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Abstract: This paper presents the study of power/ground (P/G) supply-induced jitter (PGSIJ) on
a cascaded inverter output buffer. The PGSIJ analysis covers the IO buffer transient simulation under
P/G supply voltage variation at three process, voltage, and temperature (PVT) corners defined at
different working temperatures and distinct P/G DC supply voltages at the pre-driver (i.e., VDD/VSS)
and last stage (i.e., VDDQ/VSSQ). Firstly, the induced jitter contributions by the pre-driver, as well as
the last, stage are compared and studied. Secondly, the shared and decoupled P/G supply topologies
are investigated. The outcomes of these simulation analyses with respect to worst case jitter corners
are determined, while highlighting the importance of modeling the pre-driver circuit behavior to
include the induced jitter in the input–output buffer information specification (IBIS)-like model.
Accordingly, the measured PGSIJ depends on the corners to be analyzed and, therefore, the designer
needs to explore the worst-case corner for the driver’s technology node and the most supply voltage
noise affecting the jitter output for signal and power integrity (SiPI) simulations. Finally, the jitter
transfer function sensitivity to the amplitude and frequency/phase variations of the separate and
combined impacts of the pre-driver and last stage are explored, while discussing the superposition of
the power supply induced jitter (PSIJ) induced by both the driver’s IO stages under small signal and
large signal supply voltage variations. The linear superposition of the separate PSIJ effects by the
pre-driver and last stage depends on the amplitude of the variation of the supply voltage that can
drive the transistor to their nonlinear working regions.

Keywords: PVT corner analysis; eye diagram jitter; power supply-induced jitter; power delivery
network; IBIS algorithm; power and ground noise; signal and power integrity; aerospace

1. Introduction

The assessment of signal integrity and power integrity (SiPI) of mixed signal inter-
connected digital input–output (IO) link aims to simulate the impairments of the channel
and power delivery network (PDN), respectively. Therefore, it is important to explore SiPI
assessment at different process, voltage, and temperature (PVT) corners of the designed
IO link in order to ensure a good quality of the signal propagating on the package and
printed circuit board (PCB) interconnects, hence a robust IO link design [1–3]. In fact,
several industries (e.g., automotive, aerospace, consumer electronics) are driving the need
for power integrity and PDN analysis due to the high density of multichip design and
the massive high-speed data processing requiring fast DDR memory, server CPU, and
multi-level signaling with low-level power rail voltages for power saving [2,3].
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Timing and amplitude distortions of the signals (i.e., currents and voltages) are not
only due to channel design, such as inter-symbol interference, reflection, and crosstalk
between lines, but can also be induced by the power and ground supply voltage (PGSV)
variations at the die level. In fact, the fast and power state-dependent switching current
profile of different power and ground supply domains lead to a considerable power and
ground supply noise, e.g., (L.di/dt) that affects the nonlinear dynamic electrical behavior
of the transistor-based IO device. Consequently, it is crucial to study the IO device’s SiPI
issues under different PVT corners and supply voltage variations, input signal noise, and
crosstalk, etc., in order to ensure a robust and reliable device performance [1,2].

In fact, jitter is defined by the timing deviation (e.g., TD = t2 − t1) of the distorted
output signal (e.g., assuming PGSV variations) under a sequence of transition edges from
their ideal positions (e.g., with constant DC PGSV), as shown in Figure 1. These timing
differences depend on the PGSV variations and can be different for the rising and falling
transitions [4], under a determined bit error rate and data speed. Therefore, designers need
to estimate the jitter induced by SiPI simulation of high-speed IO links [5,6].
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Figure 1. Illustration of timing distortion known as jitter occurring at the rising and falling transi-
tion of the output signal. Reference signal (solid blue line). Distorted signal (red dashed line). 

Furthermore, PGSV variations affect the transistor current–voltage (I–V) and capac-
itance–voltage (C–V) operation regions (e.g., cut-off, linear and saturation) forming the 
output buffer/driver [5]. Moreover, distinct PDNs are commonly deployed for powering 
the pre-driver and last stage, 𝑉 /𝑉  and 𝑉 /𝑉 , respectively, as shown in the IO 
buffer circuit diagram of Figure 2. The device’s switching currents in the last stage (e.g., 𝑖 (𝑡) and 𝑖 (𝑡)) and pre-driver stage (e.g., 𝑖 (𝑡) and 𝑖 (𝑡)), flowing via the PDN, 
produce the PGSV variations, generating the timing distortions at the output voltage, 
which is defined by the P/G supply-induced jitter (PGSIJ) [7]. 
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Figure 2. IO buffer circuit diagram with separate PDN for the pre-driver and last stage. 

For example, ℎ (𝑡) and ℎ (𝑡)  are defined as the impulse response of the 
pre-driver and last stage’s off-die PDN. Moreover, 𝐼 (𝑡) and 𝐼 (𝑡) are the switching 
current of the pre-driver and last stage IO buffers, as shown in Figure 2. Therefore, the 

Figure 1. Illustration of timing distortion known as jitter occurring at the rising and falling transition
of the output signal. Reference signal (solid blue line). Distorted signal (red dashed line).

Furthermore, PGSV variations affect the transistor current–voltage (I–V) and capacitance–
voltage (C–V) operation regions (e.g., cut-off, linear and saturation) forming the output
buffer/driver [5]. Moreover, distinct PDNs are commonly deployed for powering the
pre-driver and last stage, VDD/VSS and VDDQ/VSSQ, respectively, as shown in the IO buffer
circuit diagram of Figure 2. The device’s switching currents in the last stage (e.g., iH(t)
and iL(t)) and pre-driver stage (e.g., iHp(t) and iLp(t)), flowing via the PDN, produce the
PGSV variations, generating the timing distortions at the output voltage, which is defined
by the P/G supply-induced jitter (PGSIJ) [7].
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For example, hvdd(t) and hvddq(t) are defined as the impulse response of the pre-driver
and last stage’s off-die PDN. Moreover, IHp(t) and IH(t) are the switching current of the
pre-driver and last stage IO buffers, as shown in Figure 2. Therefore, the power supply
voltage (PSV) ripples induced at the on-die pre-driver and buffer’s last stage can be written
in the time and frequency domains in Equation (1). The equivalent frequency domain
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voltage noise is formulated as a multiplication of the current spectrum and the PDN
impedance ZPDN

vdd(t) =
∫ +∞

0
hvdd(t− τ)·IHp(τ) dτ ⇔ VDD( f ) = ZPDN

vdd ( f )× IHp( f )

vddq(t) =
∫ +∞

0
hvddq(t− τ)·IH(τ) dτ ⇔ VDDQ( f ) = ZPDN

vddq ( f )× IH( f )
(1)

Similar to Equation (1), it can be derived for the ground supply voltage variations
vss(t) =

∫ +∞

0
hvss(t− τ)·ILp(τ) dτ ⇔ VSS( f ) = ZPDN

vss ( f )× ILp( f )

vssq(t) =
∫ +∞

0
hvssq(t− τ)·IL(τ) dτ ⇔ VSSQ( f ) = ZPDN

vssq ( f )× IL( f )
(2)

The PDN characteristics in terms of the resonance frequency, bandwidth, loop in-
ductance, etc. (i.e., ZPDN

vdd ( f )/ZPDN
vss ( f ) and ZPDN

vddq ( f )/ZPDN
vssq ( f )), and switching current

spectrum (i.e., IHp( f )/ ILp( f ) and IH( f )/ IL( f )) are different for both VDD/VSS and
VDDQ/VSSQ. Therefore, the jitter/timing distortions induced by the IO buffer pre-driver
and the last-stage PGSV variations present different mechanisms and performance numbers
(e.g., [3,6]).

Previous IO buffer-modelling methodologies, which can be classified either based on
the equivalent circuit input–output buffer information specification (IBIS) or parametric
curve fitting [8,9], have not clearly addressed the PVT corner simulation and its importance
in the model’s generation steps, worst corner identification, and in the validation of model
performance. In fact, the standard multiport behavioral model structure that describes the
electrical behaviors of the IO buffer circuit, while considering the PGSV variables [7–9], is:

i2(t) = wL(t)FL

(
xdd(t),

dxdd
dt

)
+ wH(t)FH

(
xss(t),

dxss

dt

)
+ iddq(t) + issq(t) (3)

where voltage differences xdd(t) = vdd(t)− v2(t) and xss(t) = v2(t)− vss(t) are applied
to the FL(·) and FH(·) functions that model the nonlinear dynamic output admittances
of the driver’s last stage under low and high input logic levels, respectively. This model
considers not only the static contribution of the PG voltage fluctuation of the last stage,
but also the delay introduced by the pull-up (PU) and pull-down (PD) capacitances, which
are represented by the derivatives. iddq(t) and issq(t) are timing current (I-t) tables, that
include crow-bar, on-die decoupling, pre-driver, and current contributions, which are
provided by the IBIS power-aware enhancement to predict the voltage ripple introduced
at the IO buffer’s circuit supplied by VDDQ, [8–16]. wL(t) and wH(t) are switching timing
signals that capture the IO timing behavior of the pre-driver stage, which is powered by
VDD/VSS supplies.

Since these supplies are not constant due to high-current switching through the pre-
driver’s PDN, therefore, the IBIS model fails to accurately predict the timing distortion
originating from VDD, the voltage noise which affects the output eye jitter. Moreover, previ-
ous works presented an extended equivalent circuit behavioral model for SiPI simulation
in the pre-driver and the driver’s last stage [10–12]. Moreover, ground supply noise has
not been considered [12]. For these reasons, this paper explores the study of the separate
effect of the jitter distortion induced by both stages powered by distinct P/G supplies. For
instance, the methodology consists of analyzing the jitter distortion induced by the IO
buffer’s circuit stages under three PVT corners with different circuit P/G supply configura-
tions or scenarios which cover most of the practical IO buffer design with a separate PDN
design. The analysis carried out in this work is based on transient simulation of the IO
buffer transistor level (TL) spice reference model, at three main PVT corners with different
configurations of the PGSV variations connected at the pre-driver and last stage.
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The rest of the paper is organized as follows. Section 2 describes power supply induced
jitter (PSIJ) prediction methodology followed in this paper. Section 3 presents the IO buffer
circuit along with corner definition and circuit configuration to be simulated and analyzed.
Moreover, it describes the jitter analysis of the pre-driver and last stage contributions, along
with the shared vs. decoupled PGSV configuration. Section 4 investigates the PSIJ transfer
function dependency on the frequency and amplitude variations of the driver’s IO stages.
Conclusions and future work are presented in Section 5.

2. Methodology: PSIJ under PVT Corners and Jitter Sensitivity

In order to accurately predict the PSIJ by the IO circuit, it is crucial to provide the
accurate model representation of the PDN, the current switching due to data pattern activity
and the jitter sensitivity. The combinations of these three inputs are illustrated in Figure 3,
which presents the generic frequency modelling approach of the PSIJ in the frequency
domain. In fact, the resulting supply noise spectrum (i.e., V( f ) = ZPDN ( f )× I( f ) from
Equations (1) and (2)), is multiplied by the jitter sensitivity, S( f ),

[
ps mV−1

]
, to yield to

the jitter spectrum J( f ).

J( f ) = V( f )× S( f ) (4)
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The examples of the PDN impedance profile modeling methodologies and extraction
are shown in [17,18]. Current switching profiles can be simulated based on transient
simulation or estimated at the early design stage [18]. The noise-to-jitter transfer function
sensitivity is determined by characterizing the IO buffer under PGSV noise and measuring
the output eye jitter.

It is worth noting that the jitter sensitivity profile only depends on the intrinsic
transistor-based circuit implementation of the IO buffer. Once the jitter spectrum is obtained,
the time domain jitter is formed by applying an inverse of Fourier transform to determine
the jitter in time domain. This methodology can be applied both in the pre-layout and/or
post-layout phase of the circuit and PDN design because it helps the system on chip
(SoC) design team to figure out the necessary on-die and package decoupling capacitor
requirements, along with PCB/package inductance, leading to an acceptable supply noise
profile and jitter that can be tolerated by their system.

Since a distorted sinusoidal waveform is typically induced at the PGSV, the jitter sensi-
tivity function to supply noise frequency, S( f ), can be determined via transient simulation
by sweeping the frequency of the voltage noise over the frequency range of interest at which
the device is more sensitive to the jitter. Nevertheless, the derivation of the simulation data
and setup is time consuming and requires high computational resources.

Another theoretical approach that has led to an analytical approximate solution for
open-loop circuit paths is proposed to model the frequency-dependent sensitivity of jitter
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by characterizing the IO buffer delay difference at two different bias voltages. S( f ) can be
identified straightforwardly by the following analytical method [19,20].

S( f ) =
j

2π f τd
S0

[
1− e−j2π f τd

]
S0 =

TDV1 − TDV2

V2 −V1

(5)

S0 is the DC delay sensitivity, which is determined by the static delay difference of
the TDV1 and TDV2 at their respective dc voltages, V1 and V2, respectively, as illustrated in
Figure 1. τd is the sub-circuit path delay. Therefore, the jitter sensitivity magnitude can be
expressed as follow:

|S( f )| = S0

∣∣∣∣ sin(π f τd)

π f τd

∣∣∣∣ = S0|sinc(π f τd)| (6)

The jitter prediction methodology in the frequency domain of Figure 3, which is
either based on simulation data or the analytical theoretical approximation of the PSIJ
sensitivity, assumes that the supply ripple noise is regarded as perturbation and thus it
is behaving as a small signal with respect to the operation point of the driver’s circuit
IO stages (i.e., pre-driver and last stage). Therefore, the jitter sensitivity is assumed to be
independent of the supply noise amplitude. However, the PSIJ flow and jitter sensitivity
cannot be considered as a linear-time-invariant system because the validity range of the
linear approximation depends on supply voltage and IO buffer PVT corners [20]. For this
reason, this paper explores:

• The consideration of PVT corners to analyze the separate contribution of PGSIJ in
the pre-driver or last-stage circuits and their combined PGSIJ contribution, as both
driver’s IO stages can share the same PDN or have a distinct PDN design, where the
decoupled PG supply noise can have different noise waveforms.

• The derivation of experimental frequency- and amplitude-dependent jitter transfer
functions of the pre-driver and last stage IO buffer circuits from transient TL circuit
simulation under the worst-case corner determined from the above first analysis.
Moreover, the two-tone jitter superposition validity under small and large supply
voltage variations for both of the driver’s stages is studied and analyzed.

3. Jitter Analysis under PVT Corners: Simulation Setups and Results
3.1. IO Buffer Circuit and PVT Corners

The considered driver circuits with their respective PDNs for PGSIJ analysis and evalu-
ation are shown in Figure 4. The driver is composed of four cascaded inverters in series and
designed in 0.35 µm technology. The nominal supply voltage

(
VDDQ/VDD

)
Nom = 3.3 V.

The first three inverters combinedly represent the pre-driver stage, whereas the last stage is
composed of the front-end inverter. The driver’s output-induced jitter is investigated by
estimating the pre-driver and last-stage jitter contributions independently. Then, the jitter
induced by the shared and decoupled PGSV configurations are also studied, as shown in
Figure 5. This work assumes that PGSV are the sum of sinusoidal voltage sources which are
applied around a dc voltage. The IO buffer is simulated with a 500 Mbps input data rate at
different corners. Each corner has a specific level of VDD/VDDQ and a defined temperature:
slow–slow (SS), typical–typical (TT), and fast–fast (FF) corners as described in Table 1.
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Table 1. Different PVT corners used to evaluate the PGSIJ via transient simulations of IO buffer
circuit configurations.

Corner VDD/VDDQ T (◦C)

SS−40 −10% VDD Nom −40

SS125 −10% VDD Nom 125

SS25 VDD Nom 25

FF−40 +10% VDD Nom 125

FF125 +10% VDD Nom −40

In the decoupled case, the pre-driver is powered by vdd(t) = Vcorner
DD + vnoise

dd (t) and
vss(t) = Vnoise

ss (t). Moreover, the last stage is powered by vddq(t) = Vcorner
DDQ + vnoise

ddq (t) and

vssq(t) = vnoise
ssq (t). In the shared case, P/G terminals of the pre-driver and last stage are

shorted and a single voltage noise is used at the P/G supplies. The peak-to-peak (p2p) AC
noise applied to the PGSV is defined to be within 20% of

(
Vddq/Vdd

)
Nom

(e.g., 660 mVpp).

3.2. Induced Jitter: Pre-Driver vs. Last Stage

This study carried out an experiment to investigate the impact of the separate PGSV
variations at the pre-driver or the last-stage supplies on the output jitter, as shown in
Figure 4. Firstly, two different signal tones are applied to the pre-driver power supply
vdd(t) and ground supply, vss(t). These voltage sources are applied on the dc voltage for
each corner, while the last stage is biased with a constant dc voltage source, as shown
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in Figure 4a. Moreover, the same noise sources described above are used at the driver’s
last-stage terminals, vddq(t) and vssq(t), while the pre-driver stage is biased by constant
dc sources, as presented in Figure 4b. Table 2 presents the different noise parameters,
frequency, and amplitude values used in this setup.

Table 2. PGSV settings of setup Figure 4.

Setup Setup of Figure 4a,b

Supply vdd(t) or vddq(t) vss(t) or vssq(t)

1st tone {0.2 V, 800 MHz} {0.15 V, 1300 MHz}
2nd tone {0.13 V, 1700 MHz} {0.18 V, 900 MHz}

The simulation results of the p2p eye jitter, along the with eye width (EW) and
eye height (EH) openings, are reported in Table 3. Eye measurements are determined
between a 40% and 60% eye boundary time crossing and 20% and 80% of the amplitude
thresholds, respectively. This result clearly shows that, for this IO buffer topology, the PGSIJ
difference between the pre-driver and last stage is ~10 ps at the slow–slow (SS−40 ◦C)
corner ((VDD = VDDQ = 2.97 V, T =−40 ◦C). Therefore, the design engineer should consider
if this analysis is carried out by means of behavioral models extracted or generated based
on the IBIS or its power-aware version that shows several shortcomings in capturing PGSIJ
by the pre-driver’s supply VDD/VSS domains, because they are kept constant during device
characterization and model extraction [14,15].

Table 3. Eye Diagram Metrics: PGSV Noise Sources are Considered at the Pre-driver or Last Stage.

Corner PG Noise Jitter p2p (ps) Jitter/UI (%) EW (ns) EH (V)

SS−40 ◦C
Predriver 239.46 11.97 1.86 2.85

Last stage 248.34 12.42 1.82 2.51

SS125 ◦C
Predriver 150.77 7.54 1.89 2.94

Last stage 133.04 6.65 1.91 2.49

TT25 ◦C
Predriver 124.20 6.21 1.90 3.25

Last stage 141.91 7.10 1.90 2.82

FF−40 ◦C
Predriver 106.43 5.32 1.91 3.61

Last stage 79.85 3.99 1.95 3.15

FF125 ◦C
Predriver 133.04 6.65 1.92 3.53

Last stage 159.65 7.98 1.92 3.16

The numerical results of the p2p eye jitter, which are reported in Table 3, confirm that
the pre-driver PGSIJ can be as important as last-stage jitter. The percentage of the jitter
distortion with respect to the unit interval (UI = 1/data rate) is added to demonstrate the
jitter contribution in the eye timing margin difference between the SS−40 ◦C corner (i.e.,
~12%) against the fast–fast (FF)−40 ◦C (i.e., ~5%). Although IO buffer design technology
and circuit architecture can be different from the studied case, which may lead to different
jitter numbers, considering PGSIJ by the pre-driver is as important as that induced by
last-stage P/G rails. It is worth noting that the P/G supply noise of the pre-driver mainly
induces jitter distortion, whereas the P/G supply noise of the last-stage inverter introduces
both jitter and amplitude distortions, as is illustrated in Figure 6, where both eye plots are
compared at the worst-case corner.
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3.3. Induced Jitter: Shared vs. Decoupled PG Noise

The two simulation configurations, which are used to estimate the p2p eye jitter, are
shown in Figure 4. The PGSV settings are described in Table 4. The simulation results
of both configurations are shown in Table 5. Furthermore, Figure 7 illustrates the eye
diagrams of the pre-driver and the last-stage-induced jitter at the SS−40 ◦C corner.

Table 4. PGSV settings of Figure 6 setup.

Setup Setup of Figure 6 Setup of Figure 6

Supply vdd(t) vss(t) vddq(t) vssq(t)

1st tone {0.2 V, 800 MHz} {0.15 V, 1300 MHz} {0.33 V, 1150 MHz} {0.25 V, 1400 MHz}
2nd tone {0.13 V, 1700 MHz} {0.18 V, 900 MHz} NA NA

Table 5. Eye Diagram Metrics: Shared vs. Decoupled Cases.

Corner PG Noise Jitter p2p (ps) Jitter/UI (%) EW (ns) EH (V)

SS−40 ◦C
Shared 328.50 16.43 1.80 2.50

Decoupled 275.00 13.75 1.77 2.57

SS 125 ◦C
Shared 150.78 7.54 1.88 2.51

Decoupled 195.20 9.76 1.85 2.51

TT 25 ◦C
Shared 124.17 6.21 1.88 2.83

Decoupled 186.25 9.31 1.82 2.87

FF−40 ◦C
Shared 115.30 5.77 1.91 3.17

Decoupled 133.04 6.65 1.89 3.16

FF 125 ◦C
Shared 177.60 8.88 1.91 3.15

Decoupled 150.78 7.54 1.90 3.21
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Tables 3 and 5 show that the worst-case eye jitter is observed at the SS−40 ◦C corner for
this specific transistor technology and node at which usually the worst jitter performance
is observed. Since IO buffers are more sensitive to jitter noise at the SS corner, it is usually
recommended to run the high-speed IO link SiPI simulation at the SS corner to determine
the timing margins at the receiver’s input. Therefore, the accuracy of the power-aware
IO buffer behavioral model should be guaranteed at the SS corner, where it presents the
worst-case PGSIJ performance. In addition to that, the p2p jitter for shared and decoupled
PG supply noise at the SS corner shows ~53 ps difference, which depends on the PG noise
frequency content and amplitude variations.

4. PSIJ Sensitivity Study of Two-Stage Driver
4.1. Simulation Setup

This section aims to explore the study of the sensitivity of the PSIJ transfer function
(TF) to the supply voltage amplitude and frequency induced by pre-driver (VDD) and
last-stage (VDDQ) buffer at the SS−40 ◦C corner [21]. The separate and combined PSIJ
contributions of the driver’s IO stages are explored. The PSIJ by the pre-driver VDD supply
(i.e., SP(·)) and last-stage supply VDDQ, i.e., SL(·)), can separately affect the driver’s total
output jitter (i.e., SIO(·)). The PSIJ of the IO device nonlinearly depends on the amplitude
(e.g., ak) and frequency (e.g., fk) of the power supply voltage, as illustrated in Figure 8.

PSI Jk (ps) = Sk(ak(V), fk(Hz)); k = {P, L, IO} (7)

where k indicates the driver (IO) or specific driver stage: pre-driver (P) or last stage (L).
The amplitude and frequency of the distinct power supply of the pre-driver and last stage
are swept in order to figure out the sensitivity of PSIJ on the frequency and amplitude as
shown in Figure 8.
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4.2. Frequency Sensitivity of PSIJ Transfer Function

The last-stage PSIJ is determined by sweeping the frequency of the applied sinusoidal
voltage waveform at VDDQ, while pre-driver stage supply VDD is kept constant, as shown
in Figure 8b. Similarly, the same experiment is performed for the pre-driver stage, as shown



Sensors 2022, 22, 6531 10 of 17

in Figure 8a. In the combined PSIJ impact, the distinct supply case of the driver’s IO stages
is considered for this experiment, as shown in Figure 8c. Figure 9 shows the PSIJ transfer
function of the above three studied cases, as the supply noise frequencies of the separate
and combined contributions of the pre-driver and last stage are swept. Table 6 summarizes
the supply settings to obtain the PSIJ TF shown in Figure 9.
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Table 6. Experimental settings of the frequency sensitivity of the PSIJ TF of the driver’s IO stages of
the results shown in Figure 8.

PSIJ TF

Supplies VDD VDDQ

ak (V) fk (MHz) ak (V) fk (MHz)

SL(·) 0 0 0.16
[
10− 11× 103]

SP(·) 0.16
[
10− 11× 103] 0 0

SIO(·) 0.16
[
10− 11× 103] 0.16

[
10− 11× 103]

The comparison, which is shown in Figure 9, between the theoretical jitter TF Sth
IO( f )

of the IO buffer (e.g., black dashed line curves), which is defined in Equation (5), follows
a similar waveform trend as the experimental results of the PSIJ SIO( f ) function. The
difference between (Sth

IO( f ) vs. SIO( f )) at low frequency (e.g., f < 100 MHz) can have
several explanations. Firstly, the conditions used in the simulation data to derive Sth

IO( f ) is
a clock signal against a random bit pattern used to derive SIO( f ). Moreover, the deviation
between the theoretical and experimental results can be due to the accuracy of the spice
model level used in the simulations or the derivation of theoretical function

The PSIJ TF of the pre-driver shows a peak value around 200 MHz. However, the
SL( f ) shows a flat response until reaching 200 MHz. The pre-driver’s jitter is the main
contributor to the IO buffer’s total jitter. Sp( f ) has a bandwidth of [120 MHz− 200 MHz],
which defines the VDD signal frequency range that generates the highest PSIJ. As the PSV’s
frequency increases and exceeds 200 MHz, the PSIJ number starts to decrease. At higher
frequency ( f > 2 GHz), the PSIJ of both IO driver stages decreases and is dominated by the
input data pattern timing distortion.

The eye diagrams shown in Figure 10 demonstrate the PSIJ sensitivity to the frequency
of the last-stage supply variations, as the pre-driver-stage supply kept constant. Figure 11
shows the eye diagram sensitivity to the last-stage supply frequency, as the supply voltage
variations of the pre-driver is 123 MHz.
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It is worth noting that the driver’s total PSIJ jitter SIO ( f ) depends on the phase
difference between the supply voltage variations (e.g., ϕVDDQ − ϕVDD). This dependency
is explored by the second experiment shown in Table 7, where the last-stage frequency of
the applied sinusoidal voltage is swept for a different sinusoidal frequency applied at the
pre-driver stage

Table 7. Experimental settings of the frequency sensitivity of the PSIJ transfer function of the driver’s
IO stages of results shown in Figure 11.

PSIJ TF

Supplies VDD VDDQ

ak (V) fk (MHz) ak (V) fk (MHz)

IO buffer 0.16
[
10, 11× 103] 0.16

[
57, 11× 103]

As the frequency of the pre-driver supply variations is close the sensitive frequency
bandwidth of the Sp( f ), the total jitter increases, as shown in Figure 12. Hence, the total
jitter at a lower frequency depends on the phase difference between VDD and VDDQ supply
voltage waveforms. Moreover, the total jitter is dominated by the pre-driver’s circuit jitter,
as the supply voltage frequency of the last stage increases. Therefore, the PSIJ sensitivity
can be conceptually assumed to be a superposition of the pre-driver and last-stage PSIJ.

SIO( f ) ∼= SP( fP) + SL( fL)− JIO (8)

where JIO is the jitter induced by the full driver’s input–output timing distortion while the
circuit is powered by DC PSV at the SS−40 ◦C corner.
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Figure 12. Parametric plot of the driver’s jitter TF as the last-stage frequency is swept for different
sinusoidal tone excitation of the pre-driver stage.

The superposition of the jitter frequency sensitivity TF can be valid if the supply
voltage variation is low enough to approximate the nonlinear I–V and C–V functions of
the transistor as linear behavior of the applied input voltage and supply voltage variations.
The PSIJ of the pre-driver and last stage can be superposed to lead to the total output
jitter if the PGSV (i.e., VDD or VDDQ) is composed by two sinusoidal frequency noises
under small amplitude variations. The linear superposition of the jitter TF of the pre-driver
and last stage can hold under small signal variations. The next section explores how the
superposition formula is only valid for small signal analysis.

4.3. Amplitude Sensitivity of PSIJ Transfer Function

The amplitudes of distinct PSV noises of the driver’s IO-stage circuit are independently
swept at f = 70 MHz. Figures 13 and 14 show the amplitude-dependent PSIJ of the last
stage (i.e., as shown in Figure 8b setup) and the pre-driver stage (i.e., as shown in Figure 8b
setup), respectively. Generally, the total IO buffer PSIJ and the separate jitter of the driver’s
IO stages increase as the amplitude of the PSV increases.
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Figure 13. Last-stage parametric plot of the IO buffer amplitude-dependent jitter TF as the last-stage
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Sensors 2022, 22, 6531 13 of 17

Sensors 2022, 22, x FOR PEER REVIEW 14 of 18 
 

 

Figure 13. Last-stage parametric plot of the IO buffer amplitude-dependent jitter TF as the 
last-stage amplitude is swept for different 𝑉 (𝑡)  supply noise. 

 
Figure 14. Pre-driver-stage parametric plot of the IO buffer amplitude-dependent jitter TF as the 
pre-driver stage amplitude is swept for different 𝑉 (𝑡) supply noise. 

By comparing the Figure 13 and Figure 14 results, the PSIJ TF has higher sensitivity 
to the amplitude of the supply voltage noise of the pre-driver than the last stage. This is 
mainly due the fact that the pre-driver stage is composed of three inverter circuits pow-
ered by a 𝑉  supply. For instance, the sensitivity of the pre-driver and last stages are 𝑆 ≈ 0.7 ps mV  (i.e., Figure 14) and 𝑆 ≈ 0.12 𝑝𝑠 mV  (i.e., Figure 13). 

4.4. Two-Tone Jitter Superposition 
This investigation aims to validate the jitter superposition condition under small 

and large-signal distinct PSV variations for both driver’s stages [18,22,23]. 

4.4.1. Simulation Setting 
Pre-driver case: Firstly, the pre-driver is simulated for different frequencies with a 

single tone of amplitude 𝑎  of the 𝑉  supply voltage, while the last-stage supply is kept 
constant. Secondly, two tones with different amplitudes (e.g., 𝑎  and 𝑎 ) are applied 
at 𝑉 , as shown in Figure 8a. The output jitter is measured for both cases and compared 
against the superposition formula of the output jitter for different amplitude variations. 𝑆 (𝑓 + 𝑓 ) ≅ 𝑆 (𝑓 ) + 𝑆 (𝑓 ) 𝑖𝑓 𝑎 + 𝑎𝑉 ≪ 1  (9)

Last-stage case: Firstly, the last stage is simulated for different frequencies with a 
single tone of amplitude 𝑎  of the 𝑉  supply voltage, while the pre-driver supply is 
kept constant. Secondly, two tones with different amplitudes (e.g., 𝑎  and 𝑎 ) are ap-
plied at 𝑉 , as shown in Figure 8b. The output jitter is measured for both cases and 
compared against the superposition formula of the output jitter for different amplitude 
variations. 𝑆 (𝑓 + 𝑓 ) ≅ 𝑆 (𝑓 ) + 𝑆 (𝑓 ) 𝑖𝑓 𝑎 + 𝑎𝑉 ≪ 1  (10)

The six cases studied for both IO buffer stages are summarized in Table 8. The fre-
quency of the two-tone supply voltage waveform is selected as a mixture between the 

Figure 14. Pre-driver-stage parametric plot of the IO buffer amplitude-dependent jitter TF as the
pre-driver stage amplitude is swept for different Vddq(t) supply noise.

By comparing the Figures 13 and 14 results, the PSIJ TF has higher sensitivity to
the amplitude of the supply voltage noise of the pre-driver than the last stage. This
is mainly due the fact that the pre-driver stage is composed of three inverter circuits
powered by a VDD supply. For instance, the sensitivity of the pre-driver and last stages are
SP ≈ 0.7 ps mV−1 (i.e., Figure 14) and SL ≈ 0.12 ps mV−1 (i.e., Figure 13).

4.4. Two-Tone Jitter Superposition

This investigation aims to validate the jitter superposition condition under small and
large-signal distinct PSV variations for both driver’s stages [18,22,23].

4.4.1. Simulation Setting

Pre-driver case: Firstly, the pre-driver is simulated for different frequencies with a single
tone of amplitude aP of the VDD supply voltage, while the last-stage supply is kept constant.
Secondly, two tones with different amplitudes (e.g., aP1 and aP2) are applied at VDD, as
shown in Figure 8a. The output jitter is measured for both cases and compared against the
superposition formula of the output jitter for different amplitude variations.

SP( fP1 + fP2) ∼= SP( fP1) + SP( fP2) i f
aP1 + aP2

VDD
� 1 (9)

Last-stage case: Firstly, the last stage is simulated for different frequencies with a single
tone of amplitude aL of the VDDQ supply voltage, while the pre-driver supply is kept
constant. Secondly, two tones with different amplitudes (e.g., aL1 and aL2) are applied at
VDDQ, as shown in Figure 8b. The output jitter is measured for both cases and compared
against the superposition formula of the output jitter for different amplitude variations.

SL( fL1 + fL2) ∼= SL( fL1) + SL( fL2) i f
aL1 + aL2

VDDQ
� 1 (10)

The six cases studied for both IO buffer stages are summarized in Table 8. The
frequency of the two-tone supply voltage waveform is selected as a mixture between the
low MHz range (e.g., 57 MHz, 123 MHz), where the driver’s IO stage is sensitive to noise,
and the higher-frequency range (e.g., 507 MHz, 907 MHz), at which the driver’s IO stage is
less sensitive to jitter.
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Table 8. Last stage and pre-driver: frequency settings of Figures 14 and 15.

Cases fL1
, fP1

(MHz) fL2
, fP2

(MHz)

1 57 123

2 57 507

3 57 905

4 123 57

5 123 905

6 123 2033
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Figure 15. Pre-driver stage case: correlation between Jm and Js based on the superposition of (9):
(a–c): small-signal two tones. (d): large-signal case.

4.4.2. Numerical Results

The obtained results of the pre-driver and last stage are illustrated in Figures 15 and 16,
respectively. They compare the measured output jitter, Jm, from transient data against
the simulated modelled output jitter, Js, of the pre-driver-stage case and last stage using
Equations (9) and (10), respectively.

The predicted and measured jitter from simulation data show that a good correlation
is observed in Figures 15a–c and 16a–c when the amplitude of the PSV noise is below 25%
of the nominal VDD and VDDQ supply voltage. The inaccuracy of the superposition of the
PSIJ TF of Equations (9) and (10) is below 4.8% in this case.

As the amplitudes of the PSV variation exceed some specified number, the linear
superposition of the applied two-tone voltage contribution of the pre-driver and the last-
stage circuit is not valid anymore, as shown in Figures 15d and 16d, respectively. This is
mainly due to the fact that the PU and PD transistor current is highly nonlinear, depending
on the applied voltage difference between its terminals. The inaccuracy of the superposition
of the PSIJ TF of Equations (9) and (10) is below 33.3% in this case.
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Figure 16. Last-stage case: correlation between Jm and Js based on the superposition of (10).
(a–c): small-signal two tones. (d): large-signal case.

Cases 1 and 4, where the frequency of the tow tones are a mixture of 75 MHz and
123 MHz, show the highest PSIJ for the studied pre-driver and last-stage cases, as shown
in Figures 15 and 16, respectively. This observation confirms the results of the previous
analysis which were performed to study the the frequency-dependent jitter sensitivity.

5. Conclusions

This paper has studied and analyzed the PGSIJ contribution of the pre-driver and
last stage of a cascaded inverter IO buffer at three different PVT corners. The shared and
decoupled power and ground supply cases were also investigated and compared.

The contribution of the pre-driver’s PGSIJ can be as important as that of the last stage
at the worst corner. Finally, the IO buffers are more sensitive to jitter noise at the SS corner
and it is important to develop a specific IBIS-like model to capture the pre-driver’s PGSIJ
in order to speed up transient simulation. The impact of the PSIJ TF superposition of
a multiple-stage IO buffer powered by distinct power supplies depends on the amplitude
of the supply voltage variations. The PSIJ or delay superposition of each stage depends
on the amplitude variations where the I–V and C–V functions of the transistor can be
linearly approximated.

The findings which are reported by the analyzed and simulated data in this paper
urge the improvement of the equivalent circuit IBIS-like and/or parametric curve fitting
nonlinear dynamic behavioral modelling methodology in capturing power and signal
integrity distortion under separate power and ground voltage variations in order to not
only speed up PSIJ characterization, but also to cope with the advance in recent PDN
and IO buffer designs. For example, the characterization of voltage–time IBIS data under
different PVT corners can be explored to derive an approximation of the PSIJ TF.
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Abbreviations

IO Input–Output
PVT Process, voltage, and temperature
P/G Power/ground
PSV Power supply voltage
PGSV Power ground supply voltage
PSIJ Power supply-induced jitter
PGSIJ Power ground supply-induced jitter
SiPI Signal and power integrity
PDN Power delivery network
PCB Printed circuit board
I–V Current–voltage
C–V Capacitance–voltage
IBIS input–output buffer information specification
TL Transistor level
SS Slow–Slow
TT Typical–Typical
FF Fast–Fast
TF Transfer function
p2p peak-to-peak
EW Eye width
EH Eye height

References
1. Zhu, T.; Steer, M.B.; Franzon, P.D. Accurate and scalable IO buffer macromodel based on surrogate modeling. IEEE Trans. Compon.

Packag. Manuf. Technol. 2011, 1, 1240–1249.
2. Yelten, M.B.; Franzon, P.D.; Steer, M.B. Surrogate-modelbased analysis of analog circuits-part II: Reliability analysis. IEEE Trans.

Device Mater. Reliab. 2011, 11, 458–465.
3. Song, K.; Kim, J.; Kim, H.; Lee, S.; Ahn, J.; Brito, A.; Kim, H.; Park, M.; Ahn, S. Modeling, Verification, and Signal Integrity

Analysis of High-Speed Signaling Channel with Tabbed Routing in High Performance Computing Server Board. Electronics 2021,
10, 1590. [CrossRef]

4. Satheesh, S.M.; Salman, E. Design space exploration for robust power delivery in TSV based 3-D systems-on-chip. In Proceedings
of the 2012 IEEE International SOC Conference, Niagara Falls, NY, USA, 12–14 September 2012; pp. 307–311. [CrossRef]

5. Tripathi, J.N.; Sharma, V.K.; Shrimali, H. A Review on Power Supply Induced Jitter. IEEE Trans. Compon. Packag. Manuf. Technol.
2019, 3, 511–524. [CrossRef]

6. Chu, X.; Hwang, C.; Fan, J.; Li, Y. Analytic Calculation of Jitter Induced by Power and Ground Noise Based on IBIS I/V Curve.
IEEE Trans. Electromagn. Compat. 2018, 60, 468–477. [CrossRef]

http://doi.org/10.3390/electronics10131590
http://doi.org/10.1109/SOCC.2012.6398327
http://doi.org/10.1109/TCPMT.2018.2872608
http://doi.org/10.1109/TEMC.2017.2725270


Sensors 2022, 22, 6531 17 of 17

7. Park, E.; Kim, J.; Kim, H.; Shon, K. Analytical jitter estimation of two-stage output buffers with supply voltage fluctuations. In
Proceedings of the 2014 IEEE International Symposium on Electromagnetic Compatibility (EMC), Raleigh, NC, USA, 4–8 August
2014; pp. 69–74.

8. Stievano, I.S.; Maio, I.A.; Canavero, F.G. M/spl pi/log, macromodeling via parametric identification of logic gates. IEEE Trans.
Adv. Packag. 2004, 27, 15–23. [CrossRef]

9. Souilem, M.; Tripathi, J.N.; Dghais, W.; Belgacem, H. I/O Buffer Modelling for Power Supplies Noise Induced Jitter under
Simultaneous Switching Outputs (SSO). In Proceedings of the 2019 IFIP/IEEE 27th International Conference on Very Large Scale
Integration (VLSI-SoC), Cuzco, Peru, 6–9 October 2019; pp. 226–227.

10. Varma, A.K.; Steer, M.; Franzon, P.D. Improving Behavioral IO Buffer Modeling Based on IBIS. IEEE Trans. Adv. Packag. 2008, 31,
711–721. [CrossRef]

11. Lan, H.; Schmitt, R.; Yuan, C. Prediction and measurement of supply noise induced jitter in high-speed I/O interfaces. In
Proceedings of the DesignCon, San Francisco, CA, USA, 2 May 2008.

12. Dghais, W.; Souilem, M.; Zayer, F.; Chaari, A. Power Supply and Temperature Aware I/O Buffer Model for Signal-Power Integrity
Simulation. Math. Probl. Eng. 2018, 2018, 1–9. [CrossRef]

13. Yu, H.; Michalka, T.; Larbi, M.; Swaminathan, M. Behavioral Modeling of Tunable I/O Drivers With Preemphasis Including
Power Supply Noise. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 233–242. [CrossRef]

14. I/O Buffer Information Specification Version 7.0. Available online: https://ibis.org/ver7.0/ver7_0.pdf (accessed on 23 August 2022).
15. Dghais, W.; Rodriguez, J. New Multiport I/O Model for Power-Aware Signal Integrity Analysis. IEEE Trans. Compon. Packag.

Manuf. Technol. 2016, 6, 447–454.
16. Souilem, M.; Tripathi, J.N.; Melicio, R.; Dghais, W.; Belgacem, H.; Rodrigues, E.M.G. Neural-Network Based Modeling of I/O

Buffer Predriver under Power/Ground Supply Voltage Variations. Sensors 2021, 21, 6074. [CrossRef] [PubMed]
17. Schmitt, R.; Lan, H.; Madden, C.; Yuan, C. Investigating the impact of supply noise on the jitter in gigabit I/O interfaces. In 2007

IEEE Electrical Performance of Electronic Packaging; IEEE: Portland, OR, USA, 2007; pp. 189–192.
18. Shim, Y.; Oh, D.; Thim Khor, C.; Dhavale, B.; Chandra, S.; Chow, D.; Ding, W.; Chand, K.; Aflaki, A.; Sarmiento, M. System level

clock jitter modeling for DDR systems. In Proceedings of the 2013 IEEE 63rd Electronic Components and Technology Conference,
Las Vegas, NV, USA, 28–31 May 2013; pp. 1350–1355.

19. Kang, H.S.; Chen, G.; Hashemi, A.; Choo, W.S.; Greenhill, D.; Beyene, W. Simulation and measurement correlation of power
supply noise induced jitter for core and digital IP blocks. In Proceedings of the Proc. Des. Conf., CA, USA, January 2019; pp.
1–17. Available online: https://www.researchgate.net/publication/339149584_Simulation_and_measurement_correlation_of_
power_supply_noise_induced_jitter_for_core_and_digital_IP_blocks (accessed on 7 July 2022).

20. Shim, Y.; Oh, D. System Level Modeling of Timing Margin Loss Due to Dynamic Supply Noise for High-Speed Clock Forwarding
Interface. IEEE Trans. Electromagn. Compat. 2016, 58, 1349–1358. [CrossRef]

21. Shenoy, P.; Nowakowski, R. Power delivery for space-constrained applications. In White Paper; Texas Instruments: Dallas, TX,
USA, 2016.

22. Kim, H.; Fan, J.; Hwang, C. Modeling of power supply induced jitter (PSIJ) transfer function at inverter chains. In Proceedings of
the 2017 IEEE International Symposium on Electromagnetic Compatibility and Signal/Power Integrity (EMCSI), Washington,
DC, USA, 7–11 August 2017; pp. 591–596. [CrossRef]

23. Kim, H.; Kim, J.; Fan, J.; Hwang, C. Precise Analytical Model of Power Supply Induced Jitter Transfer Function at Inverter Chains.
IEEE Trans. Electromagn. Compat. 2017, 60, 1491–1499. [CrossRef]

http://doi.org/10.1109/TADVP.2004.825475
http://doi.org/10.1109/TADVP.2008.2004995
http://doi.org/10.1155/2018/1356538
http://doi.org/10.1109/TVLSI.2019.2936815
https://ibis.org/ver7.0/ver7_0.pdf
http://doi.org/10.3390/s21186074
http://www.ncbi.nlm.nih.gov/pubmed/34577288
https://www.researchgate.net/publication/339149584_Simulation_and_measurement_correlation_of_power_supply_noise_induced_jitter_for_core_and_digital_IP_blocks
https://www.researchgate.net/publication/339149584_Simulation_and_measurement_correlation_of_power_supply_noise_induced_jitter_for_core_and_digital_IP_blocks
http://doi.org/10.1109/TEMC.2016.2574720
http://doi.org/10.1109/isemc.2017.8077937
http://doi.org/10.1109/TEMC.2017.2764867

	Introduction 
	Methodology: PSIJ under PVT Corners and Jitter Sensitivity 
	Jitter Analysis under PVT Corners: Simulation Setups and Results 
	IO Buffer Circuit and PVT Corners 
	Induced Jitter: Pre-Driver vs. Last Stage 
	Induced Jitter: Shared vs. Decoupled PG Noise 

	PSIJ Sensitivity Study of Two-Stage Driver 
	Simulation Setup 
	Frequency Sensitivity of PSIJ Transfer Function 
	Amplitude Sensitivity of PSIJ Transfer Function 
	Two-Tone Jitter Superposition 
	Simulation Setting 
	Numerical Results 


	Conclusions 
	References

