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Abstract: Specular highlights detection and removal in images is a fundamental yet non-trivial
problem of interest. Most modern techniques proposed are inadequate at dealing with real-world
images taken under uncontrolled conditions with the presence of complex textures, multiple objects,
and bright colours, resulting in reduced accuracy and false positives. To detect specular pixels in a
wide variety of real-world images independent of the number, colour, or type of illuminating source,
we propose an efficient Specular Segmentation (SpecSeg) network based on the U-net architecture that
is expeditious to train on nominal-sized datasets. The proposed network can detect pixels strongly
affected by specular highlights with a high degree of precision, as shown by comparison with the
state-of-the-art methods. The technique proposed is trained on publicly available datasets and tested
using a large selection of real-world images with highly encouraging results.

Keywords: specular highlights; image segmentation

1. Introduction to Specular Highlights

Regions with specular reflections in an image are generally unwanted yet mostly
unavoidable features. This is why the problem of specular highlight detection is challenging
and has been an area of progressive research for both traditional photography and digital
imaging since the beginning. Specular reflections are extremely hard to avoid in real-
world conditions since they depend on several factors, including variables related to
the illuminating source as well as the target object in the scene. These factors include
azimuthal, zenith orientations of the illuminating source and the object as the primary
factor in the presence of specular highlight, alongside factors such as the material of the
surfaces interacting with the light. In most natural-world conditions, one or more of these
factors are uncontrollable, which makes the presence of specular reflections impossible
to avoid. Specular highlights are a highly informative feature and have an essential role
in image processing and computer graphics. Specular reflections are essential for human
vision as they provide powerful visual cues about the shape of the objects, the material of
the object, and the location of the illuminating light source. However, apart from specific
applications, specular reflection is generally considered an undesirable feature in the image
processing domain, causing loss of chromatic and textural information that is often vital to
applications [1].

While there are several physical models for the definition of specular reflections in
images, the most prominent one is the Dichromatic Reflection Model (DRM) proposed by
Shafer et al. [2]. They proposed method involves decomposing an image into specular and
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diffuse images as defined by the linearly additive DRM. The incoming luminance is divided
into two components, body reflectance and interface reflectance. The body reflectance. is
part of the visible spectrum of wavelengths that are reflected after interacting with the
particles of the body below the surface and represents the colour of the target body. The
interface reflectance is the part of the wavelength that is reflected directly from the surface
and represents the illuminant’s colour. The DRM is inherently an under-determined system
with a non-trivial solution for the separation of the two components of an image, as defined
by the following equation:

L(λ, i, e, g) = md(i, e, g)cd(λ) + ms(i, e, g)cs(λ) (1)

where d, s stand for the diffuse (body) and specular (interface) components, respectively, c is
the spectral power distribution, md, ms are the geometric scale factors. The light wavelength
is denoted by λ and i, e, g are angles of the incident light, emitted light, and phase angle
(with respect to the surface normal), respectively. A matte surface is comprised mostly of
the body reflectance, whereas specular surfaces contain a combination of both spectral and
diffuse components. Furthermore, the probabilistic independence of specular and diffuse
highlight is not constant as it depends on whether the surface is textured or smooth, as
shown in Figure 1.

Figure 1. The dichromatic reflection model for inhomogeneous materials.

The DRM model is valid for inhomogeneous materials only [2], which are materials
of uniform composition throughout and cannot be mechanically separated into different
materials. The model is based on three core assumptions. Firstly, the reflection from the
surface is invariant with respect to rotation around the surface-normal, and there are no
inter-reflections among surfaces. Secondly, the body reflection is Lambertian which means
that the brightness is independent of the viewing direction. Lambertian models describe
a perfectly diffuse surface that scatters incident illumination isotropically (equally in all
directions) independent of the viewer’s position. Although this reflection model is not
physically plausible, it is a reasonable approximation to many real-world surfaces such
as matte paint. Lastly, the specular reflection has the same colour as the illumination and
tends to be polarised. While most assumptions seem to limit the model’s applicability to
real-world problems, they allow the model’s generalisation and increase its applicability to
a wide assortment of problems. Thus even after several ideal assumptions, the DRM model
has broad applicability to understanding and mitigating specular highlights.

In digital imaging, the requirement of detecting the occurrence of specular reflections
and identifying all the corresponding affected pixels accurately becomes an essential yet
formidable task. The affected specular pixels have to be segmented before any processing
algorithm can be used to remove the specularity and mitigate the undesirable effects of the
reflection. As the DRM model is an ill-posed problem with more unknown than known
variables, accurately segmenting and detecting specular pixels in an image is challenging.
A single image does not provide enough information regarding the physical orientation of
the light source or the surface orientation required to calculate the surface normals about
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which light is specularly reflected. Since specular pixels are generally represented by the
brightest pixels in an area, they are hard to differentiate from lighter colours in the scene.
This is further accentuated with the presence of large brightly-lit regions, such as the sky, or
the presence of any light source directly in the image. Similarly, pixels nearing the colour of
the light source are hard to differentiate from specular reflections, thus making the accurate
segmentation of specular pixels a highly arduous task. Furthermore, since the strength of
the illumination is captured as pixel intensity, specular pixels are represented by higher
intensity values, often near or fully saturated values (i.e., (255, 255, 255) in a standard
RGB image). The saturation of pixels means that the object’s colour, texture, and other
spatial information encompassed by the specular pixels is lost. In order to recover this lost
information, robust mitigation of the specular pixels is required so that the underlying
features such as colour, texture, etc., can be estimated correctly. Sensor-clipping due to
over-pixel exposure from strong specular reflection also results in loss of image information.
This further complicates the problem and requires detailed and intelligent methods of
accurate specular detection in images.

Several real-world examples of images containing varying amounts of specular pixels
are shown in Figure 2. As can be seen, the shape, size, area and locations of specular regions
vary widely depending on multiple conditions in which the image is taken. Segmenting
specular pixels is a gruelling task for manual annotations, and it is even more challenging
to automate it by computer vision algorithms.

Figure 2. Real-world examples of specular reflection in images.

2. A Survey of Specular Highlight Detection and Segmentation in Literature

As has already been established, specular highlights and reflections lower the visibility
and clarity of the contents of the images, affecting the results of other algorithms, such
as segmentation and classification, causing them to fail. Hence, while being an ill-posed
problem, reflection removal is one of the most challenging topics in image processing.
Over the years, the problem of detecting specular pixels and the affected areas has been
attempted using handcrafted and predetermined techniques, falling under the classical
techniques. Recently, machine learning-based solutions have seen significant growth, with
promising results primarily from deep-learning-based solutions. In the following sections,
we go over an in-depth literature review of the previously proposed solutions.

2.1. Classical Specular Detection and Segmentation Methods

Specular highlight segmentation has proven to be extremely challenging since it is an
ill-posed problem. While specular reflections are easily distinguishable by human vision, it
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is a tough ask for digital image processing systems. Traditional techniques have always
been based on simplifying the problem in some manner, including assumptions regarding
the colour of light, the transmission medium and its refractive index, the object’s material,
etc. While most assumptions are valid for solving a problem, they are mostly unrealistic
and do not represent an accurate real-world scenario. The DRM model has proven to be a
reasonably accurate model to explain the causes of specular reflections and thus forms the
basis of a large selection of detection and mitigation techniques. The subsequent sections
review the most used methods and techniques proposed by research works over the years.

2.1.1. Segmenting Specular Highlights Using Chromaticity

Shafer et al. [2] were the first to propose the Dichromatic reflection model, which
became the fundamental model for understanding and explaining nearly all reflection
models. Their breakthrough paper used the spectral distribution of light and its colour
coordinates to identify and separate the colour pixels into diffuse and specular components.
Unlike previous models such as the Phong, [3] which uses specific reflectance functions to
predict the reflection amount, DRM is based on the physical model of reflection, making it
more intuitive and realistic. Klinker et al. [1] based their work on DRM and showed that the
colour histogram of an image forms a T-shaped distribution with uniform diffuse regions.
Using geometric heuristics instead of colour information, they estimate a single global
diffuse colour, which can be extended to several segmented regions of homogeneous diffuse
colour and estimate the body and reflection components. Klinker and Shafer et al. [4]
also proposed modelling of highlights as a linear combination of both surface and body
reflections and modelled camera properties to account for camera limitations and showed
that generating the intrinsic images from a single image was possible. Several other
methods using colour space transformations [5–7] were also proposed to segment out the
specular pixels. However, the assumption of pure white global illumination and uniformly
single-coloured, non-textured objects in most of these methods limited the application.
Tan and Ikeuchi et al. [8] proposed a method based on the difference in logarithmic
differentiation of the normalised input and specular-free images. Yoon et al. [9] were the
first to introduce the two-band specular free image obtained by subtracting the minimum
of the three RGB channel values from each pixel. These values are then compared to
neighbour intensity ratios to their corresponding ratios in the specular-free representation
for separating highlight pixels. Shen et al. [10] later modified the PSF image by Yoon et al.
to make its chromaticity robust to noise by adding an offset factor and solving the DRM
equation as a least-square problem for mixed specular-diffuse regions. Later, several other
approaches [11–13] built upon the PSF image approach with varying results.

2.1.2. Polarisation, Low-Rank Approximations, and Other Approaches

The concept of polarisation is directly related to the problem of specular highlight
segmentation due to the highly polarised nature of specular reflections [14]. Due to this,
significant research has been done on segmenting and removing specular highlights in
images using polarisation. It is noteworthy that the significance of DRM is further increased
since it can be used in conjunction with the polarised nature of specular reflection to
explain its occurrence and mitigation. An example of how polarised and unpolarised
specular reflections are affected by a polariser filter can be seen in Figure 3. Wolf et al. [15]
were one of the earliest groups to use polariser images to classify materials in images
using the Fresnel reflection model. They monitored the variation of light by capturing
multiple images while rotating the polariser filter in front of a camera and noted that
the brightness of diffuse materials varied as the polariser was rotated. They also noted
that the variation between the minimum and maximum intensity captured fluctuates in
a sinusoidal pattern as a function of the polariser angle. Nayar et al. [16] were one of
the first to simultaneously use polarisation and colour information to separate the diffuse
and specular reflection components by capturing at least six images at different polar
angles. They used polarisation to acquire independent local estimates of the colour of
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the specular component, forcing each image pixel to lie in a linear colour subspace and
then thresholding it to achieve the desired separation. Kim et al. [17] extended Nayar
et al.’s work by dividing the colour space into a specular line-space and a diffuse plane
space. The diffuse pixels are selected by thresholding the intensity variation while rotating
the polariser. The spatial variation in the specular components is then smoothed out
using an energy function. Umeyama et al. [14] applied Independent Component Analysis
(ICA) to images captured through a rotating polariser to separate the diffuse and specular
components. More recently, Wen et al. [18] proposed a polarisation-guided model that can
be used to cluster pixels with similar diffuse colours. They formulated the problem in an
optimised global energy minimisation function, resulting in specular reflection separation
in images.

Figure 3. Variation in specularity with the variation of polarisation angle (orange areas) in uncon-
trolled environments. Note that unpolarised light causes specular reflection regardless of polarisation
filter angle (blue areas).

Over the years, one of the popular methods of solving the specular reflection problem
has been to treat it as noise in an image and utilise techniques that can mitigate the effect of
noise in images. By assuming specular reflections as noise, authors have shown that meth-
ods such as noise filtering, low-rank approximations [19–21], blind source separation [22],
and other minimisation [23] techniques can be used to approximate the image data, freeing
it from the effects of noise. An alternate approach to treating specular reflections is to
capture multiple images from different angles by taking multiple images [24] using light
field cameras [25,26] or hyperspectral cameras [27] that specialise in taking multi-focal but
spatially coherent images. As can be seen, there has been a significant amount of research
over the years, and multiple ways and techniques have been attempted to segment out the
damaged pixels in an image. A summary of the classical methods for specular highlight
segmentation is given in Table 1.

2.2. Deep Learning Based Methods

While there have been many studies of specular highlight detection over the years,
most classical methods conduct a visual evaluation on a few selected images, mostly
without annotated ground truth or highlight masks. This has led to a very unrealistic
quantitative evaluation of highlight detection algorithms on real-world images where the
lighting can vary significantly from ideal conditions. Specular reflections caused by inter-
reflections between objects or light reflecting off other surfaces in the scene cause multiple
issues, often not addressed by classical methods. During the last decade, the benefits
of machine learning have become quite evident with a substantial impact, especially in
image processing. Furthermore, deep learning has seen a significant amount of growth
and development not only in the core techniques but also in frameworks for implementing
efficient and robust deep-learning implementations.
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Table 1. Summary of major non-deep learning based methods for specular highlight segmentation.

Name Year Category 1,2 Technique Color Space

Bajcsy et al. [6] 1996 Segmentation Segmentation by Hue, Saturation S-space
Umeyama et al. [14] 2004 Separation Polarisation, ICA Greyscale
Tan et al. [8] 2005 Separation Chromaticity, Colour Spaces RGB
Tan et al. [28] 2006 Separation Spatial Colour Distributions RGB
Shen et al. [10] 2008 Separation Chromaticity based RGB
Shen et al. [11] 2009 Separation Pixel clustering RGBD
Mesloushi et al. [29] 2011 Segmentation Chromaticity CIE XYZ
Yang et al. [30] 2013 Separation Region growing algorithm HSI
Kim et al. [31] 2013 Segmentation Dark Channel Prior RGB
Zou et al. [32] 2013 Segmentation Dark Channel Prior RGB
Akashi et al. [19] 2016 Segmentation NMF RGB
Shah et al. [33] 2017 Segmentation SIFT in sequential images RGB
Yamamoto et al. [34] 2017 Separation SVD, Energy minimisation RGB
Alsaleh et al. [35] 2019 Separation Low-Rank Temporal Data RGB
Fu et al. [23] 2019 Separation Optimisation RGB
Li et al. [36] 2020 Separation RPCA RGB
Son et al. [37] 2020 Separation convex optimisation RGB
Ramos et al. [38] 2021 Separation histogram matching YCbCr
Haefner et al. [39] 2021 Separation HDR Imaging for separation RGB
Bonekamp et al. [40] 2021 Separation Multi-Image Optimisation RGB
Kim et al. [41] 2021 Segmentation Geometric estimation RGB
Ramos et al. [38] 2021 Separation histogram matching YCbCr
Tominaga et al. [42] 2021 Segmentation Iterative estimation process RGB
Wen et al. [18] 2021 Separation Polarisation RGB
Li Furukawa [43] 2022 Separation RPCA, Photometric Stereo RGB

1 Separation: Methods that separate distinct specular and diffuse images that are additive. 2 Segmentation:
Methods that segment out specular pixels from the original image, but do not generate diffuse image.

Several solutions have been proposed in recent years to accurately identify the specu-
lar pixels in medical images by leveraging machine learning algorithms. Sanchez et al. [44]
used a two-stage segmentation and classification approach to identify specular regions in
colonoscopic images and then filtered through a linear SVM classifier. Akbari et al. [45]
utilised an adaptation between RGB and HSV colour spaces using a non-linear SVM classi-
fier and then inpainted the detected regions. One of the earliest methods toward a more
generalised and smart specular highlight detection method was proposed by Lee et al. [46]
which implemented detection of specular reflections by a single layer perceptron. Looking
forward to the state-of-the-art deep learning methods, Funke et al. [47] were the first to
utilize a Cycle Generative Adversarial Network (CycleGAN) to localize specular regions
for endoscopic images. Their method used data with weak labels indicating the presence
or absence of specular highlight in a training image only.

It is worth mentioning that typically most of the state-of-the-art deep learning-based
methods are geared towards training the network to mitigate the specular highlights using
supervised or unsupervised training methods. This means that very few works exclusively
focused on deep learning methods to detect specular pixels, which is the focus of this
work. One of the recent papers that focused on detecting specular highlights in real-world
images was proposed by Fu et al. [48]. The proposed Specular Highlight Detection network
SHDNet used multi-scale contrast features to detect specular pixels that are scale agnostic.
SHDNET uses a convenient and embeds a multi-scale context contrasted feature network
for successfully detecting specular highlights in real-world images. The authors also present
a large-scale dataset of roughly real-world images, which include manually annotated
highlight regions. In addition to the primary dataset, they also prepared a testing dataset
of 500 images in the wild called the WHU-TRIW dataset. Fu et al. [49] proposed another
large-scale dataset comprising 16k real-world images alongside a multi-task network for
Joint Specular Highlight Detection and Removal (JSHDR). They propose a Dilated Spatial
Contextual Feature Aggregation (DSCFA) to detect and accurately remove highlights of
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varying sizes. A comprehensive list of the relevant machine learning-based methods on
real-world images for detecting specular highlights in images is presented in Table 2.

Table 2. Summary of the machine learning based methods for specular highlight segmentation in
real-world images.

Name Year Category 1,2 Application 3 Architecture Loss Functions Evaluation

Lee et al. [46] 2010 Segmentation,
Mitigation Real-world Single layer per-

ceptron - -

Sanchez et al. [44] 2017 Segmentation MIS SVM - DICE

Akbari et al. [45] 2018 Segmentation MIS SVM - DICE, Specificity,
Precision

Funke et al. [47] 2018 Segmentation,
Mitigation MIS SpecGAN Cyclic loss MSE PSNR, SSIM

Fu et al. [48] 2020 Segmentation Real-world SHDNet BCE, IOUE F-measure, MAE, S-
measure

Fu et al. [49] 2021 Segmentation,
Mitigation Real-world JSHDR BCE, L2 Accuracy, BER

Monkam et al. [50] 2021 Segmentation,
Mitigation MIS Scaled-UNet, Gat-

edResUNet

Mask loss, Valid
loss, Perceptual
loss, Style loss, Total
variation loss

SNR, DICE, SSIM,
IoU

1 Mitigation: Methods that generate specular-free images. 2 Segmentation: Methods that segment out specular
pixels from the original image, but do not generate diffuse image. 3 Application: Real-world images or Medical
Imaging Systems (MIS).

2.3. Limitations of the Current State-of-the-Art

The accurate detection of specular highlights is significant in many applications.
Classical methods for accurately detecting specular highlights have difficulty detecting
pixels accurately in a wide variety of scenes containing lighter coloured objects, bright
backgrounds, or complex-shaped objects with irregular specular reflections. One of the
significant issues faced by the classical techniques is the robustness and generalisation
of the techniques. While the methodologies are based on firm mathematical foundations
and optimisation techniques, they are primarily based on assumptions that significantly
limit their applications to general real-world images that are not part of their dataset.
Thus, while the results are significantly better on the selected set of images, they do not
apply to any general image taken from a generic camera under uncontrolled settings.
Multiple research works on treating specular reflections using colour space transformations
attempted to understand and tackle the problem purely from an objective often tested on
a minimal set of images which fails to work beyond their preferred set. Methods based
on polarisation classically use a manual polariser filter that is rotated to acquire images
at different polarimetric angles. This means that the images are temporally incoherent,
and unless taken of a static object under a static and controlled environment, the images
face alignment issues where pixels do not share the same spatial instance between the
polar images. This also limits the number of images that can be acquired as a significant
amount of effort is required to take a broad and generalised dataset. Several assumptions
are also made for classical methods to work, which are sometimes not reflective of real-
world conditions, e.g., a single illumination is mostly assumed with a non-existent or
minimal amount of inter-reflections from surrounding surfaces. The illuminants selected
are assumed to be of pure white colour with known spectral power distribution (SPD)
to simplify all chromaticity-based methods. It is further assumed that each segmented
cluster has uniform diffuse chromaticity. While being very helpful for modelling the
problem of specular highlight, these and other assumptions do not reflect real-world
images’ randomness and limit the generalisation and applicability of methods.

Since most limitations are not considered for deep learning-based methods, it is quite
clear that modern state-of-the-art methods are significantly more robust and can cater to
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a much more comprehensive range of images. However, limitations are enhanced in the
presence of outdoor images, which have both strong illumination and inter-reflections in an
uncontrolled and often stochastic environment. Outdoor environments have illumination
from the sun as an omnidirectional light source, causing light to bounce off in often
undesirable directions and strength. Strong light sources also result in more significant
specular regions in images, which makes the regions easily visible but also easily confused
with the objects in the scene, as well as causing a significant loss of information in the area,
which hinders the recovery of colour and other information in the affected region.

3. Specular Highlight Segmentation Network (SpecSeg Network)

As already detailed in the preceding section, accurate detection and segmentation
of specular pixels from real-world images have significant implications in various fields.
This work intends to fill the research gap and add to the current state of the art in specular
highlight segmentation. To achieve this, we propose a specular highlight segmentation
network that is simple to model, fast to train, and works on images used in the literature as
well as a wide variety of general real-world images. Most state-of-the-art deep learning
models are structurally complex, with a complex organisation of deep hidden layers and
innovative, unique features such as attention and other methods. Secondly, due to their
complex design, they require a significant time to train and fine-tune due to there being
many hyperparameters in the model and deep neural network layer structure. This, in turn,
causes significant hindrances in research and development due to unoptimised training
times required while expected nominal results are not achieved. Furthermore, complex
and deep networks also mandate the utilisation of expensive and powerful hardware,
consuming much power while training and re-training. We avoid both these pitfalls by
our proposed Specular Highlight Segmentation Network (SpecSeg Network for short),
based on the proven U-net model, which is a highly reliable yet straightforward model
that was initially proposed for medical segmentation [51]. Our experiments show that
this decision makes the specular highlight detection network simple to build and requires
significantly less time and fewer resources to train. This enables increased experimentation
and re-training opportunities without trading accuracy or precision from the existing state-
of-the-art methods. Furthermore, we also show that by using the SpecSeg Network it is
possible to detect specular highlights after fast training on a relatively small dataset and
generate accurate detection results on real-world images. The affected pixels are accurately
marked in a wide assortment of images taken in random uncontrolled settings and improve
upon the existing state-of-the-art methods in specular highlight detection.

3.1. SpecSeg Network Model and Implementation

Since its inception, U-Net has proven to be a breakthrough for segmentation tasks
and has been instrumental in paving the way for developing a more advanced encoder–
decoder style of network. The network is named after the U-shape of the hidden layers,
combining an encoder–decoder arrangement for downsampling the input to a bottleneck
and upsampling again to an output image, with convolution, activation, and pooling
operations between its successive hidden layers. Skip connections allow the network to
propagate context information from higher resolution layers to the decoder’s generated
outputs and significantly affect the quality and accuracy of the Unet output [52]. By parsing
the input image through down convolutions and pooling in an encoder, the network learns
to identify the target regions in a scale-agnostic manner. The network thus learns to segment
images in an end-to-end setting, i.e., the network input is a raw image (which can be in a
single or multi-channel colour space), and the output image is in the form of a segmentation
map. The u-net network has been shown to work with high accuracy and detect objects
with substantial shape variations, weak borders and inset or overlapping objects. Due to
these properties, the u-net forms our developed SpecSeg Network’s primary building block
for detecting specular highlights in real-world images. The proposed deep convolutional
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network layout is shown in Figure 4, and the following sections discuss the design and
reasons for selecting the hyper-parameters.

Figure 4. SpecSeg configuration based on the U-net architechture.

3.1.1. Encoder and Decoder Blocks

SpecSeg comprises five encoder blocks and four decoder blocks based on the classical
U-net pattern, and each path from the encoder is passed to the decoder via a skip con-
nection. Each encoder block consists of two 2D convolutional layers with filters (k) = 3
and stride (s) = 3 with ‘same’ padding and uses ReLU activation in the output of each
convolutional layer. The original proposed U-net configuration has inspired the (3× 3)
filter. However, a stride of (3× 3) is added to avoid overlap when convolving the filter,
as it was experimentally determined to give the most favourable results during testing
and evaluation. While in the original paper, Ronneberger et al. [51] propose unpadded
convolutions in the encoder section, it has been shown [53] that the choice of padding has a
direct effect on the performance of a model. Without padding, the input layer volume size
reduces too quickly as a deeper network is designed. Stacking multiple unpadded layers
also ignores the image’s border pixels, resulting in a loss of learnable information around
the borders. Since specular highlights can also extend to the border of the input images,
adding padding around the border increases the chances of detecting specular pixels near
the border of the input image.

An incremental dropout of 10%, 20%, and 30% respectively is also introduced between
the two convolutional layers of the first, third, and fifth encoder block to improve the
robustness of the learned features. By incrementally increasing the dropout, the network
learns sparser representations of the high-level features and improves the accuracy of the
detection of specular pixels. The training was done on a batch size of 16, and a Batch
Normalisation (BN) layer was introduced in the encoder sections before the pooling layer.
BN has proven to be a reliable normalisation method for segmentation networks [54], and
the same was confirmed by our experimentation, making it a sound choice. Lastly, to
reduce the variance and computational complexity as we go deeper into the u-net, we need
to reduce the size of the feature map. This is achieved with a MaxPooling layer that selects
the maximum value out of a 2× 2 block, reducing the size of the feature set. Maxpooling
ensures that only the most critical features (denoted by the maximum valued pixels) are
taken from each block.

The decoder block mostly mirrors the encoder block setup defined above with a few
notable changes. Firstly the decoder performs an upscaling operation. This is done using
2D transpose convolutional layers with filters k = 2 and stride s = 2. A similar incremental
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dropout between two consecutive convolutional layers is also used. However, the final
convolutional layer uses a filter and strides of k = 1, s = 1 respectively and sigmoid
activation to generate a 256× 256× 16 mask images of the entire batch similar in size the
input images.

Thus the overall U-net structure takes batches of 16 images of resolution 256× 256 as
input and generates mask images as output for all 16 images while learning the weights
during the downscaling–upscaling operations in the encoder-decoder pairs.

3.1.2. Loss Functions

For deep learning problems, loss functions depend profoundly on the problem being
solved and are often tailored to the task at hand. For specular highlight segmentation, we
selected a linear combination of Dice similarity coefficient (DSC) [55] and Focal loss [56] as
experiments proved that the combination of these losses showed the best segmentation results.

Dice similarity coefficient (DSC) is a spatial overlap index developed to measure the
pixel-level similarity between two images, where one is generally the binary mask image.
DSC loss function has values in the range of 0–1. Lower values indicate minimum spatial
overlap between two sets of binary segmentation results, whereas larger values nearing 1
indicate increasing overlap, where 1 represents 100% complete overlap. The dice similarity
coefficient has been widely adopted in biomedical segmentation problems where manually
annotated lesions or cancerous cell datasets are available to train segmentation algorithms.
Mathematically, the dice similarity loss (LDice) is defined as (2).

LDice(p, p̂) = 1− 2 ∑ pp̂
∑ p + ∑ p̂

(2)

where p is the ground truth, p̂ is the predicted probability and

p ∈ {0, 1} , 0 ≤ p̂ ≤ 1

Focal loss [56] addresses class imbalance during training by applying a modulating
term to the cross entropy loss to focus learning on hard misclassified samples. Alternatively,
it can be visualised as a dynamically-scaled cross-entropy loss, where the scaling factor
decays to zero as confidence in the correct class increases. Intuitively, this scaling factor
(γ) automatically down-weights the contribution of more accessible training samples and
rapidly converges the model to focus on more challenging examples. Mathematically focal
loss (LFocal) can be defined as:

LFocal(p, p̂) = −α(1− p̂)γ p log( p̂)− α(1− p) p̂γ log(1− p̂) (3)

By adding the losses mentioned above, we can create a total loss that calculates the true
positive segmented pixels and enables the network to focus on the misclassified samples
of the training dataset. The dice loss maximises the overlap between predicted and actual
labels, whereas the focal loss addresses class imbalance by reducing the effect of biased or
skewed classification on the predicted results. The total loss function is defined as a linear
combination of both the Dice loss and Focal loss and is used for backpropagating over all
learnable parameters.

LTotal = LDice + LFocal (4)

SpecSeg network is implemented using Tensorflow 2.8’s sequential API as it provides
easy and high-performance execution of the relatively straightforward network. SpecSeg
is optimised using ADAM optimiser with β1 = 0.9 and β2 = 0.999. A batch size of 16
was used for training the network for 200 epochs. The training was stopped after 200
epochs to avoid overfitting, as the validation curve was seen to flatten out, indicating that
further training might lead to a poorer generalisation learned by the network [54]. All
training and testing for SpecSeg network were done on the Nvidia P100 card, released in
April 2016 and based on Nvidia’s proprietary Pascal Architecture. Several datasets with
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specular masks are available publicly for testing as detailed in the Table 3 but for testing and
comparison, two of the most recent datasets were used; namely Whu-Specular dataset [57]
and SHIQ dataset [49]. The datasets were split into train and validation sets in 90%, 10%
ratio, respectively, whereas the initially provided test sets with each dataset were used for
testing. The qualitative and quantitative results are discussed in the following subsections
in detail. The segmented specular highlight results are compared with state-of-the-art
specular detection methods provided in the literature. Unfortunately, most competing
methods do not provide network implementations or pre-trained weights, which limits
direct retraining or testing on customised datasets. Therefore the testing was done on
the same datasets and similar architecture to ensure a fair comparison to the available
competing results.

Table 3. List of specular imaging datasets.

Dataset Name Year Category Total
Images

Specular
Mask

Diffuse
Image

Test-
Train
Split

Size

Spec-DB [58] 2003 Real-world 300 3 3 7 10 MB

CVC-ClinicDB [59] 2015 Medical Imag-
ing 612 3 7 7 263 MB

CVC-ClinicSpec [44] 2017 Medical Imag-
ing 59 3 7 7 6 MB

Whu Specular [48] 1 2020 Real-world 4310 3 7 3 2 GB
PolaBot [60] 2020 Real-world 177 3 7 7 584 MB
Specular Highlight Image Quadruples
(SHIQ) [49] 2 2021 Real-world 16,000 3 7 3 10.8 GB

2022 SIHR [61] 2022 Real-world 200 7 3 3 503 MB
1 Dataset used for training and evaluation in this work. 2 Dataset used for evaluation in this work.

4. Results

The results of segmenting specular highlights using SpecSeg network on the Whu-
Specular dataset [57] are shown in Figure 5 and on the SIHQ dataset [49] in Figure 6. The
input image is in the top row, followed by the specular masks in the second row as given in
the datasets. The last row is the predicted specular pixels from our SpecSeg network. Re-
sults on images used in the existing literature as well as self-acquired images are presented
in Figure 7 with additional segmentation results attached as Appendix A. A zoomed-in
view of the predicted specular segmentation on select images is shown in Figure 8 in order
to highlight some key observations in the discussion Section 5. The training and inference
time of SpecSeg was also compared to other networks to show the performance benefits
gained due to the reduced complexity of the proposed network.

The quantitative results of the testing done on the datasets used are presented in
Table 4. The quantitative comparison was done using three metrics, S-measure (S-m) [62],
F-measure (meanF), and MAE. Several segmentation methods evaluated by Fu et al. [48]
have been directly included here from their works for a broader comparison. In their paper,
all learning-based methods were re-trained on the same dataset (WHU-Specular dataset),
and the authors fine-tuned the hyperparameters to give the best possible results. SpecSeg
was also trained on the same training dataset, and the same validation and test sets were
used to generate a fair comparison.
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Figure 5. Segmentation results of SpecSeg network as compared to manually labelled ground truths
in the Whu-Specular dataset [57].

Figure 6. Segmentation results of SpecSeg network as compared to manually labelled Ground Truths
(GT) in the SIHQ dataset [49].

Outdoor conditions present the most significant and extreme challenge for any spec-
ular highlight detection network. The presence of a bright sky and strong sunlight in
unpredictable imaging conditions and scene contents present the biggest failure challenges
for all algorithms. The proposed SpecSeg network was tested on acquired outdoor images
taken on a clear and bright sunny day. Some of the segmentation results are presented in
Figure 9. Lastly, ablation studies to explore the effects of various hyper-parameters and
loss functions are also presented in section 5.2.

Figure 7. Segmentation results of SpecSeg on real world images from various sources and self acquired
images. Sub-images from left to right (a) generated from [63], (b) image from [64], (c–g) taken by
authors, (h,i) video frames from iRoads dataset [65].
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Figure 8. Zoomed-in ground truth (GT) and prediction (Pred) views of the marked sections in RGB
images from [57]. SpecSeg network is successfully able to detect regions that are (a) on light-coloured
objects, (b) small in size, (c) in multiple blocks with cavities inside specular regions, (d) clipped
around the edges of the image, (e) detect specularity correctly from images on a white background.

Figure 9. Specular segmentation results on outdoor images acquired on a sunny day and under clear
sky conditions. Specular reflections detected under extreme conditions are plausible and significantly
better than any other state-of-the-art technique. Note that brightly lit regions such as the sky or water
puddles are not detected as specular regions.

Table 4. Qualitative comparisonof SpecSeg network to classical and deep learning SOTA methods.

Metrics Year Type S-m1 meanF 1 MAE 2

Tchoulack et al. [66] 2008 Classical 0.132 0.027 0.423
Chen et al. [67] 2018 Deep learning 0.619 0.451 0.019
Zhang et al. [68] 2019 Classical 0.521 0.410 0.021
Hou et al. [69] 2019 Classical 0.491 0.218 0.053
Zheng et al. [70] 2019 Deep learning 0.480 0.202 0.049
Hu et al. [71] 2020 Deep learning 0.412 0.108 0.091
Fu et al. [48] 2020 Deep learning 0.793 0.676 0.006
SpecSeg 2022 Deep Learning 0.676 0.502 0.008

1 Higher is better. 2 Lower is better.

5. Discussions

Visually comparing with the manually annotated masks in Figures 5 and 6, we can see
that the network can detect all specular regions and generate masks closely resembling the
ground-truth images. The detection of specular regions is valid for various materials in
the images, including plastic, wood, metallic, and ceramic objects of irregular shape. Even
small specular regions in the images are detected quite accurately. The images are taken
under natural lighting conditions and have an unknown number and orientation of light
sources. This results in specular pixels of various intensities and colours depending on the
illuminating source colour. Specular highlights on light-coloured surfaces are also detected
accurately, which is often hard for most conventional algorithms. Note that the manually
annotated masks result from human visual interpretation of specular pixels in an image
and are therefore susceptible to misrepresentation, especially around the region borders.
While the highly saturated pixels are easy to identify and mark, the distinction becomes
significantly challenging and blurry around the edges of the specular region, where the
falloff to diffuse colour can be soft enough such that some pixels may be wrongly marked as
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specular and vice versa. This is challenging in real-world images because there are multiple
light sources in various orientations and of different strengths. As opposed to medical
image masks, where there is a single illumination positioned nearly concentric with the
camera for acquiring endoscopic and colonoscopic images, resulting in very sharp specular
boundaries that medical experts can mark, resulting in the masks being highly accurate,
making the qualitative analysis easier and quantitative analysis more meaningful. Despite
these shortcomings, the manually annotated masks provided are an excellent baseline
for evaluating all qualitative and quantitative segmentation methods. Looking at a few
segmentation results more closely in image Figure 8, we can see that SpecSeg network is
successfully able to detect regions that are on light-coloured objects (a), small in size (b),
in multiple blocks with cavities inside specular regions, (c) clipped around the edges of
the image, (d) and most importantly can detect specularity correctly from images on a
white background (e). As can be seen in the Figure 8c, non-specular regions surrounded
by specular pixels are accurately detected despite the small size. Specular regions that
are along the image edges such as Figure 8d are also accurately detected without any
problem. Additionally, almost all classical segmentation methods are unable to distinguish
white backgrounds in images from specular pixels (Figure 8e) and are often some of the
most challenging images to segment out for SOTA algorithms. SpecSeg is able to perform
reliably in all these unique conditions. The results of the segmentation masks generated by
SpecSeg are significantly better than the classical methods, as seen from the quantitative
results presented in Table 4. The results are also comparable to other state-of-the-art deep
learning-based methods. SpecSeg can achieve a higher MAE score while getting close and
comparable results for S-measure and F-Measure to Fu et al.’s [49] SHDNet. As seen by
the statistical summary of the entire test dataset shown in Figure 10a the scores are within
a tightly bound distribution with only a couple of outlier cases. Figure 10b presents the
training and validation curves.

Figure 10. (a) A summary of the metrics over the entire dataset. (b) Training and validation losses
after 200 epochs. The training was stopped after 200 epochs to avoid overfitting by the network.

Owing to several challenges, as discussed in Section 3.1.2, there is a significant lack
of specular datasets containing images taken outdoors in bright sunny conditions with
specular pixel annotations or ground truth diffuse images. Therefore, training a specular
segmentation network with large amounts of outdoor images is impossible. As shown
in Figure 9, specular regions are detected reasonably well despite the presence of bright
sky areas and intense reflections. The sky and water puddles are not falsely detected as
specular regions, nor are large white regions on road signs or car bodies. As expected, there
are a few challenges, and specular reflection detection can be improved on outdoor images.
There are no ground truth diffuse images or specular annotations publicly available to
analyse the results quantitatively. However, to our knowledge, this work is the first to
present an accurate specular highlight detection network that works on indoor as well
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as outdoor images with reasonably accurate results on the latter, despite there being no
availability of any large outdoor specular dataset available to train the network.

5.1. Performance Comparison

One of the most significant caveats of deep learning is the significantly staggeringly
large times required for training the networks. To compare training time with the other
methods, our proposed network was trained on the Whu-specular training dataset for
200 epochs for a mere 40 min on a P100 (Pascal architecture). In comparison, the SHDNet
achieved its results after training for 100 epochs in 80 h on a GTX-1080Ti (also Pascal
architecture). This significantly reduces training time without the need for additional com-
putational power to achieve comparable segmentation results. For training and inference
comparison, Fu et al. [48] trained and tested their network on the NVIDIA GeForce GTX
1080Ti, which was released in March 2017 and is based on the Pascal Architecture by Nvidia.
in comparison, our training and testing were done on the NVIDIA P100, released in April
2016 and also based on Pascal Architecture. Having the same architecture helps to maintain
similarity in the performance, allowing the computation of performance metrics to be as
close as possible. Note that the authors of SHDNet have not provided their PyTorch or Ten-
sorflow implementation code for public access, so retraining their network on any dataset
was impossible. It is clear from the results in Table 5 that the training time required by
SpecSeg is an order of magnitude better than all other competing networks. Furthermore,
the inference time is also faster than the competing networks. As noted above, since the
code or training weights of SHDNet or JSHDR have not been provided publicly, it was
impossible to retrain and test on the same hardware for a 100% fair comparison. However,
the hardware used is comparable and can be treated as similar for all intents and purposes
for deep neural network training.

Table 5. Training and inference time comparison of different segmentation networks.

Author Network GPU Epochs Training
Time

Inference
Time

Monkam et al. [50] ScaledUNet GTX 2080Ti 50 - 3.43 ms
Ronneberger et al. [51] UI-Net NVidia Titan - 10 h 14.13
Fu et al. [48] SHDNet GTX1080Ti 100 80 h -
Fu et al. [49] JSHDR GTX 2080Ti 100 3 days -
Ours SpecSeg Nvidia P100 140 40 min 3.1 ms

5.2. Ablation Studies

In order to test the proposed network, an in-depth ablation study was carried out by
varying different aspects of the network. As shown by the performance comparison in
Table 5, the training time for the network is very low, which significantly helps in testing
different configurations and hyper-parameter tuning of the network. Several variations
were constructed by editing the activation functions of the SpecSeg network. A separate
training session also noted the benefit of using batch normalisation. Additionally, varying
the loss functions with alternate losses versus the proposed joint loss LTotal was also studied.
A comparison of different metrics calculated from the resulting ablation studies is shown
in the Table 6.

Table 6. Ablation study results of different variations of the SpecSeg network.

PSNR ↑ SSIM ↑ MSE ↓ F_m ↑ S_m ↑
No BN 23.7213 0.9539 0.0092 0.4662 0.6643
BN + SparseCE loss 25.2064 0.9628 0.0076 0.5072 0.6598
Elu Activation 21.9828 0.9494 0.0122 0.4308 0.6138
Linear Activation 24.0415 0.9609 0.0092 0.0067 0.5214

Baseline (BN + LReLU + LTotal) 25.2211 0.9625 0.0073 0.5278 0.6761
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The proposed losses combined with batch normalisation and LRelu activation give the
best results for PSNR, MSE, Dice, and S-measure scores, whereas the SSIM score is lower
only by a negligible amount. Using Leaky ReLU activation gives the overall best scores as
it avoids the vanishing gradient problem. The combination of dice and focal losses appear
to converge successfully towards the best results on the test dataset. All ablation tests were
carried out on the same hardware and did not see any change in training time.

6. Conclusions and Future Work

A deep-learning-based method for segmenting specular highlights from single images
was presented. The proposed network is significantly fast to train with limited images
and accurately detects specular reflections in real-world images with no restriction on
illumination conditions for image acquisition. The novelty of the proposed method is the
customisation and tailoring of an established architecture for the accurate detection of
specular highlights that have not been applied to the segmentation of specular highlights
to real-world images in the prior literature. Furthermore, the proposed network’s training
time requirement and inference performance are significantly better than other competing
networks trained and tested on comparable hardware. The segmented specular highlights
are comparable with state-of-the-art specular detection methods provided in the literature.
Unfortunately, as most competing methods do not provide their implementations or pre-
trained weights, direct retraining or testing on custom datasets is impossible. We also show
that the proposed network can detect specular highlights in outdoor images taken under
extremely bright conditions, with good results. To our knowledge, no other prior work has
presented a specular highlight detection network that works on indoor and outdoor images
with reasonably accurate results on both conditions. The proposed methods can further be
improved by possibly incorporating self-attention methods to improve the robustness of
the learned specular features. In the future, we intend to improve the inference process’s
accuracy and implement recovery of the affected textural information for dovetailing into
advanced pipelines for specular highlight mitigation. We also intend to further improve
the results on outdoor images by acquiring more extensive amounts of outdoor data
with specular highlights using polarimetric cameras and training SpecSeg for improved
segmentation results.
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Appendix A. Additional SpecSeg Network Segmentation Results

Figure A1. Segmentation results of SpecSeg network as compared to manually labelled ground truths
in the Whu-Specular dataset [57].
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