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Abstract: Currently, Android is the most popular operating system among mobile devices. However,
as the number of devices with the Android operating system increases, so does the danger of
using them. This is especially important as smartphones increasingly authenticate critical activities
(e-banking, e-identity). BotSense Mobile is a tool already integrated with some critical applications
(e-banking, e-identity) to increase user safety. In this paper, we focus on the novel functionality
of BotSense Mobile: the detection of malware applications on a user device. In addition to the
standard blacklist approach, we propose a machine learning-based model for unknown malicious
application detection. The lightweight neural network model is deployed on an edge device to avoid
sending sensitive user data outside the device. For the same reason, manifest-related features can
be used by the detector only. We present a comprehensive empirical analysis of malware detection
conducted on recent data (May–June, 2022) from the Koodous platform, which is a collaborative
platform where over 70 million Android applications were collected. The research highlighted the
problem of machine learning model aging. We evaluated the lightweight model on recent Koodous
data and obtained f1 = 0.77 and high precision (0.9).

Keywords: malware detection; Android security; Koodous platform; models aging; machine
learning; neural networks; lightweight models; edge computing

1. Introduction

With more than 2.5 billion active users (75% of the global market), Android will
become the world’s most popular operating system in 2022 [1]. It is closely related to the
development of the broad mobile technology market. Android is installed on all available
mobile devices, including smartphones, tablets and netbooks. Applications are distributed
through the Google Play Store, which has over 2.5 million of them [2]. However, as the
number of devices with the Android operating system increases, so does the danger of
using them. Many applications may contain malware, so it is important to protect devices
against it. Security is essential when smartphones are increasingly used to authenticate
critical activities (e-banking, e-identity).

At the same time, Android malware detection systems are constantly evolving. Facing
security challenges in recent years, several anti-malware tools have been developed for
Android, among which the following deserve special mention Norton (https://norton.com,
accessed on 20 July 2022), McAfee (https://mcafee.com, accessed on 20 July 2022) or
Virustotal (https://www.virustotal.com, accessed on 20 July 2022) tool. The last one is
particularly noteworthy as it aggregates many engines for detecting malware applications.
However, despite a wide range of tools, a significant number of devices remain unprotected
(e.g.„ in the US, only half of mobile devices have an antivirus installed [3]).

The increasing role of mobile devices and their lack of safety have incited app devel-
opers to take more responsibility for the protection of the user device. BotSense Mobile
system was created to fill that need. The system is distributed as an SDK library integrated
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into the client’s mobile application. Currently, it is implemented in the mobile apps of five
Polish banks and institutions, reaching approximately three million users.

In this paper, we concentrate on the novel functionality of BotSense Mobile: the detec-
tion of malware applications on a user device. We propose an integration of a commercial
system for creating whitelists and blacklists. However, the application appearance in the
external system is subjected to some latency. Thus, we propose to apply machine learning
(ML) to detect unknown malicious applications. However, the ML-based models that clas-
sify Android applications as malicious or safe may degrade over time [4]. For example, the
article [5] published by the well-known producer of antivirus software Kaspersky presents
that the degradation of an ML malware detector results by 20% in just three months. The
problem of aging was addressed in works [4,6]. However, the proposed methods slow
down model aging only in the case of ML models based on API call analysis.

Based on the overview of previous ML-based works, we identified a lack of auto-
updating tool for malware detection that satisfies the BotSense Mobile requirements, ad-
dresses the problem of model aging, and uses the ever-growing database as the source
of knowledge. Thus, this paper extends the BotSense Mobile malware detection module
with a self-developed lightweight, on-device ML-based tool to detect unknown malicious
applications. The main contribution of the paper are:

• Comparison of Android malware data sources as a potential source of knowledge for
on-device, auto-updating commercial solutions;

• A description of Koodous platform data characteristics—to the best of our knowledge,
this is the first paper treating so comprehensively on Koodous malware database;

• A description of the on-device malware detection system using a blacklist and whitelist
methods supported by a lightweight neural network model;

• Comprehensive empirical analysis of malware detection with machine learning (ML),
conducted on recent data (May–June, 2022) from the Koodous platform, with a special
focus on the problem of machine learning model aging.

The rest of the paper is organized as follows. First, in Section 2, we introduce the
BotSense Mobile system and architecture of the module responsible for malicious app
detection. Primarily, we indicate the ML-based module’s limitations resulting from the
BotSense Mobile architecture. In a Section 3, we present an overview of commercial
malware databases, with particular emphasis on the one chosen as the primary source of
data (the Koodous platform). Then, in Section 4, we provide an overview of existing ML-
based systems for Android malware detection. Then, we described our tool for unknown
malware detection and the level of malignancy assessment. Section 5 presents the results of
the comprehensive empirical analysis of the developed tool with a particular focus on the
problem of aging ML models. Finally, we conclude our work in a Section 6.

2. BotSense Mobile

BotSense Mobile is a tool developed by NASK in 2018 as an extension of a successful
BotSense system (https://en.botsense.pl/, accessed on 20 July 2022) for securing banking
sites (currently securing 16 million Internet banking accounts). The tool is designed for
phones with the Android operating system. It is distributed as an SDK library that needs to
be integrated into the client’s mobile application (e.g., e-banking applications). The main
functionalities of the application are:

• Verification of device integrity;
• Verification of the integrity of the client’s protected application;
• Verification of the network settings;
• Providing the client with a fingerprint of the device and browser.

Current development is concentrated on the behavioral profiling of application users,
detecting anomalies in the operation of a protected client application and detecting mali-
cious applications installed on the phone using ML. This article presents the preliminary
results of the research in the last area.

https://en.botsense.pl/
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2.1. Architecture

BotSense Mobile deployment scheme is presented in Figure 1. BotSense Mobile itself
is composed of two components:

• BotSense Management System—component is installed within the client infrastruc-
ture. It is responsible for updating the configuration of the BotSense SDK (e.g., new
blacklist/whitelist, new ML model) and consuming and propagating alerts raised by
BotSense SDK. This component is fed with data by NASK systems;

• BotSense SDK—component is installed within the user device with the client’s appli-
cation. This performs all security analyses to avoid sending sensitive user data outside
the device.

Figure 1. BotSense mobile deployment scheme.

The client application serves as a proxy between BotSenseSDK and BotSense Manage-
ment System. The system sends alerts to the client’s systems (e.g., SIEM, antifraud). Based
on those alerts, the client’s system can perform further steps to mitigate the risk, e.g., block
the banking application or demand additional authorization.

2.2. Malware Detection Module

A malware detection module analyzes each application installed by the user on the
device. The module comprises three sub-modules: whitelist classifier, blacklist classifier
and an ML classifier Figure 2). Blacklist and whitelist classifiers are fed by a centralized
service based on an external data source with known malicious and verified applications,
accordingly. The role of the third sub-module, the ML classifier, is the detection of suspi-
cious applications that have not yet been added to the external database. The ML model
is rebuilt periodically by the centralized service. The BotSense Management System is
deployed within client infrastructure and serves as a proxy between NASK services and
BotSense SDK.

The evaluation of a new application is sequential: first, the blacklist classifier verifies
the application. If the application does not exist on the blacklist, then the ML classifier
checks whether the application is similar to the known malware. If not, the application
is recognized as safe. Otherwise, the application is identified as malicious. Finally, the
application is checked against the whitelist to reduce the false positive rate.
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Figure 2. Malware detection module architecture.

The decision to perform all analyses within the user device significantly influences
the malware detection module—to assess application maliciousness, only data extractable
within the device are available for analysis. Thus, approaches as API calls analyses [7,8],
static code analyses [9,10] or dynamic code analyses [10] are not possible.

3. Malware Data Sources

Several sources of information about the maliciousness of the known applications exist
on the market. The ideal source should contain an extensive and ever-expanding collection
of applications. With each application there needs to be an associated label indicating
whether the application is malware. Additionally, some applications can be marked as
verified benign applications. Those applications can be used to create whitelists. Of course,
the quality of labeling is crucial as well. However, it is a difficult task to obtain high-quality
labeling with a large number of analyzed samples at the same time. In terms of BotSense
integration, the data source should be easy to use from the programming level (provide an
API) and allow large amounts of data to be collected in a reasonable amount of time.

3.1. Comparison of Existing Sources

We identified several Android malware data sources, both free and commercial. In the
scientific literature, the most popular choices for conducting research are Drebin [11–13],
AndroZoo [13,14], and VirusShare [15,16]. Drebin is a static dataset containing samples
from August 2010 to October 2012 only. On the other side, the Androzoo dataset is the
biggest state-of-the-art dataset among the open ones. However, API is no longer available
(https://androzoo.uni.lu/access, accessed on 20 July 2022). Additionally, data cannot
be used commercially. Applications in Androzoo do not have an associated app release
date [17], making research on aging models impossible. VirusShare is the general malware
data source, also containing numerous Android applications. However, the use is restricted
to selected institutions only, and no API is available (year-round packages are available for
download).

Contrary to the above solutions, ever-growing big datasets of Android applications,
both malicious and benign, with easy access via API, are available on Koodous (Koodous
Documentation, https://docs.koodous.com, accessed on 20 July 2022) and Virustotal (https:

https://androzoo.uni.lu/access
https://docs.koodous.com
https://virustotal.com
https://virustotal.com
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//virustotal.com, accessed on 20 July 2022). Koodous is a platform that has already
collected over 70 million Android applications. Each application is available to download
with both static and dynamic analysis performed with external tools (Cuckoo Sandbox
(https://cuckoosandbox.org/, accessed on 20 July 2022), Androguard (https://github.
com/androguard/androguard, accessed on 20 July 2022) and DroidBox (https://github.
com/pjlantz/droidbox, accessed on 20 July 2022). The research community performs
labelling applications based on the analysis results mentioned above. All data are available
via REST API, with usage limits dependent on pricing plans. To our knowledge, the list
of applications available in Virustotal and Koodous are similar, and both solutions are
related. However, the advantage of the Koodous platform is the possibility to upload
application samples to be analyzed by the community. This feature is highly important
as the NASK National Response Team (https://www.nask.pl/pl/dzialalnosc/nauka-i-
biznes/nask-incident-response/\3985,NASK-Incident-Response-Team.html, accessed on
20 July 2022) monitors the local market to identify applications, especially dangerous for
Polish users. Thus, in the rest of the paper, we present the results of the preliminary
examination of the Koodous platform (commercial version) as the main data source for
BotSense Mobile.

Apart from in Android-specific data sources, the Android malware samples can be
found in data sources of any malware: MalwareBazaar (https://bazaar.abuse.ch, accessed
on 20 July 2022), Joe Sandbox Cloud ([https://www.joesandbox.com/, accessed on 20 July
2022). However, Android samples in those databases are infrequent. Finally, there are two
relatively new sources: APKLAB.IO (https://www.apklab.io, accessed on 20 July 2022)
(available beta version with no API, open for researchers only) and APKDETECT (https:
//app.apkdetect.com, accessed on 20 July 2022) (still restricted to selected researchers) that
could be considered in the future.

3.2. Koodous Platform Data Characteristic

There are only a few articles presenting the study of classification models for dangerous
applications based on data from the Koodous platform [18,19]. In [19], research on malware
family prediction was presented, although the most recently used data are relatively old
(May 2016). In [18], no information about data characteristics (beyond the size of data)
was provided.

In the Koodous platform, applications are searchable using a hash function from the
APK file (e.g., SHA256). The description of each application includes, i.a., name, the date
the application was added to the database and the results of the static analysis (including
Android Manifest) and, optionally, the dynamic analysis. Additional information associated
with the application is ranking with a default value 0. Since Koodous is a collaborative
platform, the rating value is based on analyst votes, where each vote increases or decreases
the rating by 1.

To evaluate the volatility of the ranking value, we performed the following experiment:
on 21 June 2022, we downloaded 90,000 applications added from 3 June to 21 June. Appli-
cations were distributed equally in this period. Three weeks later, we downloaded rating
values for those applications again and compared the new rating value with the old one.
Of all the samples, only 0.341% (307 applications) changed their rating. No correlation was
observed between the number of applications with a changed rating and the application
age. Thus, it can be assumed that the vast majority of analysts automatize the application
evaluation. Moreover, in all cases, the rating value changed from 0 to −2, which can be
interpreted as a change from potentially benign to detected malware. This might result
from detecting new malware families by society and marking related applications from
the past.

Figure 3 presents the distribution of applications during the period 2016–2021, which
were categorized by a sign of rating.

https://virustotal.com
https://virustotal.com
https://cuckoosandbox.org/
https://github.com/androguard/androguard
https://github.com/androguard/androguard
https://github.com/pjlantz/droidbox
https://github.com/pjlantz/droidbox
https://www.nask.pl/pl/dzialalnosc/nauka-i-biznes/nask-incident-response/\3985,NASK-Incident-Response-Team.html
https://www.nask.pl/pl/dzialalnosc/nauka-i-biznes/nask-incident-response/\3985,NASK-Incident-Response-Team.html
https://bazaar.abuse.ch
[https://www.joesandbox.com/
https://www.apklab.io
https://app.apkdetect.com
https://app.apkdetect.com
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As shown in Figure 3, in the year 2018, the number of benign applications (rated above
0) decreased drastically and the number of malicious applications (rated below 0) increased.
However, applications with a rating = 0 remain roughly the same all the time.

Figure 3. Data distribution in the Koodous platform from 2016 to 2021 (note a logarithmic scale).

Due to the decrease in the number of benign applications on the Koodous platform
over time, it was decided to relax the criterion of considering the application as benign—it
was assumed that the scanned applications with a score of 0 are benign.

3.3. Koodous Platform as BotSense Datasource

BotSense mobile was integrated with the Koodous Platform via REST API. Each
hour, new analyses of applications are downloaded from the feed as one package. The
community uses those analyses to rate the applications. Due to the low rating volatility, we
download each new application’s ranking the very next day. The blacklist is supplemented
with applications with the detected flag (rating < −1), and the whitelist with applications
contains a positive rating (rating > 0). Additionally, the rating of old applications with
a rating equal to 0 might be periodically polled. Unfortunately, this operation cannot be
efficiently implemented due to a lack of vote feed in the Koodous API.

In the case of ML classifier, due to the rarity of samples with a positive rating, applica-
tions with a rating ≥ 0 are assumed to be benign (in fact, within those applications, there
might be rare non-identified malware examples, e.g., those representing a new malware
family). Samples with rating < −1 are labeled as malware. Such assignment of labels
affects the aim of the classifier—its purpose is to detect new malicious applications similar
to those marked as malicious by the Koodous community before they are uploaded and
rated in the Koodous platform. However, those new malware families can be only detected
if they are similar to the old ones.

4. Machine Learning for Unknown Malware Detection

Due to a large amount of malware on Android devices, malware detection has been a
significant subject of research among the ML community. In 2021, the systematic review [20]
of the methods based on ML was published. Those methods can be divided into three
groups according to the type of analysis used to gather data about the application: static
analysis, dynamic analysis and hybrid analysis. Static analysis is checking the application
before letting it run on the device—the subject of analysis is the application’s source code,
including configuration files and metadata. Within the static analysis, the manifest-based
analysis can be distinguished. Dynamic analysis checks the behavior of the application
during runtime only. The hybrid analysis combines these two approaches, thus having the
most data on which to build a detection model.
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Due to the architecture of the BotSense system, we are limited to the manifest-based
analysis. In this section, we provide an overview of recent works that use manifest-related
information to detect malware applications. Then, we verify whether the ML techniques
can be used to build a lightweight, high-quality model based on Koodous data to detect
those malicious applications that were not yet added to the Koodous platform but have
already been downloaded by the user.

Since amount of data in Koodous grows quickly, the created model may become
outdated just as fast. This section presents preliminary research results using data from a
two-month period. The main focus is the problem of model aging and the methodology for
its automatic refreshing.

4.1. State of the Art

Malware detection based on manifest-related features has been the subject of many
recent research works. The most important papers are shown in Table 1.

Fauzia Idrees et al. proposed malware detection using several machine learning
classifiers [21]. They collected Android applications from numerous datasets, achiev-
ing an accuracy of 99.8%. In [22], random forest-based model was trained and tested
on the OmniDroid dataset. OmniDroid was created partially based on the applications
provided by the Koodous Platform but contains data from the 2018 year only. Coronado-
De-Alba et al. [23] presented the Random Forest model as well, and focused on comparing
various feature selection strategies; they concluded that feature selection has no signif-
icant impact on the classification quality. However, Kouliaridis et al. showed that by,
using dimensionality reduction techniques, PCA and t-SNE—the scores of eight well-
known classifiers—increased [24]. Selecting relevant features was the objective of this
paper [25] as well. The findings of this work are applied in our approach. Noteworthy, the
authors differentiate unknown and known malware detection tasks and show decay in
models’ effectiveness for newer applications. The feature selection was the objective of the
paper [26] as well.

An interesting approach was presented in [27] where ensemble models combined of
logistic regression, MLP, and SGD models are presented. Whereas, in [28], the authors used
four KNN-based models to detect malware, they selected the 300 most important static
features using a random forest regressor. This allowed achieving high accuracy results
between 90% and 99%.

The aforementioned papers have some limitations according to the objectives pre-
sented in this work. First, in works [22,23,28], static analysis takes into account not only
the manifest file but also API calls information. This information is not extractable within
mobile devices due to Android safety mechanisms. Secondly, works [21–23,25–27] did not
consider the date of application creation when splitting a dataset into training and testing
datasets. Thus, the presented accuracy of the classifiers relates to the detection of known
malware families, which is a significantly easier task. Consequently, the problem of model
aging is not considered as well. Another issue relates to the requirement to transfer and run
the classifier on the edge device. As we point out in Section 4.3, the most commercially ma-
ture solutions concern neural networks, which are used only in works [21,24,26,27,29].
Finally, all works were carried out on static, non-growing sets, which means that it
is impossible to update models with the emergence of new malware families. One
exception is works that only use the ever-expanding, up-to-date source of applications
(e.g., Google Play Store or APKPure) in conjunction with some malware detection engine
(e.g., VirusTotal) [21,23,29]. However, a strategy for updating the model over time has
not been proposed and examined. Additionally, such an approach’s effectiveness would
strictly depend on the quality of the applied malware detection engine. In this paper,
the Koodous Platform is used as both a source of applications and a detection engine
(community voting).
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Table 1. Overview of articles on applying machine learning methods for malware detection based
on static analysis.

Paper Dataset ML Method Evaluation Metrics Results

Fauzia Idrees et al. [21]

Contagio Malware Dump
MalGenome
Google Store

AppsApk
Androidmob

Naive Bayes
Decision tree

Random forest
MLP

accuracy 99.8%

Coronado-De-Alba
et al. [23]

Drebin
Google Store

VirusTotal
Random forest accuracy 97.5%

Alejandro Martin
Garcia et al. [22] OmniDroid Random forest accuracy 89.3%

Nektaria Potha et al. [27]
AndroZoo
VirusShare

Drebin

Logistic regression
MLP
SGD

AUC 99.5%
accuracy 98.7%

Taheri et al. [28]
Drebin

Contagio Mobile KNN accuracy 90%-99%
MalGenome

Kouliaridis et al. [24] AndroZoo

AdaBoost
KNN

Logistic regression
Naive Bayes

MLP
SGD

Random forest
SVM

AUC 95.1%
accuracy 91.7%

Arthur Fournieret al.
[29]

theZoo
contagio

Google Store
Drebin

Random forest
Random committee

Random tree
IBK
MLP

Linear regression

accuracy 93.85%

Jin Li et al. [25] Google Store
SVM

Naive Bayes
Decision tree

accuracy 95.63%

Durmus¸ Ozkan Sahin
et al. [26]

APKPure
AMD

MLP
Naive Bayes

Linear regression
KNN

Random forest
SMO

F1-score 98.5%

The work [29] is the most significant one from the perspective of our research. In this
paper, several machine learning models were created using manifest-based features only.
The client–server architecture is provided. However, the edge device sends data about a
newly installed application to the server. Due to user privacy, such data transfer is impos-
sible within the BotSense system. The advantage of the work is that the test dataset was
composed of applications significantly younger than those in the training dataset (at least in
the case of the malicious ones). However, the final datasets were composed of applications
from various sources. The methodology for selecting applications for the dataset, especially
from Google Play Store, is unclear. The age distribution of data is also not provided. Our
doubts are raised by the fact that, with a heterogeneous data source and/or with possible
wrong sampling methodology, malicious applications could be easily distinguished from
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benign samples because of hidden correlation (e.g., if benign applications are significantly
younger than malicious ones or if benign and malicious applications belong to different
theme categories, while categories may differ in the prevalence of malicious applications).
As a result, the machine learning method would create a model that discriminates well an-
other feature of data (e.g., the age of the application), which, due to the structure of the set,
strongly correlates with the maliciousness of the application. In our work, a homogeneous
data source is considered.

4.2. Feature Extraction

Each sample is described with a features vector to identify potentially malicious
applications. Due to the evaluation of the application on the device, the list of possible
functions is limited to the data that can be extracted on the Android phone. Nevertheless,
numerous features can be extracted on the mobile device, so paying attention only to those
helpful in classifying them as benign or malicious is essential. However, due to the dynamic
character of the problem, the list of features should not be excessively restricted, as features
that do not correlate with the maliciousness of the application in case of recent data can
correlate for future malware families. On the other hand, an excessively large set of features
can make the task more difficult.

One source of features is a list of permissions that the application requires to provide
the user with all functionalities. Most malware requires some specific permissions to
perform an attack. However, there are over 200 permissions defined in Android now, most
of which are benign (e.g., the one that allows an application to find out the space used by
any package). In [25], only 22 permissions were selected as relevant in the task of malware
detection. Additionally, the Android itself defines some permissions as dangerous, as
they give access to restricted data and actions that can significantly impact the system and
other applications [30]. Finally, we extended the list of permissions with those identified
as informative in another research conducted on the Koodous database [31]. The final list
of considered permissions is presented in the Appendix A. Each permission corresponds
to one binary feature indicating whether the application requires the given permission.
Additionally, a feature equal to the number of those permissions present in the application
was defined.

Apart from permission-related features, both the Koodous platform and on-device
analytical tool allow access to other features resulting from the Manifest file. The ones that
may have an impact on the maliciousness of a given application are:

• The number of screen names of the mobile application;
• Whether the Apache Cordova framework was used when creating the application;
• Whether the application is signed with a certificate;
• Whether filters are used;
• The maximum number of API supported Android versions;
• The number of used dangerous filters (listed in Appendix A);
• Whether there are any user-defined permissions;
• Whether the list of application classes with specific functions is non-empty (providers);
• Whether the list of application classes with specific functions is non-empty (receivers);
• Whether the list of application classes with specific functions is non-empty (services);
• The number of url addresses that the application uses;
• Whether the name of the signature file is different from the default

(“META-INF/CERT.RSA”).

Finally, each application is described with 71 features.

4.3. Methods

The model is built in the central server, where data from Koodous are collected.
However, due to the requirement that no data about the application can be transferred
outside the device, the created classification model needs to be transferable and executable
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on the device. The list of ML libraries that support building, serializing and finally executing
classifiers on the mobile device is limited:

• m2cgen (https://github.com/BayesWitnesses/m2cgen, accessed on 20 July 2022)—
the library that allows to convert some learning models to the appropriate native JAVA
code. Unfortunately, the number of machine learning methods compatible with the
library is limited. Compatible methods include those dominated by linear and tree
approaches (including ensemble models). Sending models as pure JAVA code is not
recommended. Additionally, the library does not yet have the first major version.
However, it is still under development and can be an option in the future;

• sklearn-porter (https://github.com/nok/sklearn-porter, accessed on 20 July 2022)—
the library dedicated to converting models created using the machine learning library
sklearn. The result of the conversion is the JAVA code representing the decision tree.
As with m2cgen, none is the first major version of the library. Additionally, the last
changes to the library are dated for 2019;

• PyTorch (https://pytorch.org, accessed on 20 July 2022)—the machine learning frame-
work for building models based on neural networks (NN). It has a built-in conversion
option for any neural network to the TorchScript. The script can be imported for a
device with the Android operating system using a dedicated library that is also part
of PyTorch. The framework has the first major version constantly developed;

• TensorFlow Lite (https://www.tensorflow.org/lite, accessed on 20 July 2022)—a
framework similar to PyTorch. The main difference is the lack of support for some
elements of neural networks within TF Lite.

Due to the maturity of the solutions, the PyTorch framework was chosen for the
development within BotSense Mobile. Choosing PyTorch over TensorFlow is due to the
wider compatibility with mobile devices. However, training neural network models with
high accuracy requires significant computational effort due to the need for proper neural
architecture search and hyperparameter optimization. Thus, we use gradient boosting
classifier (GBC) in the first research stage for discovering knowledge in data and learning
the applications’ characteristics without implementing a complex model. GBC is one of
tree-based ML algorithms. We chose the tree-based algorithm as the reference method as
this group of algorithms is commonly used and achieves good efficiency in state-of-the-
art works.

4.3.1. Neural Network Model

The PyTorch library enables the easy implementation of the neural network model.
The aim of the model is to assign a binary label to the input feature vector. The model
we investigate consists of one input layer, three hidden layers and one output layer. The
input layer comprises as many neurons as the number of features describing an application,
i.e., 71.

Android application samples are fed to the input layer. The values of input neu-
rons are multiplied by appropriate weights and summed up in the first hidden layer.
Multiplying the values by weights and summing them up in the next layer is also per-
formed in each hidden layer. Then, each neuron in hidden layers is passed through the
ReLu (ϕ(x) = x+ = max(0, x)) activation function. Additionally, there is a dropout layer
(with the same dropout probability for each) after each hidden layer. The dropout layer
randomly removes some neurons from the hidden layer. It has been proven that it can
improve the quality of network performance [32].

At the last layer, there is a single neuron that returns a value with no limitation. To
obtain a value in the range [0, 1], the output value of this neuron is passed through a
sigmoid activation function:

y∗ =
1

1 + e−y

https://github.com/BayesWitnesses/m2cgen
https://github.com/nok/sklearn-porter
https://pytorch.org
https://www.tensorflow.org/lite
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where y is the output value of the neuron in the last layer and y∗ is the model output value.
The value in range [0, 1] can be easily transformed into binary label: 1 (malicious) if model
output value y∗ is greater than 0.5 and 0 (benign) otherwise.

The neural network structure is shown in Figure 4.

Figure 4. Neural network structure (left) with and (right) without dropout layer.

In the learning process, the training samples (feature vectors) are given on the input
layer and appropriate labels on the output. Then, the values of weights wkj between k-th
and j-th neurons in adjacent layers are optimized. The output of each neuron is defined as:

oj = ϕ(netj) = ϕ

(
n

∑
k=1

wkjok

)
where oj is output of j-th layer, ϕ is the ReLu activation function, netj is the input of the
j-th neuron, and wkj is weight between k-th and j-th neurons.

The model output error E is weight-optimized using the backpropagation approach:

∂E
∂wij

=
∂E
∂oj

∂oj

∂wij
=

∂E
∂oj

∂oj

∂netj

∂netj

∂wij

Thanks to the backpropagation algorithm, the model updates its weights in subsequent
iterations. After each iteration, the model output error is minimized. The trained model
can assign labels, in our case, as malicious or benign, to the given sample.

4.3.2. Gradient Boosting Model

Once a sample is classified as malicious, it is also necessary to calculate the approximate
degree of its malignancy. For this purpose, a supervised ML model can be used to predict
this degree, taking the rating of the samples as a label. Note that the labels are in total order,
so we decided to use a regressor to predict the degree of malignancy, using the float value
on the output. We chose the gradient boosting regressor (GBR) from the sklearn library. It
is one of the machine learning models whose task is to minimize the loss function using the
gradient method—similar to a neural network. A unique approach to solving this problem,
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in the case of this model, is the creation of increasingly newer decision trees, where each
subsequent one minimizes the loss function. The trees create the so-called random forest.

4.4. Metrics

An appropriate metric must be chosen to check the quality of the learned model or to
compare several models.

According to the current and predicted label, the classification result is assigned to
one of the following categories:

• TP (True Positive) —both the actual and the predicted label are positive;
• FP (False Positive)—the actual label is negative and the predicted label is positive;
• FN (False Negative)—the actual label is positive and the predicted label is negative;
• TN (True Negative)—both the actual and the predicted label are negative.

In case of problems where relevant and non-relevant elements can be distinguished
(e.g., malware and benign applications, accordingly), metrics such as precision and recall
are more informative than accuracy.

A high level of precision informs about a low number of false positives among all
samples predicted as positive:

precision =
TP

TP + FP

In the case of malware detection, a high precision value indicates that most of the
applications labeled as malware are indeed malicious.

On the other hand, detecting as much real malware as possible (little FN) is also
important. The measure that informs about results completeness is recall:

recall =
TP

TP + FN
The combination of the information provided by precision and recall is metric fβ:

fβ = (1 + β2)
precision · recall

(β2 precision) + recall

Parameter β is used to assign precision and recall appropriate weights, depending on
the preferences in the given use case. In this research, sensitivity and precision are given
equal weight. Therefore, β = 1 was chosen.

This paper examines the variability of the f1 measure over time. Due to the variant
percentage of malicious applications among all applications on consecutive days, we
decided to balance data with the oversampling strategy each day, so that the results
are comparable.

In the case of regression, several metrics can be used to analyze the results. One of the
most frequently used ones is root mean square error (RMSE). The value of this measure is
equal to the quadratic mean of differences between actual and predicted values:

RMSE =

√
∑N

i=1(ŷi − yi)2

N

where:

• yi—the prediction for the sample xi;
• ŷi—the actual value for the sample xi;
• N—the number of predicted samples.
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Another metric is the mean absolute error (MAE). This metric value is more intuitive
as it is the average of all absolute errors:

MAE =
∑N

i=1 |ŷi − yi|
N

This metric answers how much the predicted value differs from the actual one on
average. The lower the value of RMSE and MAE, the better the regression is.

4.5. Automated Model Generation

Due to malware’s ever-changing characteristics, the model must be constantly re-
trained with the latest applications from the Koodous platform. Thus, the automatic
mechanism of new data collection and new model generation was implemented (Figure 5).
The mechanism is composed of three periodic processes:

• Fetching analysis and features extraction (run once an hour)—the process fetches
one batch of all applications analysis generated by the Koodous Platform since the
previous fetch. One analysis concerns one application. Each analysis is transformed
into a feature vector describing the application. The vector is stored in local storage;

• Filling ratings (run once a day)—the process downloads the rating for each applica-
tion downloaded in the previous process. The rating is collected at least 24 h after
Koodous generates the analysis. The delay is needed for the community to evaluate
the application. The length of the delay was experimentally estimated (see Section 3.2);

• Building a detection model (frequency depends on the strategy)—the process builds a
new detection model based on the recent data. The resultant model is sent to BotSense
Management System, which populates it further to edge devices.

Figure 5. The architecture of the automated model generation mechanism.

To build an effective detection model the neural network intelligence (Neural Network
Intelligence: https://nni.readthedocs.io/en/v2.0, accessed on 20 July 2022), the (NNI)
framework is used. NNI is the AutoML toolkit for hyperparameter optimization and
neural architecture search. It implements multiple tuners that guide hyperparameter
search. Within this paper, we use a simple tree-structured Parzen estimator, one of the
classic Bayesian optimization algorithms [33].

The k-fold approach was implemented to compare the quality of the models created
with different sets of hyperparameter values. However, due to the time dependency of the
malware characteristic, we split the data into learning and validation sets according to the
application creation date—the model was built upon older samples and validated against

https://nni.readthedocs.io/en/v2.0
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newer ones. Thus, the obtained model parameters should be less sensitive for model aging,
i.e., the phenomena of efficiency decreasing with time.

The optimized neural network model is transferred to the edge device. Within the
BotSense SDK, each newly installed application is detected and the manifest file of this
application is extracted. Then, this file is used to compute the feature vector. Finally, the
feature vector is used as the input of the neural network to assess the maliciousness of the
application. The decision process is illustrated in Figure 6.

Figure 6. The process of assessing a newly installed application as malicious or benign.

5. Experiments

The aim of the experiments was three-fold. First, to examine the quality of a malware
predictor created using ML. The predictor is two-stage. First, the application is classified as
malicious or benign. Then, the suspected sample level of malice is estimated. Secondly, we
verify the automated model generation approach.

Additionally, the quality of data collected in Koodous was examined. Contrary to
many previous studies on malware detection with ML, we focus on the problem of model
aging. We propose and compare two model update strategies.

5.1. Dataset

Since with Koodous API, downloading newly arriving applications is much more
efficient than the older data, the research was only carried out on newly added data. We
started the data collection process on the 28 April 2022 and gathered 975.883 samples until
the 21 June 2022.

Initially, the data were divided into benign and malicious. Samples with a feature
rating of at least 0 were labeled as benign. Those with a negative rating were labeled as
malicious. The daily distribution of samples was shown in Figure 7.

It can be observed that there are more benign samples than malicious ones. The
number of benign samples is relatively stable (except at the end of June), while the number
of malware varies significantly over time. A detailed distribution of the malware samples
rating was presented in Figure 8.

The sudden change in the distribution of the rating values on the 31 May is noteworthy. Un-
til the 30 May, the vast majority of malicious samples had a rating of −2. Then, the proportions
were reversed in favor of the applications with lower rating values (rating ∈ {−3,−4}).

5.2. Model Ageing

When the model is built based on historical data, the problem of model aging occurs
very often. The aging refers to the decaying performance of the model. This phenomenon
is caused by changing data characteristics. In the case of mobile malware detection, the
change of characteristics may be due to a new Android version release or a new malware
family appearance. It is also a severe problem with detectors of other malware types.
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Figure 7. Labeled data distribution in Koodous from 28 April to 21 June.

Figure 8. Labeled malicious data distribution in Koodous from the 28 April to the 21 June.

The model should be constantly updated to solve the problem of model aging. In this
paper, we examine two model update strategies:

• INCREMENTAL—the beginning of the training period is constant, and the end of
this period is shifted by one day each day;
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• MOVING—the beginning and the end of the training period are shifted by one day
each day (the length of the training period is constant).

We compare the results of both strategies with the STATIC approach—the training
period is constant (no model update). The model was trained with the gradient boosting
classifier. The initial length of the training period was two weeks in all cases. Each day, the
testing set contained applications from the whole week following the training period. The
obtained values of the f1 metric are presented in Figure 9. Note that the date on the axis
X points to the last day of the test window (e.g., the 18 May indicates a test window that
includes 12–18 May).

Figure 9. Comparisonof three updating model strategies (left-side axis) and the number of samples on
each day of the experiment (right-side axis). Gradient boosting classifier was used to build classifiers.

As can be observed in Figure 9, in the beginning, the choice of strategy does not
affect the model quality. Then, the refreshing model lets the detector adapt to new data
characteristics. However, interestingly, after the 6th of June, the model trained on old
data (both STATIC and INCREMENTAL strategies) slightly outperformed the one with a
moving training window. This may be due to the test data characteristics resembling those
of the initial training data. Based on the results, it can be concluded that the MOVING
strategy allows for the fastest adaptation to changing conditions.

On the other hand, keeping old data in the training set increases quality in most cases.
In the future, some mixed approaches to the proposed updated strategy, i.e., the INCRE-
MENTAL approach with lower weight of older samples, could be examined. However, in
the short period of testing, as in this experiment, the STATIC approach allows for achieving
good results.

An additional result of this experiment was discovering the most critical features
for detecting malware. The five features that most affect the quality of the model for
the STATIC strategy during training, along with their weight (weights of all 71 features
add up to 1), are presented in Table 2. It can be noted that the most relevant features are
the permission to read SMS by application and the number of URL addresses that the
application uses.



Sensors 2022, 22, 6562 17 of 25

Table 2. The most relevant features with weights calculated by the gradient boosting classifier.

Feature Name Feature Weight

READ_SMS 0.208

urls_count 0.195

RECEIVE_SMS 0.157

INTERNET 0.099

SYSTEM_ALERT_WINDOW 0.079

5.3. On-Device Detector

As pointed out in the previous section, no mature tool allows deploying the GBC model
on the device with the Android operating system. Thus, a more resource-exhaustive process
of training neural networks is required. We applied the automatic approach described in
Section 4.5 to obtain a high-quality model. The network was composed of three hidden
layers (one optional) and the dropout layer (with this same value) after each hidden layer.
The batch size and learning rate parameters were also adjusted. The hyperparameter search
space definition is presented in Table 3. Zero neurons in the first hidden layer mean that
this layer is skipped. The number of neurons in the third layer was limited to decreasing
the risk of overfitting. The smallest value of the batch size was set to 32 to limit the memory
and computation time used during training. Note that only the dropout parameter is
chosen from a uniform distribution between 0 and 0.2, but all other parameters can be just
one of the elements of the predefined list. The number of epochs was set to 8 in each trial.

Table 3. Definition of the hyperparameter search space for building an on-device neural network model.

Parameter Name Sampling Strategy Values

Learning rate choice {0.002, 0.005, 0.01}

First hidden layer size choice {0, 16, 32, 64, 128, 256}

Second hidden layer size choice {16, 32, 64, 128, 256, 512, 1024}

Third hidden layer size choice {16, 32, 64, 128, 256, 512}

dropout uniform <0, 0.2>

batch size choice {32, 64, 128}

The training set was composed of samples from 28 April to 9 May (12 days), while
samples created the validation set from the next two days. The 500 trials were examined.
The experiment was conducted on a machine with 64 GB of RAM, 8 CPUs and a Ubuntu
20.04.4 LTS operating system. The execution of all trials took approximately 400 min.

The result of the hyperparameters search is presented in Figure 10. For greater clarity,
only the top 20% of trials (out of a total of 500 trials) are shown. The best model was created
with the hyperparameter values outlined in Table 4. The selected metrics obtained on the
validation set by this model are presented in the Table 5.

Figure 10. Top 20% trials of the hyperparameters search.
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Table 4. Set of the hyperparameters for the Neural Network model with the best f1 score.

Parameter Name Value

learning rate 0.005

First hidden layer 0

Second hidden layer 512

Third hidden layer 512

dropout 0

batch size 128

Table 5. Results obtained by the model trained on data from 28th April to 9th May with parameters
presented in Table 4 and validated on data from 10th May to 11th May.

Accuracy Precision Recall f1

0.86 0.86 0.85 0.86

Then, the Neural Network model was retrained on all samples from 28th April to
11th May with the chosen hyperparameters values and tested on data from 11th May to
21st June. Each day contained all data from the whole week that ended the selected day.
The performance of the neural network was compared with the previously created model
with gradient boosting classifier (the model trained with STATIC strategy described in
Section 5.2). The results obtained by those models are presented in Figure 11. The neural
network model behaves similarly to the gradient boosting classifier on all tested days. It
can therefore be expected that conclusions regarding model aging are also valid for the
neural network model. The selected metrics obtained on the test set (all days included)
are presented in Table 6. The high precision of the model (0.9) means that, among the
applications indicated by the network as malicious, the vast majority pose a threat to the
user. Thanks to the low false positive rate (0.08), the user is rarely exposed to false alarms
that could affect the user’s comfort.

This is a first work that evaluates an ML-based malware detector on a dataset labeled
by the Koodous community. Thus, strict comparison with the state-of-the-art results is not
possible. However, some general conclusions can be drawn:

• Similarly to work [29], we observed the degradation of the model accuracy with
time—for most of the test datasets, the updated model performs better than the older
one (see INCREMENTAL/MOVING vs. STATIC on Figure 9);

• The light neural network model achieves similar effectiveness as tree-based ML al-
gorithms (see Figure 11). Tree-based approaches were commonly and successfully
used in previous research. This is all the more important as the lightweight model
was obtained as a result of the fully automated process;

• The effectiveness of the detection models varies over time—for some days, the model
quality is similar to the one known from the previous works, but for others, it is
significantly lower. The lower effectiveness is related to lower recall (increased number
of undetected malware samples), which new malware families’ appearance might
cause. However, it must be stressed that the model’s effectiveness strictly depends on
the training and the evaluation datasets. As shown in this paper, the characteristics of
the data in the Koodous Platform are highly variable in time.
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Figure 11. Comparing the results of chosen neural network and gradient boosting classifier.

Table 6. Results obtained by the model trained on data from 28 April to 11 May with parameters
presented in Table 4 and tested on data from 11 May to 21 June.

Accuracy Precision Recall f1

0.81 0.9 0.7 0.77

5.4. Malignancy Degree Predictor

After a sample is classified as malicious, it is recommended to predict what degree of
malignancy it may have so that the user risk assessment can be performed accurately. It is
assumed that, the lower the rating, the more dangerous the sample is. To train a model to
predict the degree of malignancy of a given application, supervised learning was performed,
where the label of a given application is its rating. For this purpose, the regression suits
better than classification, as the labels represent the degree of the malignancy (they can be
ranked). In our research, the gradient boosting regressor was used.

The output of the regression model is a real number representing the predicted degree
of malignancy. In the Koodous-based dataset, the model’s output is the expected rating
of the malicious application, so the model’s output should be a real number from −6 to
−1 or a little out of this range due to predictor error. The quality of the prediction will be
assessed with the RMSE metric.

Again, the training set was composed of the malware samples from the first two weeks
of the dataset. The predictor was tested against the rest of the data. The obtained results
are presented in Figure 12. It can be observed that the predictor quality has drastically
dropped since the 31 May.
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Figure 12. RMSE score for the predictor output predicting the degree of maliciousness of the application.

If we compare the course of the RMSE value to the ranking distribution (Figure 8),
it can be observed that the drop in RMSE value is associated with the change in ranking
distribution, which happened on the 31 May. Reasons that could explain the significantly
lower average ranking value are:

• New applications are more malicious, so they are easier to detect;
• New automatic malware detectors appeared on the Koodous platform;
• Existing malware detectors increased detectability.

Suppose new applications are more malicious but similar to the most malicious ones
before 31 May. In that case, the RMSE value should not drop so significantly—the predictor
estimated the rating of more malicious applications with high accuracy before the 31 May.
Thus, it is more probable that the characteristic of malware detectors available in Koodous
changed. If so, the application similar to the one in the training set might be treated as
more malicious after the 31 May. If this statement is true, then it should be possible to
calculate the bias value—the value indicating how many more negative votes obtain the
malicious application after the 31 May. The bias value can be added to the result of the
predictor to obtain a malignancy level more similar to the one in the Koodous platform. We
obtained the bias value by optimizing the RMSE value of gradient boosting regressor for
data collected on May 31 only. The resulting value is bias = −1.2.

The bias value was added to the predictor output for all days after the 31st of May.
The RSME value obtained by regression model in variants with and without applying bias
value is presented in Figure 13. As expected, using the bias value increased the prediction
quality to the level before 31 May, except for the data collected on 17 June. The results
support the thesis that the data characteristics did not change, but their evaluation method
has. Thus, the model should be frequently refreshed enough to keep the quality of the
malignancy degree predictor similar to that on the Koodous platform.



Sensors 2022, 22, 6562 21 of 25

Figure 13. The RSME value obtained by the regression model in variants without and with applying
bias value.

6. Conclusions

Nowadays, malware detection on mobile devices is a great challenge. This paper
proposes on-device malware detection based on Koodous-derived knowledge supported
by an ML-based detector. The first detects malware that the Koodous research community
detected using a blacklist. The latter is responsible for protecting users by detecting
malware that has not yet been added to Koodous or has not been correctly labeled as
malware by Koodous society. The detection tool was integrated within the BotSense Mobile
system to increase the safety of users of e-banking and e-identity applications. The PyTorch
framework was used to deploy the ML model on Android OS devices. In the future, the
detection tool could be applied to detect attacks targeting other critical cyber–physical
systems [34] based on Android devices (e.g., industrial control systems [35]).

The advantage of the Koodous platform is its ability to automatically download the
applications with static analysis results. The number of applications appearing on the
platform is also a significant advantage. Those features allow automating the process of
generating new malware detection models. This is a promising solution as the charac-
teristics of malicious applications change over time, causing model aging. Additionally,
a Koodus-related label, namely rating attribute, allows for grading the maliciousness of
the application. Predicting the degree of malignancy of the application may be of great
importance in the comprehensive security assessment process carried out by the client.

In this work, we addressed the problem of model aging within the hyperparameters
search process by modifying the k-fold approach—the validation set is composed of newer
data than in the training set. We also proposed and compared two strategies for updating
the malware detector model. We showed that frequent updates increase the detection
quality in the short term. However, removing old data from the training set may decrease
the model accuracy in the future. The computational cost of the retraining model should
also be considered while choosing one of the updating strategies. The model aging was evi-
dent in the case of the malignancy degree predictor. However, according to the conducted
research, the problem was rather related to the volatility of the Koodous platform than the
model quality itself.

The preliminary studies show the satisfactory quality of the created models. In the
case of neural network-based malware detection, the average f1 score is 0.77, and for 60%
of test datasets, the f1 measure was higher than 0.8. The high precision of the model (0.9) is
noteworthy. For malignancy level detection, the average MAE value was 0.49 (on average,
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the predicted ranking differed from the actual ranking by less than half of the vote), as long
as the Koodous-related data labeling process was not changed.

The main limitation of this study is treating labels within Koodous as ground truth.
The evaluation results indicate how well the created predictors forecast Koodous-based
labels. The actual quality might be better (e.g., whether Koodous have samples that are FN
and ML-based predictor discovers them as malware) or worse (if both Koodous and ML-
based predictor mislabels the same applications). A preliminary study on the newest data
presented in this paper shows a high variability of Koodous data characteristics even in a
short period. In the future, we propose testing the models on third-party datasets to confirm
the quality of the predictors. At the same time, the development of the machine learning
libraries should be monitored for compatibility with the Android operating system. The
emergence of new and mature tools will allow the use of more complex learning models,
e.g., hybrid approaches [36] or ensemble models [27].
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Appendix A

Dangerous filters:

• ACTION_APPLICATION_RESTRICTIONS_CHANGED
• ACTION_CONFIGURATION_CHANGED
• ACTION_CREATE_SHORTCUT
• ACTION_INSTALL_PACKAGE
• ACTION_PACKAGE_DATA_CLEARED
• ACTION_PACKAGE_NEEDS_VERIFICATION

Dangerous permissions:

• ACCESS_CHECKIN_PROPERTIES
• ACCESS_COARSE_LOCATION
• ACCESS_FINE_LOCATION
• ACCESS_NOTIFICATIONS
• ACCESS_WIFI_STATE
• ADD_VOICEMAIL
• ANSWER_PHONE_CALLS
• BLUETOOTH_MAP
• BODY_SENSORS
• BROADCAST_WAP_PUSH
• CALL_LOG
• CALL_PHONE
• CAMERA
• CAPTURE_VIDEO_OUTPUT
• CHANGE_NETWORK_STATE
• CHANGE_WIFI_STATE
• DISABLE_KEY_GUARD
• GET_ACCOUNTS
• GET_TASKS
• INSTALL_PACKAGES
• INTERNET
• MANAGE_DOCUMENTS
• PERSISTENT_ACTIVITY
• PROCESS_OUTGOING_CALLS
• READ_CALENDAR
• READ_CALL_LOG
• READ_CONTACTS
• READ_EXTERNAL_STORAGE
• READ_HISTORY_BOOKMARKS
• READ_LOGS
• READ_PHONE_NUMBERS
• READ_PHONE_STATE
• READ_SMS
• READ_SYNC_SETTINGS
• RECEIVE_BOOT_COMPLETED
• RECEIVE_MMS
• RECEIVE_SMS
• RECEIVE_WAP_PUSH
• RECORD_AUDIO
• RECOVERY
• RESTART_PACKAGES
• SEND_SMS
• SET_ALWAYS_FINISH
• SET_WALLPAPER
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• SYSTEM_ALERT_WINDOW
• USE_SIP
• WRITE_APN_SETTINGS
• WRITE_CALENDAR
• WRITE_CALL_LOG
• WRITE_CONTACTS
• WRITE_EXTERNAL_STORAGE
• WRITE_SETTINGS
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8. Pektaş, A.; Acarman, T. Malware Classification Based on API Calls and Behavior Analysis. IET Inf. Secur. 2017, 12 107–117.
[CrossRef]

9. Jusoh, R.; Firdaus, A.; Anwar, S.; Osman, M.; Darmawan, M.; Faizal, M. Malware Detection Using Static Analysis in Android: A
review of FeCO (Features, Classification, and Obfuscation). PeerJ Comput. Sci. 2021, 7, e522. [CrossRef] [PubMed]

10. Kapratwar, A. Static and Synamic Analysis for Android Malware Detection. Master’s Thesis, San Jose State University, San Jose,
CA, USA, 2016.

11. Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K.; Siemens, C. Drebin: Effective and explainable detection of android
malware in your pocket. In Proceedings of the NDSS, San Diego, CA, USA, 23–26 February 2014; Volume 14; pp. 23–26.

12. Chen, T.; Mao, Q.; Yang, Y.; Lv, M.; Zhu, J. Tinydroid: Aa lightweight and efficient model for android malware detection and
classification. Mob. Inf. Syst. 2018, 2018, 4157156. [CrossRef]

13. Salehi, M.; Amini, M.; Crispo, B. Detecting malicious applications using system services request behavior. In Proceedings of the
16th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, Houston, TX, USA,
12–14 November 2019; pp. 200–209.

14. Herron, N.; Glisson, W.B.; McDonald, J.T.; Benton, R.K. Machine learning-based android malware detection using manifest
permissions. In Proceedings of the 54th Hawaii International Conference on System Sciences, Maui, HI, USA, 5–8 January 2021.

15. Ahmed, Y.A.; Kocer, B.; Al-rimy, B.A.S. Automated analysis approach for the detection of high survivable ransomware. KSII
Trans. Internet Inf. Syst. (TIIS) 2020, 14, 2236–2257.

16. Alam, M.; Mukhopadhyay, D.; Kadiyala, S.P.; Lam, S.K.; Srikanthan, T. Improving accuracy of HPC-based malware classification
for embedded platforms using gradient descent optimization. J. Cryptogr. Eng. 2020, 10, 289–303. [CrossRef]

17. Samhi, J.; Allix, K.; Bissyandé, T.F.; Klein, J. A first look at Android applications in Google Play related to COVID-19. Empir.
Softw. Eng. 2021, 26, 1–49. [CrossRef] [PubMed]

18. Bourebaa, F.; Benmohamed, M. A Deep Neural Network Model for Android Malware Detection. Int. J. Inform. Appl. Math. 2021,
4, 1–14.

19. Chakraborty, T.; Pierazzi, F.; Subrahmanian, V. Ec2: Ensemble clustering and classification for predicting android malware
families. IEEE Trans. Dependable Secur. Comput. 2017, 17, 262–277. [CrossRef]

20. Senanayake, J.; Kalutarage, H.; Al-Kadri, M.O. Android mobile malware detection using machine learning: A systematic review.
Electronics 2021, 10, 1606. [CrossRef]

21. Idrees, F.; Rajarajan, M.; Conti, M.; Chen, T.M.; Rahulamathavan, Y. PIndroid: A novel Android malware detection system using
ensemble learning methods. Comput. Secur. 2017, 68, 36–46. [CrossRef]

22. Martín, A.; Lara-Cabrera, R.; Camacho, D. Android malware detection through hybrid features fusion and ensemble classifiers:
The AndroPyTool framework and the OmniDroid dataset. Inf. Fusion 2019, 52, 128–142. [CrossRef]

https://www.businessofapps.com/data/android-statistics
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store
https://dataprot.net/statistics/antivirus-statistics/
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper--Machine-Learning.pdf
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper--Machine-Learning.pdf
http://doi.org/10.1155/2015/659101
http://dx.doi.org/10.1049/iet-ifs.2017.0430
http://dx.doi.org/10.7717/peerj-cs.522
http://www.ncbi.nlm.nih.gov/pubmed/34825052
http://dx.doi.org/10.1155/2018/4157156
http://dx.doi.org/10.1007/s13389-020-00232-9
http://dx.doi.org/10.1007/s10664-021-09943-x
http://www.ncbi.nlm.nih.gov/pubmed/33903798
http://dx.doi.org/10.1109/TDSC.2017.2739145
http://dx.doi.org/10.3390/electronics10131606
http://dx.doi.org/10.1016/j.cose.2017.03.011
http://dx.doi.org/10.1016/j.inffus.2018.12.006


Sensors 2022, 22, 6562 25 of 25

23. Coronado-De-Alba, L.D.; Rodríguez-Mota, A.; Escamilla-Ambrosio, P.J. Feature selection and ensemble of classifiers for Android
malware detection. In Proceedings of the 2016 8th IEEE Latin-American Conference on Communications (LATINCOM), Medellin,
Colombia, 15–17 November 2016; pp. 1–6.

24. Kouliaridis, V.; Potha, N.; Kambourakis, G. Improving android malware detection through dimensionality reduction techniques.
In Proceedings of the International Conference on Machine Learning for Networking, Paris, France, 24–26 November 2020;
pp. 57–72.

25. Li, J.; Sun, L.; Yan, Q.; Li, Z.; Srisa-An, W.; Ye, H. Significant permission identification for machine-learning-based android
malware detection. IEEE Trans. Ind. Inform. 2018, 14, 3216–3225. [CrossRef]
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