discovery
frameworks have limited analysis targets. The proposed framework can be applied to
any analysis target and comprises five steps. The OPC UA was selected as the analysis
target for applying the framework in this study, and a case study was conducted. First, a
scenario that included the analysis target was constructed. Then, a structural analysis was
conducted. We created a DFD to explain the data flow through the structural analysis.

Next, in the threat modeling stage, we identified 30 major threats that could occur
based on the DFD. The attack tree was created by grouping the most common of the
30 threats. Several threat modeling techniques can be used in the threat modeling stage,
and the STRIDE technique was applied in this study. In the vulnerability analysis phase,
possible attack scenarios were constructed using an attack tree. A rogue client attack
using certificates and a DoS attack using flooding were constructed and validated through
an actual proof of concept. The final step is to develop countermeasures, which include
leveraging the capabilities of the target being analyzed to detect and protect it. In the
future, we aim to validate vulnerabilities using other analysis targets or validate targets in
other areas.

Author Contributions: Conceptualization, G.-Y.K.; methodology, G.-Y.K.; software, G.-Y.K.; valida-
tion, G.-Y.K., D.-H.S. and I.-C.E.; formal analysis, D.-H.S. and I.-C.E.; investigation, D.-H.S.; resources,

Sensors 2022, 22, 6575 24 of 30

D.-H.S. and G.-Y.K.; data curation, G.-Y.K. and D.-H.S.; writing—original draft preparation, D.-H.S.
and G.-Y.K.; writing—review and editing, D.-H.S. and I.-C.E.; visualization, G.-Y.K. and D.-H.S.;
supervision, I.-C.E.; project administration, I.-C.E.; and funding acquisition, I.-C.E. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by Institute for Information & Communications Technology Plan-
ning & Evaluation (IITP) grant funded by the Korea government (MSIT) under grant no. 2019-0-01343,
regional strategic industry convergence security core talent training business also the results of a
study on the supported by Nuclear Safety Research Program through the Korea Foundation of
Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security
Commission (NSSC) of the Republic of Korea (No.2106061).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The funders had no role in the design of the study; the collection, analyses, or
interpretation of data; the writing of the manuscript; or the decision to publish the results.

Appendix A

Table A1. Main threats by OPC UA scenarios.

Element Element Name STRIDE Threat Analysis Threat
Number

External Entity

Client
S

Client may be spoofed by an attacker and
this may lead to unauthorized access to

Process. Consider using a standard
authentication mechanism to identify the

external entity.

T1

E Clients may be able to execute code for a
process remotely. T2

Server
S

Server may be spoofed by an attacker and
this may lead to unauthorized access to

Process. Consider using a standard
authentication mechanism to identify the

external entity.

T3

E Server may be able to remotely execute
code for Process. T4

Certificate

S

Certificate may be spoofed by an attacker
and this may lead to information

disclosure by external entity. Consider
using a standard authentication

mechanism to identify the destination
process.

T5

T

Data flowing across a response may be
tampered with by an attacker. This may
lead to a DoS or elevation-of -privilege
attack against certificate or information
disclosure by the certificate. Failure to

verify that input is as expected is a root
cause of numerous exploitable issues.
Consider all paths and the way they

handle data. Verify all input using an
approved list input validation approach.

T6

Sensors 2022, 22, 6575 25 of 30

Table A1. Cont.

Element Element Name STRIDE Threat Analysis Threat
Number

R

The certificate claims it did not receive
data from a source outside the trust

boundary. Consider logging or auditing
to record the source, time, and summary

of the received data.

T7

D
The certificate crashes, halts, stops, or
runs slowly; in all cases violating an

availability metric.
T8

E
The certificate may impersonate the
context of an external entity to gain

additional privilege.
T9

Open Security Channel

S

OpenSecure Channel may be spoofed by
an attacker, leading to information

disclosure by an external entity. Consider
using a standard authentication

mechanism to identify the
destination process.

T10

T

Data flowing across the CN1, endpoint
selection, SN1, and Security token may be
tampered with by an attacker, leading to a

DoS or elevation-of-privilege attack
against the OpenSecure Channel or an
information disclosure by OpenSecure

Channel. Failure to verify that input is as
expected is a root cause of numerous

exploitable issues. Consider all paths and
the way they handle data. Verify all input

using an approved list input
validation approach.

T11

R

The OpenSecure Channel claims that it
did not receive data from a source outside
the trust boundary. Consider logging or
auditing to record the data source, time,

and summary.

T12

I

Data flowing across the CN1, endpoint
selection, SN1, security token may be
sniffed by an attacker. Depending on

what type of data an attacker can read,
data may be used to attack other system

parts or be disclosed, leading to
compliance violations. Consider

encrypting the data flow.

T13

D
The OpenSecure Channel crashes, halts,

stops, or runs slowly; in all cases violating
an availability metric.

T14

E
The OpenSecure Channel may

impersonate the context of an external
entity to gain additional privilege.

T15

E

An attacker may pass data into the
OpenSecure Channel to change the

program execution flow to the
attacker’s choice.

T16

Sensors 2022, 22, 6575 26 of 30

Table A1. Cont.

Element Element Name STRIDE Threat Analysis Threat
Number

Create Session

S

Create session may be spoofed by an
attacker, leading to information disclosure

by an external entity. Consider using a
standard authentication mechanism to

identify the destination process.

T17

T

Data flowing across the CN2, session
name, SN2, and authentication token may
be tampered with by an attacker, to a DoS

or elevation-of-privilege attack against
Create Session or an information

disclosure by Create Session. Failure to
verify that input is as expected is a root
cause of numerous exploitable issues.
Consider all paths and the way they

handle data. Verify all input using an
approved list input validation approach.

T18

R

Create Session claims it did not receive
data from a source outside the trust

boundary. Consider logging or auditing
to record the data source, time,

and summary.

T19

I

Data flowing across the CN2, session
name, and SN2, authentication token may
be sniffed by an attacker. Depending on
what type of data an attacker can read, it
may be used to attack other parts or be

disclosed, leading to compliance
violations. Consider encrypting the

data flow.

T20

D
Create Session crashes, halts, stops, or
runs slowly; in all cases violating an

availability metric.
T21

E
An attacker may pass data into Create

Session to change the program execution
flow to the attacker’s choice.

T22

E
An attacker may pass data into Create

Session to change the program execution
flow to the attacker’s choice.

T23

Activate Session S

Activate Session may be spoofed by an
attacker, and this may lead to information
disclosure by an external entity. Consider

using a standard authentication
mechanism to identify the

destination process.

T24

Sensors 2022, 22, 6575 27 of 30

Table A1. Cont.

Element Element Name STRIDE Threat Analysis Threat
Number

T

Data flowing across the SN3, and user
identity token may be tampered with by

an attacker, to a DoS or
elevation-of-privilege attack against
Activate Session or an information

disclosure by Activate Session. Failure to
verify that input is as expected is a root
cause of numerous exploitable issues.
Consider all paths and the way they

handle data. Verify all input using an
approved list input validation approach.

T25

R

Activate Session claims it did not receive
data from a source outside the trust

boundary. Consider logging or auditing
to record the data source, time,

and summary.

T26

I

Data flowing across SN3, User Identity
Token may be sniffed by an attacker.
Depending on what type of data an

attacker can read, it may be used to attack
other system parts or be a disclosure of

information leading to compliance
violations. Consider encrypting the

data flow.

T27

D
Activate Session crashes, halts, stops, or

runs slowly; in all cases violating an
availability metric.

T28

E
Activate Session may impersonate the

context of an external entity to gain
additional privilege.

T29

E
An attacker may pass data into Activate
Session to change the program execution

flow to the attacker’s choice.
T30

Table A2. Certificate management and deployment steps.

Stages Error/Audit Event Descriptions

Certificate structure
- Bad_CertificateInvalid
- Bad_SecurityChecksFailed
- AuditCertificateInvalidEventType

- Check the certificate structure
- No error suppression

Build certificate chain
- Bad_CertificateChainIncomplete
- Bad_SecurityChecksFailed
- AuditCertificateInvalidEventType

- Create a certificate trust chain
- Errors may occur during chain creation

Signature
- Bad_CertificateInvalid
- Bad_SecurityChecksFailed
- AuditCertificateInvalidEventType

Reject the certificate if the signature is invalid
and the issuing authority is unknown

Security policy check
- Bad_CertificatePolicyCheckFailed
- Bad_SecurityChecksFailed
- AuditCertificateInvalidEventType

Certificate signing complies with the
certificate signing algorithm and asymmetric
key length algorithm for the user security
policy defined in OPC 10000-7

Sensors 2022, 22, 6575 28 of 30

Table A2. Cont.

Stages Error/Audit Event Descriptions

Trust list check
- Bad_CertificateUntrusted
- Bad_SecurityChecksFailed
- AuditCertificateUntrustedEventType

If the application instance certificate is not
trusted and the certificate authority in the
chain is not trusted, the certificate validation
result will fail

Validity period
- Bad_CertificateTimeInvalid
- Bad_CertificateIssuerTimeInvalid
- AuditCertificateExpiredEventType

Must be within the validity period of
the certificate

Host name - Bad_CertificateHostNameInvalid
- AuditCertificateDataMismatchEventType

- The hostname in the URL to connect to the
server is the same as that of the hostname
specified in the certificate
- Certificate authority certificates
skip this step

URI
(Uniform Resource Identifier)

- Bad_CertificateUriInvalid
- AuditCertificateDataMismatchEventType

- Application and software certificates
contain an application or product URI that
must match the URI specified in the
application description provided with
the certificate
- Certificate authority certificates skip
this step
- GatewayServerUri is used to validate the
application certificate when connecting to the
gateway server

Certificate usage
- Bad_CertificateUseNotAllowed
- Bad_CertificateIssuerUseNotAllowed
- AuditCertificateMismatchEventType

Each certificate must match its intended use
(OPC 10000-6)

Find revocation list
- Bad_CertificateRevocationUnknown
- Bad_CertificateIssuerRevocationUnknown
- AuditCertificateRevokedEventType

Each certificate authority certificate has a
revocation list, but this step fails if that list is
not available

Revocation check
- Bad_CertificateRevoked
- Bad_CertificateIssuerRevoked
- AuditCertificateRevokedEventType

The certificate has been revoked and cannot
be used

References
1. Schwarz, M.H.; Börcsök, J. A Survey on OPC and OPC-UA: About the Standard, Developments and Investigations. In Pro-

ceedings of the 2013 XXIV International Conference on Information, Communication and Automation Technologies (ICAT),
Sarajevo, Bosnia and Herzegovina, 30 October–1 November 2013; pp. 1–6.

2. OPC Foundation. OPC 10000-2: OPC Unified Architecture. Available online: https://reference.opcfoundation.org/Core/docs/
Part2/4.1/ (accessed on 22 July 2022).

3. Pohlmann, U.; Sikora, A. Practical security recommendations for building OPC UA applications. In Industrial Ethernet Book; 2018;
Volume 106. Available online: https://iebmedia.com/technology/opc-ua/practical-security-guidelines-for-building-opc-ua-
applications/ (accessed on 22 July 2022).

4. Fiat, M.; Störtkuhl, T.; Plöb, M.; Zugfil, C.; Gappmeier, G.; Damm, M. OPC UA Security Analysis; Federal Office for Information
Security: Bonn, Germany, 2017.

5. OPC Foundation. Security Bulletins. Available online: https://opcfoundation.org/security-bulletins/ (accessed on 22 July 2022).
6. Dahlmanns, M.; Lohmöller, J.; Fink, I.B.; Pennekamp, J.; Wehrle, K.; Henze, M. Easing the conscience with OPC UA: An internet-

wide study on insecure deployments. In Proceedings of the ACM Internet Measurement Conference, New York, NY, USA,
27–29 October 2020; pp. 101–110.

7. Kohnhäuser, F.; Meier, D.; Patzer, F.; Finster, S. On the Security of IIoT Deployments: An Investigation of Secure Provisioning
Solutions for OPC UA. IEEE Access 2021, 9, 99299–99311. [CrossRef]

8. Kaspersky. OPC UA Security Analysis. Available online: https://securelist.com/opc-ua-security-analysis/85424/ (accessed on
22 July 2022).

9. Puys, M.; Potet, M.-L.; Lafourcade, P. Formal analysis of security properties on the OPC-UA SCADA protocol. In Proceedings of
the International Conference on Computer Safety, Reliability, and Security, Trondheim, Norway, 21–23 September 2016; pp. 67–75.

https://reference.opcfoundation.org/Core/docs/Part2/4.1/
https://reference.opcfoundation.org/Core/docs/Part2/4.1/
https://iebmedia.com/technology/opc-ua/practical-security-guidelines-for-building-opc-ua-applications/
https://iebmedia.com/technology/opc-ua/practical-security-guidelines-for-building-opc-ua-applications/
https://opcfoundation.org/security-bulletins/
http://doi.org/10.1109/ACCESS.2021.3096062
https://securelist.com/opc-ua-security-analysis/85424/

Sensors 2022, 22, 6575 29 of 30

10. Erba, A.; Müller, A.; Tippenhauer, N.O. Security Analysis of Vendor Implementations of the OPC UA Protocol for Industrial
Control Systems. arXiv 2021, arXiv:2104.06051.

11. Neu, C.V.; Schiering, I.; Zorzo, A. Simulating and detecting attacks of untrusted clients in opc ua networks. In Proceedings of the
Proceedings of the Third Central European Cybersecurity Conference, New York, NY, USA, 14–15 November 2019; pp. 1–6.

12. Varadarajan, V. Security Analysis of OPC UA in Automation Systems for IIoT. 2022. Available online: https://kth.diva-portal.
org/smash/get/diva2:1653807/FULLTEXT01.pdf (accessed on 22 July 2022).

13. Hildebrandt, M.; Lamshöft, K.; Dittmann, J.; Neubert, T.; Vielhauer, C. Information hiding in industrial control systems: An
OPC UA based supply chain attack and its detection. In Proceedings of the 2020 ACM Workshop on Information Hiding and
Multimedia Security, New York, NY, USA, 22–24 June 2020; pp. 115–120.

14. Polge, J.; Robert, J.; Le Traon, Y. Assessing the impact of attacks on opc-ua applications in the industry 4.0 era. In Proceed-
ings of the 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA,
11–14 January 2019; pp. 1–6.

15. IEC Standard 62264-3:2016; Enterprise-Control System Integration—Part 3: Activity Models of Manufacturing Operations
Management. Available online: https://www.iso.org/standard/67480.html (accessed on 22 July 2022).

16. HMS Industrial Network. Continued Growth for Industrial Networks Despite Pandemic. Available online:
https://www.hms-networks.com/news-and-insights/news-from-hms/2021/03/31/continued-growth-for-industrial-
networks-despite-pandemic (accessed on 22 July 2022).

17. OPC Foundation. Classic. Available online: https://opcfoundation.org/about/opc-technologies/opc-classic/ (accessed on
22 July 2022).

18. OPC Foundation. Unified Architecture. Available online: https://opcfoundation.org/about/opc-technologies/opc-ua/
(accessed on 22 July 2022).

19. OMRON. What is OPC UA?—1. Outline of OPC UA “The Industrial Interoperability Standard”. Available online:
https://www.ia.omron.com/product/special/sysmac/nx1/opcua.html (accessed on 22 July 2022).

20. Renjie, H.; Feng, L.; Dongbo, P. Research on OPC UA security. In Proceedings of the 2010 5th IEEE Conference on Industrial
Electronics and Applications, Taichung, Taiwan, 15–17 June 2010.

21. Roepert, L.; Dahlmanns, M.; Fink, I.B.; Pennekamp, J.; Henze, M. Assessing the Security of OPC UA deployments. arXiv 2020,
arXiv:2003.12341.

22. Cavalieri, S.; Chiacchio, F. Analysis of OPC UA performances. Comput. Stand. Interfaces 2013, 36, 165–177. [CrossRef]
23. Cavalieri, S.; Cutuli, G.; Monteleone, S. Evaluating impact of security on OPC UA performance. In Proceedings of the 3rd

International Conference on Human System Interaction, Rzeszow, Poland, 13–15 May 2010; pp. 687–694.
24. Torr, P. Demystifying the threat modeling process. IEEE Secur. Priv. 2005, 3, 66–70. [CrossRef]
25. Howard, M.; Lipner, S. The Security Development Lifecycle; Microsoft Press Redmond: Redmond, Washington, USA, 2006; Volume 8.
26. Shostack, A. Threat Modeling: Designing for Security; John Wiley & Sons: Hoboken, NJ, USA, 2014.
27. UcedaVelez, T.; Morana, M.M. Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis; John Wiley & Sons:

Hoboken, NJ, USA, 2015.
28. Alberts, C.; Dorofee, A.; Stevens, J.; Woody, C. Introduction to the OCTAVE Approach, Software Engineering Institute. 2003.

Available online: https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=51546 (accessed on 22 July 2022).
29. Saitta, P.; Larcom, B.; Eddington, M. Trike v. 1 Methodology Document [Draft]. Available online: https://www.octotrike.org/

papers/Trike_v1_Methodology_Document-draft.pdf (accessed on 22 July 2022).
30. Deng, M.; Wuyts, K.; Scandariato, R.; Preneel, B.; Joosen, W. A privacy threat analysis framework: Supporting the elicitation and

fulfillment of privacy requirements. Requir. Eng. 2011, 16, 3–32. [CrossRef]
31. Wuyts, K. Privacy Threats in Software Architectures. 2015. Available online: https://lirias.kuleuven.be/retrieve/295669

(accessed on 22 July 2022).
32. Herzog, P. Open-Source Security Testing Methodology Manual. Institute for Security and Open Methodologies (ISECOM). 2003.

Available online: https://sites.radford.edu/~{}rjoyce9/classes/itec445/code/osstmm.pdf (accessed on 22 July 2022).
33. Scarfone, K.; Souppaya, M.; Cody, A.; Orebaugh, A. Technical guide to information security testing and assessment. NIST Spec.

Publ. 2008, 800, 2–25.
34. Meucci, M.; Muller, A. Testing Guide Release 4.0; OWASP Foundation: Bel Air, MD, USA, 2014.
35. Open62541. Open Source Implementation of OPC UA. Available online: https://github.com/open62541/open62541 (accessed on

22 July 2022).
36. OPC Foundation. UA.NET Standard. Available online: https://github.com/OPCFoundation/UA-.NETStandard-Samples

(accessed on 22 July 2022).
37. node-opcua. An implementation of a OPC UA. Available online: https://github.com/node-opcua/node-opcua (accessed on

22 July 2022).
38. FreeOpcUa. Open Source C++ OPC-UA Server and Client Library. Available online: https://github.com/FreeOpcUa/freeopcua

(accessed on 22 July 2022).
39. python-opcua. LGPL Pure Python OPC-UA Client and Server. Available online: https://github.com/FreeOpcUa/python-opcua

(accessed on 22 July 2022).

https://kth.diva-portal.org/smash/get/diva2:1653807/FULLTEXT01.pdf
https://kth.diva-portal.org/smash/get/diva2:1653807/FULLTEXT01.pdf
https://www.iso.org/standard/67480.html
https://www.hms-networks.com/news-and-insights/news-from-hms/2021/03/31/continued-growth-for-industrial-networks-despite-pandemic
https://www.hms-networks.com/news-and-insights/news-from-hms/2021/03/31/continued-growth-for-industrial-networks-despite-pandemic
https://opcfoundation.org/about/opc-technologies/opc-classic/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://www.ia.omron.com/product/special/sysmac/nx1/opcua.html
http://doi.org/10.1016/j.csi.2013.06.004
http://doi.org/10.1109/MSP.2005.119
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=51546
https://www.octotrike.org/papers/Trike_v1_Methodology_Document-draft.pdf
https://www.octotrike.org/papers/Trike_v1_Methodology_Document-draft.pdf
http://doi.org/10.1007/s00766-010-0115-7
https://lirias.kuleuven.be/retrieve/295669
https://sites.radford.edu/~{}rjoyce9/classes/itec445/code/osstmm.pdf
https://github.com/open62541/open62541
https://github.com/OPCFoundation/UA-.NETStandard-Samples
https://github.com/node-opcua/node-opcua
https://github.com/FreeOpcUa/freeopcua
https://github.com/FreeOpcUa/python-opcua

Sensors 2022, 22, 6575 30 of 30

40. openSCADA. OPC-UA Modules. Available online: http://wiki.oscada.org/HomePageEn/Doc/OPCUA (accessed on
22 July 2022).

41. OpcUaStack. Open Source OPC UA Application Server and OPC UA Client/Server C++ Libraries. Available online: https:
//github.com/ASNeG/OpcUaStack (accessed on 22 July 2022).

42. OPC Foundation. OPC 10000-6: OPC Unified Architecture. Available online: https://reference.opcfoundation.org/v104/Core/
docs/Part6/6.1/ (accessed on 22 July 2022).

43. OPC Foundation. OPC 10000-4: OPC Unified Architecture. Available online: https://reference.opcfoundation.org/Core/docs/
Part4/6.1.3/ (accessed on 22 July 2022).

44. OPC Foundation. OPC 10000-7: OPC Unified Architecture. Available online: https://reference.opcfoundation.org/Core/Part7/
(accessed on 22 July 2022).

http://wiki.oscada.org/HomePageEn/Doc/OPCUA
https://github.com/ASNeG/OpcUaStack
https://github.com/ASNeG/OpcUaStack
https://reference.opcfoundation.org/v104/Core/docs/Part6/6.1/
https://reference.opcfoundation.org/v104/Core/docs/Part6/6.1/
https://reference.opcfoundation.org/Core/docs/Part4/6.1.3/
https://reference.opcfoundation.org/Core/docs/Part4/6.1.3/
https://reference.opcfoundation.org/Core/Part7/

	Introduction
	Background and Motivation
	Problem Setup
	Goal and Purpose

	Related Work
	Trends in Protocols for Industrial Control
	OPC Protocol
	OPC Classic
	OPC UA
	OPC UA Security Model

	OPC UA Security Analysis
	Threat Modeling

	Vulnerability Discovery and Countermeasure Framework
	Overview of the Vulnerability Discovery Methodology
	Proposed Vulnerability Discovery and Countermeasure Framework
	Environment Configuration
	Structural Analysis
	Threat Modeling
	Vulnerability Analysis
	Countermeasures

	Case Study
	Environment Configuration
	Structural Analysis
	Threat Modeling
	Vulnerability Analysis
	Vulnerability Derivation
	Attack Scenario
	Proof of Concept

	Countermeasures
	Compare the Conventional and Proposed Method

	Conclusions
	Appendix A
	References

