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Abstract: Due to the rapid development of sensor technology and the popularity of the Internet,
not only has the amount of digital information transmission skyrocketed, but also its acquisition
and dissemination has become easier. The study mainly investigates audio security issues with
data compression for private data transmission on the Internet or MEMS (micro-electro-mechanical
systems) audio sensor digital microphones. Imperceptibility, embedding capacity, and robustness
are three main requirements for audio information-hiding techniques. To achieve the three main
requirements, this study proposes a high-quality audio information-hiding technology in the wavelet
domain. Due to the fact that wavelet domain provides a useful and robust platform for audio
information hiding, this study applies multi-coefficients of discrete wavelet transform (DWT) to
hide information. By considering a good, imperceptible concealment, we combine signal-to-noise
ratio (SNR) with quantization embedding for these coefficients in a mathematical model. Moreover,
amplitude-thresholding compression technology is combined in this model. Finally, the matrix-
type Lagrange principle plays an essential role in solving the model so as to reduce the carrying
capacity of network transmission while protecting personal copyright or private information. Based
on the experimental results, we nearly maintained the original quality of the embedded audio by
optimization of signal-to-noise ratio (SNR). Moreover, the proposed method has good robustness
against common attacks.

Keywords: sensor; digital information; MEMS; DWT; optimization; compression

1. Introduction

The uses of digital information transmission in Internet applications, artificial intelli-
gence, and data sensing [1–10] are more frequent. In many cases, without permission from
the legal owner, the digital information is often stolen, copied, or even turned into profit by
criminal individuals. In general, an audio information-hiding technique should possess
three properties: make the piece of hidden information imperceptible in the embedded
audio, provide a signal-to-noise ratio (SNR) of 20 dB or more, and maintain the embedding
capacity of at least 20 bps (bits per second) [11,12]. Moreover, hidden information is resis-
tant to most attacks, which include re-sampling, MP3 compression, filtering, amplitude
modification, time scaling, and so on [12–15].

Audio information-hiding techniques are classified according to their domain. These
algorithms are categorized as time-domain techniques and transform-domain techniques.
Discrete wavelet transform (DWT) is one practical transform domain for hiding audio
information [13–27]. In the literature, several earlier procedures embedded watermarks
into DWT low-frequency coefficients using the quantization-based technique so that they
could obtain adaptive performance [15,20,24]. Chen et al. [15,24] proposed an optimization
quantization approach to fixed-weighting DWT coefficients to gain high-quality modified
audio and high robustness against many common attacks. Li et al. [27] proposed a new
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audio watermarking technique. They performed the norm ratio on fixed-scaling DWT
coefficient quantization without considering the signal compression in the implementation.
In addition, the quality of modified audio worsens with weighting variation, and hidden
information is inadequately robust to time-scaling attacks.

This study proposes an optimization model to integrate optimization-based signal
steganography [24] with threshold-based compression in the wavelet domain. Firstly, we
utilized binary digits to store data and represent information. We modified the signal-to-
noise ratio (SNR) and the amplitude-quantization rules in the wavelet domain as perfor-
mance index and constraints. At the same time, to reduce the amount of the embedded
audio data signal, we also employed threshold-based compression technology in the con-
strictions. Then, we obtained an optimization model that enhanced the audio quality in
the information-hiding and compression processes. Secondly, the optimization model
was solved by the matrix-type Lagrange principle and graphic illustration Accordingly,
we performed information hiding and data compression on each audio signal for private
information transmission on the Internet or MEMS (micro-electro-mechanical systems)
audio sensor digital microphones. On the other end of the transmission process, the hidden
information was extracted smoothly without either the original audio or the recovery of
the compressed audio signal adopting a cubic spline. To demonstrate the quality of the
proposed performance, we measured the appropriate threshold ε and embedding strength
Q in our experiment. The proposed algorithm reduces the amount of carried network
transmission but preserves the original audio signals and protects personal privacy.

The rest of this study is as follows: Section 2 presents the proposed method and
introduces the embedding technique, optimization model, and compressions. The illustra-
tions of the optimization model, presentation of the recovery method, and the extraction
technique are in Section 3. Section 4 contains discissions of experimental results, and some
remarks and conclusions are in Section 5.

2. Proposed Method

This section introduces the embedding technique, the extraction technique, and the
compression of the proposed method. Figure 1 shows the block diagram of the proposed
algorithm; further detailed introduction will appear in Sections 2.1 and 2.2.
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Figure 1. The block diagram of the proposed algorithm.

2.1. Embedding Technique

To embed the private information into the lowest DWT coefficients, we implemented
DWT using the single prototype function ψ(x). This function is regulated by a scaling
parameter and a shift parameter [28,29]. The discrete normalized scaling and wavelet basis
function was defined as

ϕi,n(t) = 2
i
2 hi(2it− n) (1)

ψi,n(t) = 2
i
2 gi(2it− n) (2)

where i and n are the dilation and translation parameters, and hi and gi denote low-pass
and high-pass filters. Orthogonal wavelet basis functions provide simple calculation of
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coefficient expansion and easily express audio signals S(t) ∈ L2(R) as a series expansion of
orthogonal scaling functions and wavelets. Throughout this study, we used the host digital
audio signal S(n), n ∈ N, to denote samples of the original audio signal at the nth sample
time, and each piece of audio signal was cut into segments on which DWT was performed.
As a result, the signal-to-noise ratio (SNR)

SNR = −10 log10

(
‖S̃(n)− S(n)‖2

2/‖S(n)‖2
2
)

can be rewritten as

SNR = −10 log10

(
‖X̃n − Xn‖2

2/‖Xn‖2
2
)

(3)

where S̃(n) is the modified digital audio signal and the vector form X̃n =
[
|x̃1| |x̃2| · · · |x̃n|

]T

consists of the n unknown absolute values of DWT coefficients with respect to the original
DWT coefficient vector Xn =

[
|x1| |x2| · · · |xn|

]T in each segment.
For convenience, the secret information is usually stored as a binary sequence. To

embed the binary bit “1 ∈ B” or “0 ∈ B” as shown in Figure 1, we performed DWT and
then determined n unknown values of DWT coefficients, x̃1, x̃2, · · ·, x̃n. Accordingly, an
optimization-based model for embedding the binary bit was proposed as follows.

We determined the vector X̃n such that the SNR = −10 log10

(
‖X̃n − Xn‖2

2/‖Xn‖2
2
)

is maximized. Due to the fact that all logarithmic functions are one-to-one, that is, for
all x and y in the domain of logarithmic function, if log10 x = log10 y, then x = y. We

defined a performance index of the form ‖X̃n − Xn‖
2
/‖Xn‖2 so that the binary sequence

with binary bit “1 ∈ B” or “0 ∈ B” can be embedded by the proposed optimization model
described below:

• If the bit “1 ∈ B” is embedded into Xn, then
n
∑

i=1
|xi| is quantized by

minimize
(X̃n − Xn)

T
(X̃n − Xn)

XnTXn
(4a)

subjected to (a) AX̃n =


n
∑

i=1
|xi|

Q

Q +
3
4

Q (4b)

(b) Compression constraint; (4c)

• If the bit “0 ∈ B” is embedded into Xn, then
n
∑

i=1
|xi| is quantized by

minimize
(X̃n − Xn)

T
(X̃n − Xn)

XnTXn
(5a)

subjected to (a) AX̃n =


n
∑

i=1
|xi|

Q

Q +
1
4

Q (5b)

(b) Compression constraint; (5c)

where bc is the floor function; Q is the quantization size or embedding strength which is
adopted as the secret key K; the compression constraint is described in Equations (6)–(8) in
Section 2.2.

2.2. Compression Constraint

Solving the optimization models (4) and (5), the watermarked audio signal S with
optimal SNR is obtained after applying the IDWT. To reduce the amount of data when trans-
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mitting on the Internet, we compressed the embedded audio signal s using the threshold
compression method formulated as follows:

ŝ0 = s0, ŝN = sN (6)

ŝi =

{
φ if|si−1 − si+1| < ε
si otherwise

, i = {1, · · ·N − 1} (7)

where ε represents the threshold.
To recover the signal {si}N

i=0 from the compressed signal {ŝi}N
i=0, we used the cubic

function, which is formulated as fi(t) = αi + βi(t− ti) + γi(t− ti)
2 + ηi(t− ti)

3. We found
the N cloud-gauge line collection of functions { fi(t)|i = 1, . . . , N} to describe the entire set
of data, where fi(t) must satisfy

fi(ti) = ŝi = fi−1(ti), f ′ i(ti) = f ′ i−1(ti), f ′′ i(ti) = f ′′ i−1(ti), f ′′ 1(t) = f ′′ N(t) = 0 (8)

To ensure the recovery quality, we adjusted the compression threshold ε while consid-
ering Q to better fit the optimal SNR.

3. Proposed Optimization Solution in Embedding and Extraction Method

In this section, we solve the optimization problem described in models (4) and (5) in
two steps. Since the optimization problems (4) and (5) are similar, we first solve (4) and
then apply the optimal solution to (5) using the same method.

3.1. First Step in Finding the Optimal Solution

Applying Theorems A1 and A2 introduced in Appendix A, the Lagrange multiplier λ
is utilized to combine (4a) and (4b) into a function F without any constraints,

F(X̃n, λ) =
(X̃n − Xn)

T
(X̃n − Xn)

XnTXn
+ λ

{
AX̃n − u1

}
, (9)

where setting

 n
∑

i=1
|xi |

Q

Q + 3
4 Q = u1. The necessary conditions for minimizing F(X̃n, λ) are

∂F
∂X̃n

= 2(X̃n − Xn) + ATλXn
TXn = 0 (10a)

∂F
∂λ

= AX̃n − u1 = 0 (10b)

Multiplying (10a) by A to observe that

2(AX̃n − AXn) + AATλXn
TXn = 0 (11)

Since AX̃n = u1, Equation (11) can be rewritten as

u1 − AXn +
1
2

AATλ = 0 (12)

Hence, the optimal solution of λ is

λ∗ = 2(AAT)
−1

[AXn − u1] (13)

Moreover, by substituting (13) into (10a), the optimal DWT coefficients are

X̃n
∗ = Xn − 1

2 ATλ∗

= Xn − AT(AAT)
−1

[AXn − u1]
(14)
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where the superscript ∗ denotes the optimal result with respect to the corresponding variable.

3.2. Audio Recovery and Information Extraction

To extract the hidden confidential data, we first recover the signal {si}N
i=0 from the

compressed signal {ŝi}N
i=0 using the cubic function, which is formulated as fi(t) = αi +

βi(t− ti) + γi(t− ti)
2 + ηi(t− ti)

3. We found that the N cloud gauge line collection of
functions { fi(t)|i = 1, . . . , N} to describe the entire set of data, where fi(t) must satisfy
fi(ti) = ŝi = fi−1(ti), f ′ i(ti) = f ′ i−1(ti), f ′′ i(ti) = f ′′ i−1(ti), f ′′ 1(t) = f ′′ N(t) = 0.

Next, we extract the hidden information from the DWT coefficients {ci}N
i=0 of the

recovered audio signal {si}N
i=0 according to the following steps:

Split the test audio into segments and perform DWT on each segment. If X̃∗n =
{|x̃∗1|, |x̃∗2|, · · ·, |x̃∗n|} presents n consecutive DWT lowest-frequency coefficients, the bi-
nary sequence is extracted from X̃∗n by the following proposed extraction technique:

• If

n

∑
i=1
|x̃i
∗| −


n
∑

i=1
|x̃i
∗|

Q

Q ≥ Q
2

, (15a)

then the extracted value is 1.

• If

n

∑
i=1
|x̃i
∗| −


n
∑

i=1
|x̃i
∗|

Q

Q <
Q
2

, (15b)

then the extracted value is 0.
Finally, the hidden information is recovered from the binary sequence. In addition,

to closely monitor the accuracy of the extracted private data, its ratio of bit errors (BER)
is measured to check if an attack occured. The BER is usually expressed as a percentage
and can be formulated as BER =(Berror/Btotal)× 100%, where Berror and Btotal denote the
numbers of error binary bits and total binary bits during a tested period.

3.3. Application Scenarios of Our Proposal

The model and techniques proposed in this study combine information hiding and
data compression of audio signals. During network transmission, if the amount of data
(including the hidden private information) is large and the network speed is slow, the
compression ratio can be increased to save transmission time; on the contrary, if the amount
of data is small or the network speed is fast, one can just perform information hiding
without performing data compression to improve the accuracy of the data transmission.
This is the biggest difference between the proposed method and other methods.

4. Experimental Results

This section presents experimental results from testing the proposed algorithm. With-
out loss of generality, we investigate various forms of audio signals, such as love songs,
symphonies, and dance and folkloric music. Ten songs per audio were averaged to evaluate
the performance of the proposed method. These mono-type signals achieved a sampling
rate of 44.1 kHz, which means there were 512,000 samples in each piece of selected infor-
mation. They all came with a bit depth of 16 bits and 11.6 s in length. In the embedding
procedure, each audio signal with 512,000 samples was initially cut into four segments
of equal length; an 8-level discrete wavelet transform was performed on each evenly cut
piece. This process ensured each piece of data had the total number of lowest-frequency
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coefficients 512000/(4·28) = 2000. The values for Q are 13,000 and 26,000 for n = 2 and 4,
respectively. To show a better comparison, we also implemented the two methods listed in
references [24,27]; the experimental results are shown to compare with our algorithm.

4.1. Embedding Capacity and Averaged SNR

As listed in Table 1, the embedding capacities for n = 2 and 4 are 1000 and 500 bits,
which satisfy the IFPI requirement—providing at least 20 bps (200 bits/10 s) embedding
capacity. However, if the group size is greater than 16, this requirement is violated. Since
we aim to present an optimization model for DWT multi-coefficients in this study, the
resulting SNR of the proposed method clearly shows our SNR is much better than those
SNRs using the methods in [24,27].

Table 1. Embedding capacity and SNR.

Number of Consecutive
Coefficients in DWT Level 8

Embedding Capacity
(bits/11.6 s)

Averaged SNR (dB)

Dance Love Song Folklore Symphony

Reference [24]
n = 2 1000 35.8 33.4 27.9 26.3

n = 4 500 37.7 33.5 28.6 26.2

Reference [27]
n = 2 1000 24.3 25.4 23.2 22.3

n = 4 500 24.1 26.0 23.6 22.9

Proposed
Method

n = 2 1000 38.3 35.6 28.7 27.5

n = 4 500 37.1 41.3 34.5 33.2

4.2. Robustness Measurement

We used five types of common attacks: re-sampling, low-pass filtering, amplitude
scaling, time scaling, and MP3 compression, to evaluate how robust the proposed algorithm
is. The performance quality is measured according to the averaged BER and its standard
deviation (SD). A detailed discussion is illustrated below.

(1) Re-sampling: In the re-sampling process, the sampling rate of an audio signal can
be increased (up-sample) or decreased (down-sample) in three stages: (i) down-
sample, (ii) interpolation, and (iii) up-sample. We down-sampled the sampling
rate of embedded audios from 44.1 kHz to 22.05 kHz, then up-sampled them from
22.05 kHz back to 44.1 kHz with a linear interpolation filter. A similar approach
allowed the sampling rates to change from 44.1 kHz to 11.025 kHz and 8 kHz and
regain the original rate of 44.1 kHz. Table 2 shows the BER of testing re-sampling on
audio signals. One can see that when the re-sampling rate is 8 kHz, the proposed
embedding method has lower BER than those from implementations in [24,27]. In
those cases when the re-sampling rates are 22.05 kHz and 11.025 kHz, the proposed
method shows comparable robustness.

(2) Low-pass filtering: Table 3 presents the BER while testing low-pass filters with cutoff
frequencies of 3 kHz and 5 kHz. The BER results show that models in [24,27] have
slightly higher robustness. Since both references [24,27] also adopted quantization-
based embedding technique, the BER evaluation of the proposed method gives ex-
tremely similar results to theirs during the process of low-pass filtering.

(3) MPEG Audio Layer-3 (MP3) compression: Table 4 shows the BER from testing MP3
compression with different bit rates on the embedded audio data. The BER values
reflect that the proposed model has similar robustness to that in references [24,27].

(4) Amplitude scaling: Since the amplitude-scaling attack usually results in saturation, in
this study, we selected four distinct values for the amplitude-scaling factor: 0.5, 0.8,
1.1, and 1.2. The experimental results in Table 5 confirm that the proposed algorithm
is much more robust than the methods in references [24,27].
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(5) Time scaling: Table 6 lists the BER from testing time-scaling attacks with a ±2% and
±5% range. The BER results show that our method has comparable robustness to
those in references [24,27].

Based on the experimental outcomes and aforementioned discussions, the proposed
method generally achieves high SNR and is almost zero-error against the amplitude-scaling
attacks. However, it shows slightly lower robustness against low-pass filtering attacks and
poor robustness against time-scaling attacks.

Table 2. BER of Testing Re-sampling.

Audio Type Dance Folklore Love Song Symphony

Re-Sampling Rate
(kHz) 22.05 11.025 8 22.05 11.025 8 22.05 11.025 8 22.05 11.025 8

Reference
[24]

n = 2
mean 8.32 13.31 14.01 0.74 4.22 4.36 5.74 3.08 2.39 0.78 4.52 4.76

SD 0.40 0.43 0.41 0.23 0.28 0.26 0.16 0.15 0.16 0.16 0.26 0.28

n = 4
mean 2.36 8.01 8.01 0.20 1.24 1.26 0.72 1.05 1.06 0.32 1.29 1.29

SD 0.25 0.38 0.36 0.18 0.21 0.19 0.10 0.12 0.12 0.13 0.21 0.21

Reference
[27]

n = 2
mean 9.14 15.26 15.31 0.74 4.22 4.36 5.74 3.08 2.39 0.78 4.52 4.76

SD 0.41 0.43 0.42 0.19 0.24 0.27 0.17 0.14 0.13 0.14 0.27 0.25

n = 4
mean 2.17 8.03 8.04 0.23 1.21 1.31 0.62 1.21 1.02 0.35 1.27 1.28

SD 0.21 0.39 0.37 0.15 0.20 0.19 0.11 0.12 0.11 0.13 0.22 0.21

Proposed
method

n = 2
mean 8.25 14.42 0.87 0.82 4.65 4.35 4.87 3.29 0.68 0.66 1.28 1.28

SD 0.39 0.4 0.16 0.18 0.22 0.21 0.15 0.16 0.09 0.14 0.21 0.21

n = 4
mean 2.1 8.16 0.26 0.23 1.42 1.25 1.34 1.45 0.57 0.53 1.24 1.23

SD 0.23 0.38 0.14 0.16 0.19 0.15 0.13 0.11 0.08 0.12 0.20 0.19

Table 3. BER of Testing Low-pass Filtering.

Audio Type Love Song Symphony Dance Folklore

Cutoff Frequency 3 kHz 5 kHz 3 kHz 5 kHz 3 kHz 5 kHz 3 kHz 5 kHz

Reference
[24]

n = 2
mean 24.18 25.82 27.58 8.68 33.62 21.52 33.62 15.72

SD 0.28 0.22 0.29 0.20 0.35 0.29 0.34 0.21

n = 4
mean 23.82 23.48 27.55 8.41 33.25 21.28 33.02 13.84

SD 0.27 0.19 0.28 0.20 0.36 0.27 0.34 0.19

Reference
[27]

n = 2
mean 26.18 25.82 27.53 8.68 33.62 21.52 33.62 15.72

SD 0.29 0.21 0.28 0.19 0.35 0.27 0.33 0.19

n = 4
mean 25.82 24.81 27.54 8.41 33.02 20.87 33.02 11.84

SD 0.29 0.21 0.25 0.21 0.34 0.28 0.33 0.17

Proposed
method

n = 2
mean 22.84 23.63 27.85 8.38 32.28 20.03 31.82 13.32

SD 0.27 0.19 0.27 0.18 0.35 0.26 0.29 0.15

n = 4
mean 21.42 23.63 27.54 8.25 30.39 20.02 32.50 13.15

SD 0.25 0.18 0.24 0.19 0.33 0.25 0.30 0.16
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Table 4. BER of Testing MP3 compression.

Audio Type Love Song Symphony Dance Folklore

Bit Rate (kbps) 128 112 96 80 128 112 96 80 128 112 96 80 128 112 96 80

Reference
[24]

n = 2
mean 0.16 1.38 2.09 2.72 0.35 1.45 2.44 3.17 0.74 2.11 2.12 3.02 0.36 1.48 2.42 3.12

SD 0.11 0.11 0.13 0.15 0.12 0.13 0.14 0.17 0.15 0.18 0.18 0.21 0.12 0.15 0.14 0.16

n = 4
mean 0.09 0.11 1.41 2.53 0.14 0.15 2.29 3.84 0.11 0.15 1.02 3.0 0.15 0.15 2.40 3.93

SD 0.10 0.09 0.12 0.15 0.10 0.10 0.13 0.16 0.12 0.13 0.17 0.23 0.11 0.10 0.13 0.17

Reference
[27]

n = 2
mean 0.15 1.32 2.13 2.73 0.27 1.45 2.44 3.17 0.75 2.13 2.16 3.02 0.36 1.46 2.43 3.14

SD 0.11 0.13 0.13 0.14 0.13 0.14 0.15 0.15 0.14 0.18 0.19 0.20 0.13 0.13 0.14 0.15

n = 4
mean 0.09 0.11 1.42 2.53 0.14 0.17 2.32 3.74 0.11 0.16 1.02 3.0 0.15 0.13 2.40 3.02

SD 0.10 0.10 0.11 0.15 0.12 0.09 0.13 0.15 0.13 0.15 0.15 0.20 0.12 0.08 0.13 0.15

Proposed
method

n = 2
mean 0.75 2.67 2.91 3.31 0.18 0.15 2.29 3.92 0.83 2.46 2.54 2.62 0.45 2.13 2.64 3.25

SD 0.13 0.14 0.14 0.15 0.14 0.08 0.12 0.15 0.16 0.18 0.19 0.19 0.14 0.12 0.12 0.16

n = 4
mean 0.69 2.23 2.24 2.28 0.17 0.12 1.93 2.09 0.15 0.13 2.48 2.49 0.39 1.94 1.95 1.94

SD 0.12 0.14 0.13 0.13 0.13 0.06 0.09 0.12 0.15 0.15 0.16 0.16 0.13 0.13 0.09 0.10

Table 5. BER of Testing Amplitude Scaling.

Audio Type Love Song Symphony Dance Folklore

Amplitude
Modification Factor 0.5 0.8 1.1 1.2 0.5 0.8 1.1 1.2 0.5 0.8 1.1 1.2 0.5 0.8 1.1 1.2

Reference
[24]

n = 2 47.25 45.55 41.40 43.85 48.00 38.72 23.63 24.54 43.12 41.40 40.15 40.84 45.90 43.52 42.54 42.86

n = 4 43.82 40.63 40.84 41.25 45.22 32.04 23.15 23.56 42.33 41.02 39.56 40.16 42.52 41.86 41.35 41.24

Reference
[27]

n = 2 40.02 32.15 31.18 33.65 38.06 31.22 28.13 28.55 38.92 31.41 32.10 34.24 39.82 33.12 32.74 32.62

n = 4 38.22 30.63 30.84 31.25 35.22 32.04 23.15 23.56 40.02 31.11 30.51 30.46 32.42 26.81 24.75 24.26

Proposed
method

n = 2 2.03 1.15 1.08 1.13 1.65 0.97 1.43 1.45 2.85 1.76 1.85 2.06 1.67 1.31 0.93 1.32

n = 4 0.97 0.86 0.84 0.92 1.14 0.88 0.92 0.98 2.04 1.56 0.98 1.93 1.05 0.86 0.83 0.85

Table 6. BER of Testing Time Scaling.

Audio Type Love Song Symphony Dance Folklore

Time-Scaling (%) −5 −2 2 5 −5 −2 2 5 −5 −2 2 5 −5 −2 2 5

Reference
[24]

n = 2
mean 47.11 42.91 43.67 46.32 42.74 37.82 46.42 46.19 45.18 40.21 46.58 47.98 43.18 39.12 46.35 47.43

SD 0.10 0.09 0.08 0.09 0.11 0.11 0.09 0.10 0.12 0.12 0.11 0.13 0.12 0.12 0.10 0.12

n = 4
mean 47.04 40.23 45.11 46.58 43.11 36.64 46.24 46.86 44.37 39.91 44.92 47.98 43.03 38.62 46.53 47.54

SD 0.08 0.07 0.07 0.08 0.09 0.10 0.09 0.10 0.12 0.11 0.11 0.12 0.13 0.12 0.09 0.10

Reference
[27]

n = 2
mean 48.24 45.03 41.13 42.62 42.24 40.73 43.62 45.21 46.29 42.07 44.98 45.18 44.15 40.22 45.39 47.37

SD 0.09 0.08 0.07 0.08 0.09 0.10 0.08 0.09 0.13 0.13 0.12 0.14 0.13 0.12 0.11 0.11

n = 4
mean 46.12 41.25 44.01 44.52 42.01 38.34 45.27 45.89 45.27 40.91 45.02 46.13 42.53 39.24 45.63 45.58

SD 0.08 0.08 0.08 0.07 0.10 0.09 0.09 0.09 0.12 0.13 0.11 0.14 0.13 0.11 0.10 0.09

Proposed
method

n = 2
mean 47.23 42.05 43.53 45.15 42.32 37.64 45.18 46.21 45.35 40.42 46.24 46.47 43.18 38.93 46.41 47.13

SD 0.07 0.07 0.06 0.07 0.08 0.09 0.09 0.10 0.11 0.10 0.10 0.13 0.12 0.11 0.08 0.09

n = 4
mean 46.43 40.08 44.37 46.54 43.06 36.83 46.32 46.25 44.14 39.65 44.78 47.95 42.25 38.26 46.42 46.37

SD 0.07 0.05 0.05 0.06 0.08 0.09 0.07 0.08 0.11 0.11 0.10 0.12 0.10 0.10 0.08 0.08
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4.3. Compression Measurement

The purpose of compression is to have maximal compression ratio (CR) under maximal
SNR, where CR is defined by

CR =
Data size before compression
Data size after compression

The threshold ε and the embedding strength Q directly affect compression ratio (CR)
and SNR, respectively. As shown in Figure 2, it can be said that the larger the threshold
and the embedding strength, the larger the compression ratio CR, that is, the better the
compression effect, but the worse the SNR before and after compression.
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the embedding strength is higher, the overall audio values vary less. Though SNR seems 
worse, it demonstrates a more powerful embedding strength and a better compression 
effect. Second, in cases where threshold values change, we see that if the threshold value 
is greater than the embedding strength, the CR value becomes higher. That is to say, the 
compression effect enhancesand the relative decompression effect worsens, but the total 
effectiveness remains almost unchanged. 

  

Figure 2. Comparison among the original audio, compressed audio, and decompressed audio in 1 and
100 audio samples with a threshold value of 500 and with/without embedding private information.
(a) Original audio. (b) Compressed audio with threshold value of 500. (c) Recovering the compressed
audio in (b). (d) Compressed audio with threshold value of 500 and embedding private information
of embedding strength Q = 1000. (e) Recovering the compressed audio in (d).

Data in Table 7 show that the CR and SNR obtained without embedding information
(denoted by N) vary under distinct threshold values. Such a result is consistent with the
fact that when CR increases, SNR worsens. While signals are embedded, the result of the
investigation of the relationship between the two is also in Table 7. From the experimental
outcomes, we observed two noteworthy findings. First, with the same threshold value, if
the embedding strength is higher, the overall audio values vary less. Though SNR seems
worse, it demonstrates a more powerful embedding strength and a better compression
effect. Second, in cases where threshold values change, we see that if the threshold value
is greater than the embedding strength, the CR value becomes higher. That is to say, the
compression effect enhancesand the relative decompression effect worsens, but the total
effectiveness remains almost unchanged.

Moreover, to better understand the relationship between CR and SNR, we used the
graph in Figure 3 to find appropriate values of threshold ε and embedding strength Q. We
changed the threshold ε to obtain the relationship between CR and SNR using different
markers by keeping green and blue fixed to include all the Q values obtained in Table 7. By
doing this, we made sure the effect between CR and SNR remained optimized.
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Table 7. Relationship between CR and SNR with and without embedding private information (N).

Threshold ε Q CR SNR before
Decompression

0.1

1 1.0016 36.2503
100 1.0173 38.9726
500 1.0905 31.7549

1000 1.1900 28.0046
2048 1.4187 23.0792
4096 1.8970 17.4999

10

1 1.0028 35.2693
100 1.0173 38.9726
500 1.0905 31.7549
1000 1.1900 28.0046
2048 1.4187 23.0792
4096 1.8970 17.4999

100

1 1.0314 34.1682
100 1.0173 38.9726
500 1.0905 31.7549

1000 1.1900 28.0046
2048 1.4187 23.0792
4096 1.8970 17.4999

500

1 1.1953 25.4036
100 1.1415 29.6514
500 1.0905 31.7549
1000 1.1900 28.0046
2048 1.4187 23.0792
4096 1.8970 17.4999

1000

1 1.4308 22.1784
100 1.4115 25.8566
500 1.3092 27.0426
1000 1.1900 28.0046
2048 1.4187 23.0792
4096 1.8970 17.4999

Figure 3. Changing the threshold ε to obtain the relationship between CR and SNR using different
markers by keeping green and blue fixed to include all the Q values in Table 7.
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5. Conclusions

This study proposes a method to seek the integration between the information-hiding
process and data compression for five types of commonly seen audio signals. Under the
proposed model, simulation results demonstrated that each piece of hidden audio signal
attains high SNR and showed strong robustness. SNRs of most hidden audios were more
than 35, and some were even higher than 40. On the other hand, most BERs were as low as
5% or less. In addition, we obtained the relationship between CR and SNR with embedded
private information and observed two critical outcomes. First, with a fixed threshold value,
a high embedding strength makes the differences between the overall audio values smaller.
Such an algorithm shows better embedding strength and enhanced compression effects but
reflects worse SNR values. Second, when playing with distinct threshold values, we found
that if the threshold value ε is set higher than the embedding strength Q, the CR value
drops. That means the compression effect becomes better and the relative decompression
effect worsens, but the total effectiveness remains almost unchanged.
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Appendix A

Theorem A1. Let A be a matrix of size n × n. If X and X are n × 1 column vectors, then the
following statement holds [30,31]:

∂AX

∂X
= A,

∂(X− X)
T(

X− X
)

∂X
= 2

(
X− X

)
.

Theorem A2. Suppose that g is a continuously differentiable function of X on a subset of the
domain of a function f. If X0 minimizes (or maximizes) f(X) subjected to the constraint g(X) = 0,
then ∇f (X0) and ∇g(X0) are parallel and one is a constant multiple of another. That is, if ∇g(X0)
6= 0, then there exists a non-zero scalar λ such that

∇ f (X0) = λ∇g(X0).

Based on Theorem A2, if an augmented function is defined as

H(X, λ) = f (X) + λg(X),

then an optimal solution of the optimization problem is to compute the extreme of the
unconstraint function H(X, λ). The necessary conditions to ensure the existence of the
extreme of H are [30,31]

∂H
∂λ

= 0,
∂H
∂X

= 0
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