ﬁ Sensors

Article

Development of a GIS-Based Methodology for the Management
of Stone Pavements Using Low-Cost Sensors

Salvatore Bruno /, Lorenzo Vita

check for
updates

Citation: Bruno, S.; Vita, L.;
Loprencipe, G. Development of a
GIS-Based Methodology for the
Management of Stone Pavements
Using Low-Cost Sensors. Sensors
2022, 22, 6560. https://doi.org/
10.3390/522176560

Academic Editor: Kelum
A.A. Gamage

Received: 5 August 2022
Accepted: 29 August 2022
Published: 31 August 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /

40/).

and Giuseppe Loprencipe *

Department of Civil, Constructional and Environmental Engineering, Sapienza University, Via Eudossiana 18,
00184 Rome, Italy
* Correspondence: giuseppe.loprencipe@uniromal.it; Tel.: +39-0644585112

Abstract: Stone pavements are present in many cities and their historical and cultural importance is
well recognized. However, there are no standard monitoring methods for this type of pavement that
allow road managers to define appropriate maintenance strategies. In this study, a novel method is
proposed in order to monitor the road surface conditions of stone pavements in a quick and easy way.
Field tests were carried out in an Italian historic center using accelerometer sensors mounted on both
a car and a bicycle. A post-processing phase of that data defined the comfort perception of the road
users in terms of the ay,; index, as described in the ISO 2631 standard. The results derived from the
dynamic surveys were also compared with the corresponding values of typical pavement indicators
such as the International Roughness Index (IRI) and the Pavement Condition Index (PCI), measured
only on a limited portion of the urban road network. The network’s implementation in a Geographic
Information System (GIS) represents the surveys’ results in a graphical database. The specifications
of the adopted method require that the network is divided into homogeneous sections, useful for
measurement campaign planning, and adopted for the GIS” outputs representation. The comparisons
between IRI-ay,, (R? = 0.74) and PCl-ay, (R? = 0.96) confirmed that the proposed method can be used
reliably to assess the stone pavement conditions on the whole urban road network.

Keywords: pavement monitoring; stone pavements; urban roads; international roughness index;
pavement condition index; ride comfort; inertial sensor-based system; pavement management system;

geographic information system

1. Introduction

Stone pavements represent a relevant architectural heritage in several Italian cities. It
should be noted how the maintenance and management activities of these roads play a
pivotal role not only in vehicle transit but also in the preservation of historical buildings.

At first, the main approach of many administrations was to replace historic stone
pavements with modern asphalt pavements. However, in recent years there has been
a revival of interest in both the restoration and construction of stone pavements [1-4].
In this regard, several studies [5-8] have shown that stone pavements reduce surface
temperatures in urban areas. Nowadays, most of the stone paved roads are protected as
they are considered cultural heritage like other ancient buildings, and they impact road
traffic safety [9,10] and noise pollution [9,11-13]. Therefore, current management activities
should include appropriate monitoring and maintenance techniques for stone pavements
to ensure appropriate functional levels for users. The Pavement Management System
(PMS) is the traditional tool for road agencies, characterized by a set of methodologies
and procedures in order to plan proper maintenance activities according to the available
budget and within a reference time [14-18]. Some researchers have shown that adopting
a PMS to schedule preventive maintenance activities can significantly reduce costs for
both users and administrations [19-22] compared with corrective maintenance without
planning [23-25]. In recent years, the number of PMSs applied for urban systems has
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increased [2,26,27]. However, this trend has not involved stone pavements. Therefore,
intervention thresholds values commonly provided by the current PMSs cannot also be
adopted for stone pavements, pavement deterioration levels are generally defined in terms
of pavement performance indicators (PPI), such as the International Roughness Index
(IRI) and the Pavement Condition Index (PCI); it should be noted that IRI and PCI values
for assessing stone pavement ride quality are a highly attractive problem [28,29]. In this
regard, Zoccali et al. [26] proposed a new evaluation criterion based on the PCI method
and defined IRI performance classes for stone pavements in some reference areas. The a,,
index, as defined in the ISO2631 [30] standard, provides an alternative approach to evaluate
pavement deterioration [31]. This comfort index can be calculated from the acceleration
measured inside a test vehicle, by, for example, using the sensors embedded in modern
smartphones [32-35].

Uploading data collected during field tests into a Geographic Information System
(GIS) provides an easy way in order to quickly manage and visualize them, with also
the opportunity to access additional data (e.g., historical data and maintenance works)
where available [36]. The importance of this issue can be highlighted by some approaches
already adopted. For example, some PMSs managed the data using hard-copy or digital
maps and digital tables disconnected from spatial data [37]. In the 1980s, the Streetsaver
software was developed by the Metropolitan Transportation Commission (MTC) of San
Francisco [38]. It provides the catalogue of pavement distresses (as defined in the ASTM
D6433 [39]) associated with the metropolitan transport graph; distress detection as an input
enables the calculation and visualization of the PCI value for each section and branch.
Further experimental analyses based on this methodology have made it possible to derive
a performance deterioration curve for the PCI over time [40,41]. At the very beginning,
GIS systems were employed by airport managers [14,42—44]; then, road authorities also
included PMS data into GIS [22,25,45-47]. The implementation of a GIS in urban PMS has
encouraged data collection and representation, as well as the management of different
surveys and their representation [18,48]. Subsequently, several researchers [18,36,37,48-51]
analyzed different case studies demonstrating the successful application of GIS in a PMS to
optimize the data collection methodology and identify the best intervention and research
allocation strategies. Thus, GIS offers a solution for maintaining a road database, which is
very important for decision making and pavement management [48].

In this study, a novel method for quickly monitoring the road surface of stone pave-
ments using accelerometer sensors mounted on a car and bicycle is discussed. The road
surface detected is determined by the number of surveys, due to the well-known vehicles’
trajectory dispersion phenomena [52,53]: the proposed approach makes it easy to carry out
multiple measurements for the investigated area, as the system is easy to install on several
vehicles and does not require qualified personnel, and thus detect the entire lane.

The challenge and special feature of this study are also to investigate the potential of
GIS systems applied on a stone road network characterized by different traffic conditions
and control techniques.

Referring to a portion of the network investigated during the scheduled field tests,
regression functions between different pavement performances (i.e., PCI, IRI, and ay;)
have been defined. Next, the PPIs taken into account in this article are estimated using
the ay, values calculated on the whole network and the regression functions. In addition,
the regressions were implemented directly in GIS in order to derive a practical and fast
system to identify the conditions of the investigated pavements with respect to traffic
conditions. The proposed system allows qualified personnel to work in a selected manner
with scheduled maintenance activities, even over time, and allows the historical heritage of
the road system to be enhanced for all categories of traffic.

2. Methodology

Figure 1 summarizes the methodology adopted in this research work and applied to a
case study of a stone pavement network.
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Figure 1. Flowchart of the proposed methodology.
In the following subsections, the main phases of the proposed methodology are discussed.

2.1. Hierarchization of the Managed Road Network

The preliminary phase in PMS development is the identification of the network’s hier-
archical level, geometry, cross-section, and traffic [54]. As the hierarchical level increases,
the cross-sectional area is larger, traffic is more intense, and geometric standards are
higher. Urban road networks are divided into primary, secondary, and local networks [55].
Figure 2a shows an example of a hierarchized network in which it is possible to note the
reference network, Figure 2b focuses on the reference network; some roads (colored gray)
must be excluded from the analysis (minor roads, cul de sac, etc.).

Firstly, the pavement network should be divided into branches (such as streets, parking
areas, etc.) and each branch should be divided into sections with consistent characteristics in
terms of area or length, structural composition, construction history, traffic, and pavement
condition. A sample unit (SU) is any identifiable surface of the pavement section covering
an area, as suggested by the ASTM D6433, of 225 +/— 90 sqm. The sample unit is the
smallest component of the pavement network [56]. All sample units of a section should be
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considered to estimate the average PCI of the section; however, this approach is considered
expensive and time consuming by road managers. In this regard, the minimum number of
sample units that must be surveyed into a section to obtain a reliable PCI estimation (95%
confidence) was chosen according to the ASTM D6433 guidelines.

Principal road network

= Secondary road network

Local road network

23 Reference road network \A
\\%4\ \/\

(a) (b)

Figure 2. Road Network: (a) entire network (b) reference network.

2.2. Identification of a Reference Road Network

One of the main objectives of the novel methodology is to manage the whole road
network using accelerometers mounted on vehicles (e.g., car or bicycle) in order to evaluate
the perceived comfort of the users using the ay,, index according to the ISO2631 standard.

The identified reference network is also investigated using profilometers and visual
inspections to determine well-known indices such as IRI and PCI: statistical correlations
between ay,, -IRI and a,,, -PCI allow the PPI values on the entire network to be estimated.
The effort to find an alternative index (ay;) is due to the fact that traditional methods are
unsuitable for urban areas because of the presence of speed limits, the low horizontal curve
radii, the numerous intersections, etc. [57]. Instead, accelerometer measurements and a,,
calculation could be more appropriate for urban applications because they can describe
perceived comfort conditions in vehicles traveling on the roads [31].

2.3. Data Collection and Database Population

Data collection requires a system that is as automated as possible; therefore, a standard-
like [39] data collection system is implemented employing QGIS [58] for distress detection;
next is useful to install QField [59] software for Android tablets to use during the field test.
Figure 3 shows the data entry form for the survey phase; GNSS position is automatically
filled in with GNSS sensor data. Information about the sample unit under investigation
is also retrieved automatically by cross-referencing positions with information from the
GIS graph.

Next, it is possible to switch to the next tab of the tool by selecting the menu named
“Distress” (Figure 4). This form allows the distress during the survey to be directly recorded;
by selecting the detected distress from the menu, the catalogue’s photos with the description
appear automatically. Qualified personnel measure the size of the distress and record the
value in the corresponding field.
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Figure 3. Position form.
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Figure 4. Distress identification menu: (a) data input with the possibility to add in situ the photo of
the defect; (b) photos of the different defects specialized for stone pavements [26], to support the
operator in identifying the observed defect.

Then, a photo captured via the mobile device can be uploaded for each identified
distress. Finally, it is possible to share the survey data directly within the GIS mapping
using QField’s cloud functions. The QGIS software used has the feature to link via plug-in
spreadsheets with GIS vectors; therefore, by linking the vector containing the distress to
a spreadsheet it was possible to calculate the PCI index of each reference unit. Figure 5
shows the representation of the PCI survey results.
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Figure 5. Visualization of PCI results in GIS.

Similarly, to add profilometric measurements and calculate the IRI values, GIS tools
allow the process to be simplified and the information overlaid. In particular, in this study,
IRI values were calculated using a class I profilometer [60]. A Bluetooth GNSS sensor
was placed on the top of the profilometer, which saves the location every three seconds
and produces an output file directly imported into GIS. In this way, we obtained the
representation of the trajectory followed during the field tests (represented by the arrows
in Figure 6).

+= Longitudinal
Profile measurement

Not surveyed

Figure 6. Visualization of IRI results in GIS.

The measured longitudinal profiles are then processed to return the corresponding IRI
values. Through the form in Figure 7, the results of the survey and subsequent processing
are stored; specifically, the IRI values, the date, the profile detected by the profilometer, and
an image of the pavement during the survey are stored.
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Figure 7. IRI form.

2.4. Traditional Pavement Evaluation Methods Adopted in This Study

The PCI procedure adopted in this study for stone pavements, which is very similar to
ASTM D6433 [39], was proposed by Zoccali et al. [26]. In this research, the PCI calculation
procedure was implemented on a Microsoft® Excel spreadsheet based on distress data
collected on the road using an Android tablet, as seen in Section 2.3.

A different monitoring technique to evaluate road pavement surface conditions is
based on the longitudinal profile analysis in order to calculate IRI values. The computation
of IRI is based on a mathematical model known as the quarter car and its mechanical
parameters are defined in the ASTM 1926 [61]. In particular, IRI is calculated according to
Equation (1):

Ly
1R1:1/ Vg — 24|t — (1)
L Jo

where L is the profile length in km, V is the simulated speed equal to 80 km/h, z; is the
time derivative of vertical displacement of the sprung mass, and z,, is the time derivative of
the vertical displacement of the unsprung mass. The output of this calculation is an index
that increases when road roughness increases, and the commonly recommended units are
meters per kilometer (m/km) or millimeters per meter (mm/m).

Differently from the PCI, the IRI standard does not provide ratings that relate the
index values to the maintenance interventions; however, common acceptance values are
available in the literature for flexible and rigid pavements [20,31,62,63]. On the other hand,
regarding stone pavements, IRI threshold values have been derived from the study by
Zoccali et al. [26].

2.5. Inertial-Based System Adopted in This Study

In addition to the traditional methods (i.e., PCI and IRI), alternative methods based on
the measurement of the acceleration profiles have been proposed over time [32-35,64].

In this study, acceleration data have been collected using the two identical prototypes
validated by a recent study [57]. In particular, the device used is a Raspberry Pi [65]
microcomputer that interfaces with an IMU unit and a GNSS module (Figure 8). The
adopted IMU unit is the InvenSense MPU-9250 [66], and it consists of an accelerometer
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and a gyroscope that measure both linear acceleration and angular velocity. The GNSS
sensor used is a NEO-6M [67], which receives the C/A signal on the L1 carrier from the
GPS constellation.

Figure 8. Raspberry-based IMU device.

The frequency of data collection is different in both components: in the case of the
GNSS sensor, there is a frequency of 1 Hz; for the IMU unit, the maximum mean sample
rate effectively obtained was about 83 Hz owing to hardware and software limitations [57].

Whole Body Vibration-ISO 2631

The frequency weighted acceleration (a,,) depends on the vertical acceleration mea-
sured inside a vehicle in motion to assess the ride comfort of road users and not directly on
the defects of the pavement.

The acceleration time-history collected in the field tests by the adopted prototype was
processed using a code written in Matlab® language in order to calculate the a,, index
values every second, whereby the signal is divided each 2 s, and 1 s of overlap is considered.
Regarding the evaluation of the index, starting from the accelerations in the time domain,
it is possible to determine the frequency range’s relative spectrum and calculate the root
mean square deviation of the spectral accelerations (RMS). The ISO 2631-1 suggests the
frequencies between 0.5 and 80 Hz as the cause of comfort decay. This range is divided into
a one-third octave spectrum (a1, 4y, - - . , Ay23). The a,; value is calculated according to
Equation (2):

23 2
Awz = Zizl (Wk,i'az,i) ()
where W ; is the i-th frequency weighting in one-third octave bands for the sensor, provided
by the ISO2631 standard, and a,, is the vertical RMS acceleration for the i-th one-third

octave band. The ISO 2631 also suggests the threshold values for public transport as
reported in Table 1.

Table 1. Comfort levels and 4, threshold values according to ISO 2631-1 standard.

ay; Values Comfort Level
Less than 0.315 m/s? Not uncomfortable
0.315-0.63 m/s? A little uncomfortable
0.5-1.0 m/s? Fairly uncomfortable
0.8-1.6 m/s? Uncomfortable
1.25-2.5 m/s? Very uncomfortable

Greater than 2.0 m/s? Extremely uncomfortable
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It should be noted that the sample unit lengths generally vary from 20 to 80 m,
considering an average travel speed of about 5-6 m/s, within each SU fall between 3
and 16 a,; measurements for each survey: for each SU, the a,,, value is returned by the
average of the values. GIS tools manage spatial analysis algorithms, making it possible to
associate points with sample units (areas). Therefore, it is possible to switch from the point
representation of the a,,, values (Figure 9a) to the sample unit representation (Figure 9b).
The rating scale adopted is provided by ISO 2631 [30].

awz (m/s2)
B <0315
[J0315-05
Bl o0s5-1
Ei-16
162
-2

[ Not survied

awz (m/s2)

° <0315
0.4-05

® 05-1

* 1-16

® 16-2

. 2

[ Not survied

oooooo

(a) (b)

Figure 9. Visualization of ay results in GIS: (a) point representation (b) sample unit representation.

In this study, a,; values have been calculated in the whole stone road network. How-
ever, they do not characterize the maintenance level of the network making it necessary to
find regression models for the adopted PPlIs.

2.6. Assessment of Pavement Condition with the Estimated PPI Indices

The values of PCI, IRI, and ay,, are available for the sample units of the reference net-
work: correlations among these indices have been investigated. Previous studies [31,68,69]
have shown the existence and usefulness of these regressions for flexible pavements: in this
study, we would also like to identify similar regressions for stone pavements (Sampietrini).
In particular, an exponential-type regression model: the choice of this model is supported
by a previous study conducted on stone pavements [26]. The studies [31,67] show that
regressions should be derived considering a constant speed value; in this paper, it was
decided to find regressions at a speed of 20 km/h. In order to use one tool for all phases,
regression analysis was also conducted in GIS.

3. Field Tests

The field test was carried out in the city of Velletri, located in the southern district of
Rome. The historic center is paved with Sampietrini pavements, consisting of polished
black basalt blocks placed side by side in a regular pattern (Figure 10). The typical shape is
cubic or a square-based truncated pyramid solid measuring 12 x 12 cm and 18 cm high.

The urban road network, consisting of about 12 km of roads with irregular cross-
sections, is extremely non-homogeneous in terms of maintenance, traffic, and construction
methodology. The hierarchy identification was mostly based on traffic surveys, assigning a
higher hierarchy as the traffic intensity increases.

For the graph construction, we started with data from the 2014 regional technical
map of the Italian Lazio region [70] provided in shape file format. However, the regional
map identifies the streets without distinguishing between the different types of pavements,
making it necessary to detect which streets in the city were paved with Sampietrini. This
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problem was overcome by using Street View ™ [71] and some field visual inspections. GIS
representation of Velletri’s Sampietrini network is shown in Figure 11.

Figure 10. Typical Sampietrini Pavement in the city of Velletri.
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(a) (b)
Figure 11. Stone pavement network in Velletri: (a) network hierarchy (b) reference network.

Firstly, the stone-paved network areas were identified. The next step was to divide
the roads according to the criteria outlined in the ASTM D6433. The identification of the
sample units was carried out using the free software QGIS, assigning their toponymy and a
progressive number. A total of 235 sample units were considered in Velletri’s Sampietrini
network, and they were identified uniquely, as shown in Figure 12.

Then, the proposed methodology required the identification of a reference network; in
this case study, 10 representative sample units were identified by choosing different levels
of pavement deterioration.

The vertical accelerations recorded both in a car with a mass of about 1050 kg and with
a mountain bike (suspension-less) were processed in order to calculate ay, index values. In
particular, an effort was made to maintain a speed of 20 km/h for both vehicles.
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Figure 12. GIS visualization of some sample units of the Sampietrini network in Velletri.

The position of Raspberry-based sensors needs a fixed location. In addition, it should
provide good satellite coverage and should represent as closely as possible the effective
comfort conditions perceived by the user; the preferred options resulted as:

1.  The sensors were externally on the vehicle’s frame; this required the construction of
a magnetic case that allows the prototype to be placed on the car body, as shown in
Figure 13;

2. As for the bicycle, the measurement points were chosen on the bicycle’s frame
(Figure 14a) using the same socket used for the car, and on the cyclist’s helmet
(Figure 14b) in a vertical position relative to the rider’s head and without a socket.

Figure 13. Installation of the prototypes on the car body: (a) position of the sensor and (b) mag-
netic case.

Figure 14. Installation of the prototypes on the bike: (a) Bike-frame and (b) Bike-helmet details.

After the survey phase of the reference network was concluded, we characterized the
remaining network only through the a,, index. In this regard, routes with fewer turning
maneuvers were chosen at a preliminary stage and represented in GIS mapping (Figure 15).
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Figure 15. Inspection routes.
An important point to mention is that although the adopted inertial-based system
is equipped with a GNSS receiver, in urban areas, the positioning errors increase due

to the phenomenon of urban canyons [72-74]. For this reason, the development of a
corrective algorithm in GIS environments to relocate the points acquired by the sensors to

the centerline of the road was required.

4. Results and Discussion
In this study, once the field tests are concluded, the 4, index is known on the entire
inspectable network (closed roads, cul de sacs, and narrow roads are excluded). On the
other hand, for the 10 sample units of the reference network, the a,;, IRI, and PCI indices

are computed.

4.1. The Index ay,
The ay, index surveys were conducted by car and bicycle, Figure 16 shows the distri-
bution of the ay,, values referring to the field tests conducted with the car.

Car awz (m/s2) \ S Car awz (m/s2)
° <0315 ' B <0.315
0.315-0.5 i [J0315-05
7 e 05-08 A [Eo05-1
* 08-16 A Wi-16
* 16-2 8= . 16-2
o >2 .

(a)
Figure 16. a,, car results in terms of: (a) points and (b) areas.
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Figure 16a shows the ay, results in terms of colored points, in accordance with
Section 2.5. Figure 16b represents the next step, which is from the point representation to
the sample unit representation.

It can be observed in Figure 16b that about 70% of the sample units are included in the
range from “a little uncomfortable” to “fairly uncomfortable” of the ISO 2631 standard (as
already defined in Table 1).

A similar procedure was carried out for the bicycle reliefs, and the results are shown
in Figure 17.

Bike - Frame Bike - Helmet
awz(m/s2) awz(m/s2)
[ <0315 [ <0315

* [Jo315-05 ' [Jo315-05

Elos5-1 - Elos-1

Figure 17. ay,,; bike results: (a) bike frame results (b) bike helmet results.

Comparing Figure 16b with Figure 17, the ay, values are significantly higher than
those calculated in the car: this is due to the differences in damping between the two
vehicles. In addition, comparing Figures 17a and 17b, we observe that the sensor placed
on the frame measures significantly higher acceleration values than the one collected by
the helmet sensor; this can be explained by the additional damping offered by the seat and
the human body. It should also be noted that bicycle measurement values are significantly
higher than the ranges considered comfortable by the reference standard [30], suggesting
that the thresholds provided for public transportation cannot be applied to bicycles. As
a confirmation of this, the study [75] conducted statistical investigations to associate the
levels of the ay;, index with the level of comfort perceived by bike riders, showing that
it is possible to accept values that are significantly higher than those provided by the
reference standard.

4.2. Statistical Regression between Indices (ay,-PCI, ay,-IRI) and Error Estimation

Once the measurement campaign was concluded, the PCI, IRI, and ay, values for the
reference network were obtained, while for the remaining network only the values of a;,
were known. Then the regression functions between a,,, and PCI indices (Figure 18) and
Ay, and IRI indices (Figure 19) were derived.

As for the bicycle measurements, three reference sample units were excluded because
a constant speed of 20 km/h could not be maintained, so the corresponding a,, values
obtained were not considered.

It is possible to notice that in relation to the measurement campaigns with the bicycle,
statistically weaker regressions were derived, and this occurred due to the difficulty in
keeping a uniform speed. To quantify this dispersion in the reference network, additional
statistical analysis was conducted; in addition to the mean value of the reference sample
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unit, the standard deviation was also computed for the a,,, index. Therefore, the coefficient

of variation “CV” (Figure 20) was used as a statistical indicator of confidence.
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Figure 20. Coefficients of variations related to the a,, values calculated in the sample units surveyed

in bicycle and car during the field tests.
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The coefficients of variation calculated from the car surveys are significantly lower
than from the bicycle surveys; with the exception of sample units #7 and #10, which, having
traveled downhill, surveyed the bicycle at a constant speed of 20 km/h, thus obtaining
more reliable results.

Further analysis took into account the obtained values of R? (Figures 18 and 19) with
reference to the number of sections considered for evaluation, through standard statistical
tests (ANOVA) of the goodness of the statistical models. In particular, for the case study,
the statistical tests were reported for the vehicle and for the bicycle, distinguishing between
the performance for predicting the PCl-ay,, (Table 2) and IRI-a,, (Table 3) relationships.

Table 2. Statistical parameters used in evaluating the performance for predicting the PCI-a,, relationship.

Sum of Mean MS Regres./ Sienificance
Squares Square MS Resid. & F
(SS) (MS) (F)
Regression 0.295 0.295 286.0 1.52 x 107
Car Residual 0.008 0.001
Total 0.303
Regression 0.673 0.673 29 1.39 x 107!
Bike-Helmet Residual 1.386 0.231
Total 2.059
Regression 1.856 1.856 3.9 9.73 x 1072
Bike-Frame Residual 2.890 0.482
Total 4.745

Table 3. Statistical parameters used in evaluating the performance for predicting the IRI-a;,, relationship.

Sum of Mean MS Regres./

Squares Square MS Resid. Slgmgcance
(SS) MS) (F)
Regression 0.213 0.213 19.0 241 x 1072
Car Residual 0.090 0.011
Total 0.303
Regression 0.980 0.980 54 5.83 x 1072
Bike-Helmet Residual 1.079 0.180
Total 2.059
Regression 2.922 2.922 9.6 2.11 x 1072
Bike-Frame Residual 1.824 0.304
Total 4.745

It is well-known that Significance F is used to evaluate if the regression model is
statistically significant [76]. In this analysis, a value of 0.01 (1%) was established as the
significance level; therefore, to test if the results shown are statistically relevant Significance
F should be less than 0.01; only for the car this condition is satisfied and for both PClI-a,,
and IRI-ay, highlighted with red text in the tables. This result can be seen as a consequence
of the better speed control obtained during the surveys with the car.

4.3. PCIl and IRI Values of the Entire Network

Due to the lower confidence of the regressions obtained from the bicycle surveys, it
was decided to use only the car surveys for the characterization of the entire network. The
regression functions in Figures 18 and 19 were implemented directly in GIS, thus obtaining
a vector containing the estimated PCI and IRI and a representation by performance classes
(Figure 21).
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Figure 21. (a) PCI and (b) IRI estimated for the surveyed network using regression models.

With regard to the threshold values, the following were considered:

The guidelines provided in the ASTM D6433 for the PCL

Regarding the IRI index, there are no commonly accepted scale ratings, so the thresh-
olds reported in a previous study by Zoccali et al. [26], related to the speed of 20 km /h,
were used in this study.

5. Conclusions

The management of historic stone-paved roads is still an open challenge.

This article proposes a novel method for the quick monitoring of the road surface of
stone pavements using accelerometer sensors mounted on the car and bicycle in order to
calculate the a,,, values. PCI and IRI pavement evaluation methods were also performed
in a reference network in order to provide regression models that can be used to obtain
indications about the state of health of the examined network

In addition, GIS was provided as a tool to support data collection and management in
an easy way. The implementation of the road network in GIS enabled the surveys to be
represented intuitively in a graphical database.

The novel methodology was applied to a case study in an Italian historic town and the
results proved that it can be used to assess stone pavement conditions on the whole urban
road network. The proposed method allows the assessment of the stone pavement road
network both through direct accelerometric measurements with the a,, parameter and
through statistical models that estimate the conditions of the pavement with traditional
performance indicators (IRI and PCI).

Correlations between the PPIs were analyzed in the reference network, obtaining
results comparable with the study carried out by Zoccali et al. [26] In particular, for the
same investigated sections, measurements collected in both cars and bicycles showed that,
with the same level of maintenance, as the damping offered by the vehicle decreases, the
value of the a,, index increases. However, there is a greater propensity for users to tolerate
higher stresses.

It should then be noted that the correlations found from the data of the car surveys
were more reliable (R?pcrawz = 0.96, R¥R1uwz = 0.74) than the correlations found for the
surveys carried out on the bicycle both on the helmet (R%pClaws = 0.32, R%[R1aw: = 0.44) and
on the frame (R®pcr. gz = 0.37, R®[RL gz = 0.55). In addition, in-depth statistical analyses
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were conducted with the aim of checking the reliability of the predictions obtained; in
particular, the Significance F values showed that the regression model proposed in the
case of the car is statistically relevant (Significance F < significance level set to 0.01), while
the models for the bicycle—where speed control was proven to be a problem—showed
less accuracy.

Therefore, the results proved that the proposed methodology, based on GIS technology,
can be used to assess the stone pavement conditions of road networks characterized by
stone pavements.

Remaining within the scope of methodology refinement, it could be envisaged to filter
the results from disturbances such as, e.g., hypothetically lying stones, boards, bottles, or
other objects of different geometry on an even surface.
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