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Abstract: Entire surface point clouds in complex objects cannot be captured in a single direction by
using noncontact measurement methods, such as machine vision; therefore, different direction point
clouds should be obtained and registered. However, high efficiency and precision are crucial for
registration methods when dealing with huge number of point clouds. To solve this problem, an
improved registration algorithm based on double threshold feature extraction and distance disparity
matrix (DDM) is proposed in this study. Firstly, feature points are extracted with double thresholds
using normal vectors and curvature to reduce the number of points. Secondly, a fast point feature
histogram is established to describe the feature points and obtain the initial corresponding point
pairs. Thirdly, obviously wrong corresponding point pairs are eliminated as much as possible by
analysing the Euclidean invariant features of rigid body transformation combined with the DDM
algorithm. Finally, the sample consensus initial alignment and the iterative closest point algorithms
are used to complete the registration. Experimental results show that the proposed algorithm can
quickly process large data point clouds and achieve efficient and precise matching of target objects.
It can be used to improve the efficiency and precision of registration in distributed or mobile 3D
measurement systems.

Keywords: point cloud registration; machine vision; feature extraction; double threshold; distance
disparity matrix; ICP algorithm

1. Introduction

With the rapid development of machine vision in recent years, vision technology
based on 3D point clouds has been widely used in the fields of industrial design, reverse
engineering, surface defect detection, and virtual reality. Compared with traditional 2D
images, 3D data provide richer information [1]. As a special information format that
contains complete 3D spatial data, 3D point cloud data have elicited extensive attention [2].
At present, methods for collecting 3D data include the time-of-flight [3], stereo vision [4],
laser scanning [5], and structured light [6] methods. Limited by the scanning angle of
the device and the shape of the object, the complete 3D information of an object must be
collected from multiple views, and point clouds must be registered into a complete model.
Point cloud registration is a key step in capturing the complete shape of 3D objects.

The purpose of point cloud registration is to find a 3D rigid body transformation,
such that the point cloud of the same object from different perspectives can be transformed
into the same coordinate system for rapid and accurate matching and splicing. Splicing
accuracy directly affects the accuracy of model reconstruction [7]. The same-source reg-
istration can be divided into optimization-based registration methods, feature-learning
methods, and end-to-end learning registration [8]. The deep learning-based methods do
not require iteration, but large training data is needed [9–11]. Besides, the registration
results are sensitive to noise. Optimization-based registration is to use optimization strate-
gies to estimate the transformation matrix without training data. The most widely used
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point cloud registration algorithm is the iterative closest point (ICP) algorithm proposed
by Besl et al. [12]. This algorithm requires a good initial position and a high overlap rate.
Moreover, it easily falls into the local optimal solution. Therefore, this algorithm is typically
used for fine registration [13]. To improve the efficiency and accuracy of registration, schol-
ars have proposed a variety of methods, including velocity updating ICP [14], generalised
ICP (GICP) [15], and globally optimal ICP [16]. Magnusson [17] proposed a registration
algorithm that differed from the ICP registration model, called the 3D normal distribution
transformation algorithm. This algorithm was based on the probability density model, did
not require calculating the nearest neighbour corresponding points, and reduced computa-
tional complexity. Zhong [18] designed an inherent shape feature to describe point feature
information by establishing the local reference coordinate system and 3D histogram of each
point. However, the uneven distribution of points and measurement noise affected the
registration results. Rusu et al. [19] proposed a point feature histogram (PFH) algorithm
and a fast PFH (FPFH) algorithm [20,21] for local feature descriptions. Yun et al. [22]
calculated congruent triangles by using the centroid of a point cloud ball to obtain the
corresponding relationship between them. Coarse registration was performed through the
centroid. Jauer P. et al. [23] used knowledge in mechanics and thermodynamics to assume
that a point cloud is a rigid body composed of particles. A force was applied between two
particle systems to cause one of the systems to move towards the rigid body of the other
system to complete point cloud registration. Chen et al. [24] designed a novel descriptor
based on a plane/line. This descriptor was particularly used for establishing structure-level
correspondence between point clouds for coarse registration. Raobo Li et al. [25] proposed
a point cloud registration method that used the feature transformation processing of the
centre of gravity. Two feature vectors were constructed from the nearest and farthest points
of the centre of gravity, and a third feature vector was synthesised. Finally, point cloud
registration was performed. Wang et al. [26] used the principal component analysis (PCA)
method to realise the coarse registration of point clouds. In fine registration, the nearest
point is iterated on the basis of the two-way distance proportion. This method exhibits a
certain improvement in accuracy and speed compared with the classical ICP algorithm;
however, it is more sensitive to noise points. Song et al. [27] conducted a down-sampling of
a point cloud, extracted feature points through the angle characteristics of a normal vector
neighbourhood, and established FPFH for feature descriptions. The combination of the
sample consensus initial alignment (SAC-IA) and ICP algorithms was used to complete
point cloud registration. Xu et al. [28] proposed an improved ICP algorithm that combined
the random sample consensus algorithm, intrinsic shape signatures, and 3D shape context.
Min et al. [29] synthesized a hybrid mixture probabilistic model with the directional and
positional information of each point to completes point cloud registration. KOIDE et al. [30]
proposed a multi-point distribution aggregation method to extend the GICP approach.

The aforementioned methods can be classified into two categories. The first category
includes algorithms based on a global search strategy, which reaches the optimal solution
with continuous iteration. Their limitation is the existence of noise points, which increase
computational costs. The second category includes methods based on feature matching,
which extracts representative feature points from a point cloud to reduce the amount of
calculation. The selection of feature points and their description method will determine the
registration result. These methods frequently lead to low registration accuracy due to the
lack of representativeness or insufficient number of feature points. The accuracy of feature
point extraction directly affects registration precision. Therefore, studying an appropriate
method to obtain accurate feature points is a challenge.

In the current study, we use the normal vector and the curvature of a local point cloud
for feature extraction with double threshold to extract representative feature points. The
FPFH descriptor is used to describe the feature points and obtain the initial corresponding
point set. By considering the invariance of distance and angle between feature points, the
distance disparity matrix (DDM) algorithm is used to eliminate the wrong corresponding
point pairs, and thus, determine accurate corresponding point pairs. Then, the SAC-IA
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algorithm is used for coarse registration to obtain a better initial position of point clouds.
Finally, the ICP algorithm is used for fine registration. Representative feature points are
obtained by extracting feature points with double thresholds and removing mismatched
pairs, making the subsequent registration fast and accurate. The combination of coarse and
fine registration solves the problems of slowness and low accuracy of the ICP algorithm.

The remainder of this paper is organised as follows. Section 2 provides details of our
proposed method and describes relevant principles. Section 3 introduces an experiment of
this method on three models in the basic geometry library and evaluates its accuracy and
efficiency. Section 4 presents the conclusions of this study.

2. Materials and Methods

The flowchart of the proposed method, which mainly includes five steps, is shown
in Figure 1. P represents the source point cloud, and Q represents the target point cloud.
Firstly, the feature points of the origin cloud are extracted using the normal vector and
curvature with double threshold to reduce the number of point clouds and registration
time. Secondly, the FPFH is used to describe the feature points to obtain the initial set of
corresponding point pairs. Thirdly, the mismatched point pairs are removed using the
DDM algorithm to improve the accuracy of the corresponding point pairs. Fourthly, the
SAC-IA algorithm is used for the coarse registration of point clouds to provide a good initial
position for subsequent registration. Finally, the ICP algorithm is used for fine registration.
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2.1. Normal Vector Calculation

The normal vector is an important geometric attribute in a point cloud data model.
The included angle of the normal vector of the points in the local neighbourhood can reflect
the change information of the surface, as illustrated in Figure 2. When the normal vector in
the region surface changes gradually, the region is relatively flat. When the normal vector
changes abruptly, the region fluctuates considerably. Therefore, the appropriate threshold
can be set in accordance with the change in the normal vector in the neighbourhood to
obtain the feature point.

PCA [31] is a common method for calculating the normal vector. For any pi in point
cloud P, covariance analysis is performed on pi and its neighbouring points pij in its
k-neighbourhood. The specific steps for calculating the normal vector are as follows:

(1) For point pi(xi, yi, zi), its neighbourhood points pi1, pi2, . . . pik are found in a ball of
radius r.
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(2) Equations (1) and (2) are used to calculate the normal vector of point ni, where pi is
the 3D centroid of the neighbourhood point set, and C is the covariance matrix of pi.
The three eigenvectors and the corresponding three eigenvalues of covariance matrix
C are calculated via eigenvalue decomposition. The eigenvector that corresponds to
the smallest eigenvalue is the normal vector of point pi.

(3) The direction of the normal vector is determined using Equation (3). In general, the
direction of the normal vector is consistent towards the viewpoint direction (from
viewpoint vp to pi).

pi =
1
k ∑k

j=1 pij (1)

C =
1
k ∑k

j=1
(

pij − pi
)(

pij − pi
)T (2)

ni =

{
ni, ni ·

(
vp − pi

)
> 0

−ni, ni ·
(
vp − pi

)
< 0

(3)
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2.2. Curvature Calculation

Curvature is a concept that describes the degree of curvature of a surface and is a basic
attribute of a surface. During point cloud processing, the curvature is also an important
attribute for describing the geometric characteristics of point clouds. Each point in the point
cloud and its adjacent points can be typically fitted into a local surface, and the local surface
curvature is used as the curvature of the point. In the current study, the least squares
method is used to calculate the curvature of point clouds. The curvature calculation process
is summarised as follows:

(1) Point pi is set as the coordinate origin, establishing the local coordinate system
(u, v, w). The direction of the normal vector of the surface at point pi is the di-
rection of the w-axis. The u- and v- axes are on the tangent plane at point pi, as shown
in Figure 3. The u- v- and w-axes are orthogonal.

(2) Basic equation of quadric surface [32]:

S(u, v) = (u, v, w(u, v)) (4)

w(u, v) = au2 + buv + cv2 + eu + f v (5)

If e and f in Equation (5) are equal to zero, then Equation (4) represents a quadratic
parabolic surface. For point pi, its neighbourhood point pj (j = 1, 2, . . . , k) is converted into
the local coordinate system (u, v, w), and the converted coordinates are

(
uj, vj, wj

)
. The

coordinates are substituted into the formula calculation. When k is greater than 3, a set of
overdetermined equations is obtained. In accordance with the least squares method, the
optimal fitting parameters a, b, and c are finally obtained.
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(3) The first fundamental quantity (E, F, G) and the second fundamental quantity (L, M, N)
of the fitted surface can be obtained by solving the first- and second-order partial
derivatives of the equation from the basic equation of the surface. Combined with the
surface parameter equation, the principal curvature (k1, k2), Gaussian curvature (K), and
average curvature (H) can be calculated.

k1 = a + c +
√
(a− c)2 + b2

k2 = a + c−
√
(a− c)2 + b2

K = k1.k2 = LN−M2

EG−F2 = 4ac− b2

H = k1+k2
2 = EN−2FM+LG

2(EG−F2)
= a + c

(6)

The feature extraction method based on curvature can accurately identify the feature
information of a point cloud, accurately extract the detailed features of the abrupt and
gradual regions of the surface and effectively retain the feature information of the model.
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2.3. Double Threshold Feature Extraction Based on the Normal Vector and Curvature

Double threshold feature extraction based on the normal vector and curvature extracts
feature information by using the included angle of the normal vector and the threshold
of the average curvature feature weight of points in the local neighbourhood of the point
cloud. This method exhibits evident improvement in stability and accuracy due to the
constraints of the normal vector and curvature.

The angle of the normal vector is used to construct the constraint condition of feature
judgement: the angle between points pi and pj in their k-neighbourhood is expressed by θij,

where
→
ni and

→
nj are the normal vectors of the pi and pj.

θij = arccos
→
ni ·

→
nj∣∣∣→ni

∣∣∣ · ∣∣∣→nj

∣∣∣ , θijε[0, π] (7)

The change degree fi of the included angle of the normal vector of point pi is defined
as follows:

fi =
1
k ∑k

j=1θij (8)

The average curvature local characteristic weight wH of point pi in its k-neighbourhood
is defined as follows:wH(pi) =

√
1
k ∑k

i=1
(∣∣Hpi

∣∣− H
)
+
√(

Hi − H
)

H = 1
k ∑k

i=1 Hi

(9)

where H represents the average curvature of point pi in its k-neighbourhood. Whether
the point belongs to the feature point by fi of the normal vector and wH of the curvature
is determined. If fi is greater than the set threshold α1, then the point is divided into the
potential feature point sets. If fi is less than the set threshold, then it is not a feature point.
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If wH is greater than the set threshold α2, then the point is a feature point, and it is added to
the feature point set. If wH is less than the set threshold, then the point is not a feature point,
and it is removed from the potential feature point set. Then, the FPFH is used to describe
the feature point set to obtain the initial sets of corresponding point pairs A extracted from
P and B extracted from Q.

2.4. DDM Algorithm

In rigid body transformation, the distance and principal axis angle of any two feature
points remain unchanged before and after transformation. The consistent characteristics
of this distance and angle can be used to eliminate unreliable or wrong matching point
pairs. Consider the feature point sets A{a1, a2, . . . , an} and B{b1, b2, . . . , bn}, where (ai, bi)
represents the corresponding point pair. As shown in Figure 4, the distance between feature
points remains basically unchanged before and after transformation; that is,

∣∣∣da
ik − db

ik

∣∣∣ < e,
and e represents the error threshold. If a mismatch (ak, bk) occurs, then the distance
between other points in bk and B will change considerably compared with the distance
between other corresponding points in ak and A, i.e.,

∣∣∣da
ik − db

ik

∣∣∣ > e. This difference in
Euclidean distance can be used to eliminate external point pairs [33].
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The calculation process is as follows:

(1) The distance matrix for point sets A and B is calculated, i.e., MA =
[
aij
]
, MB =

[
bij
]
,

(i = 1, 2, . . . , n, j = 1, 2, . . . n), where aij = d
(
ai, aj

)
, bij = d

(
bi, bj

)
.

(2) The DDM is calculated, i.e., MDDM =
[
cij
]
, cij =

∣∣aij − bij
∣∣. Each element in the matrix

represents the difference between the Euclidean distances of two feature points before
and after rigid body transformation; hence, it is called DDM. If the point pair set has
no external value, then aij = bij, cij = 0; otherwise, if (ak, bk) is a wrong match, then
a large nonzero value will appear in row k and column k of the symmetric matrix
MDDM, resulting in (ak, bk) being distinguished from other point pairs.

(3) A vector m is defined to store the mean value of each row of MDDM, and the extreme
values mmax and mmin are determined. If the subtraction of the two values is less than
the set threshold α3, then mmax = 0, and the extreme value is continuously found;
otherwise, the cycle is exited.

From the preceding calculation process, an out-of-area matching is manifested in
MDDM by more nonzero values in its corresponding row, resulting in a large mean mi,
which is positively correlated with its offset degree. Moreover, mi can reflect the matching
accuracy of point pairs (ai, bi). Therefore, wrong matching point pairs can be detected and
eliminated by observing vector m. Then the correct sets of corresponding points AC and
BC are obtained.

2.5. SAC-IA Coarse Registration

To achieve the good registration effect of 3D point clouds, the coarse-to-fine registration
strategy is adopted. SAC-IA is used to realise the coarse registration. The principle of the
SAC-IA registration algorithm is as follows:
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(1) A number of sampling points are selected from the source point cloud P, and the
distance between each point should be greater than the minimum distance given in
advance to ensure that there are different FPFH between points.

(2) According to the FPFH, one or more points similar to the sampling points are found in
the target point cloud Q, and these similar points are regarded as the corresponding
points of the sampling points.

(3) The transformation matrix is calculated in accordance with the corresponding points.
The performance of registration is evaluated according to the total distance error
function by solving the corresponding point transformation, which is expressed
as follows:

H(li) =
{ 1

2 l2
i , |‖li‖ < mi

1
2 mi(2‖li‖ −mi), |‖li‖ > mi

(10)

in which, mi is the specified value and li is the distance difference after the correspond-
ing point transformation. When the registration process is completed, the one with the
smallest error in all the transformations is considered the optimal transformation matrix
for initial registration.

In coarse registration, we use the correct sets of corresponding points AC and BC
to replace the P and Q, and obtain the initial translation matrix. Perform the initial
transformation matrix on the point cloud AC, and get the transformed corresponding
point cloud A′C.

2.6. ICP Fine Registration

After coarse registration with the SAC-IA algorithm, the source and target point clouds
roughly coincide, but the registration accuracy is low. Then, the ICP algorithm is used for
fine registration. The specific algorithm steps are as follows:

(1) The point cloud after coarse registration P′ and the target point cloud Q are taken as
the initial point set for fine registration.

(2) For all points p′i of P′, the nearest corresponding point qi in Q is found to form the
initial corresponding point pairs.

(3) Use the least square method to solve the optimal rotation matrix R and translation
matrix T, perform R, T on the point cloud P′ and the mean square error (MSE) function
dk is minimized.

dk =
1
N ∑N

i=1‖qi −
(

Rp′i + T
)
‖2 (11)

(4) Set the threshold ε, if the condition dk − dk+1 < ε is met, end the iteration and get the
final transformation matrix R and T.

In fine registration, we use the point cloud A′C to replace the P′. According to the
finally obtained R and T, the source point cloud P is transformed into the coordinate system
of the target point cloud Q to complete the registration.

3. Results

The software environment used in this experiment is Microsoft Visual Studio 2017
and Point Cloud Library running on an AMD Ryzen 7 4800u computer with 16.0 GB and a
64-bit Windows 10 operating system.

3.1. Selection of Mian Parameters

To verify the effectiveness of the algorithm, validation experiments are performed
using Bunny, Dragon, Armadillo, and Buddha models from Stanford University, and the
Airplane model from the Modelnet40 Dataset [34]. To verify the soundness and efficiency
of the algorithm proposed in this study, it is compared with the ICP algorithm and the
algorithms in [27,28]. MSE is a commonly used error measurement method in point cloud
registration; it is the average of the sum of squares distances between the corresponding
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points of two-point clouds. A smaller MSE indicates a better registration effect. The results
of each algorithm are compared in terms of MSE and registration time.

Registration results of the proposed algorithm are related to four main parameters,
including the neighbourhood radius k, thresholds α1, α2, and α3. Table 1 shows the average
number of neighbourhood points under different values of k. For each point pi, calculate
the normal vector and curvature under different values of k.

Table 1. The average number of neighbourhood points under different values of k.

k/m 0.01 0.0009 0.0008 0.0007 0.0006 0.005 0.004 0.003 0.002 0.001

Neighbourhood points 623 507 402 309 229 159 102 58 25 5

When k = 0.001 m, the average number of neighbourhood points is too few and no
result is obtained, whilst when k ≥ 0.003 m, too many points lead to long calculation time.
Thus, the value of k is selected as 0.002 m.

Based on the calculated results of fi, wH , and MDDM, we set the initial scope of
α1 ∈ [10, 30] rad, α2 ∈ [5, 20] 1/m and α3 ∈ [0.0005, 0.002] m. Figure 5 is the flowchart
of how to obtain the threshold value α1. First, we input the initial value that α1 = 10 rad,
α2 = 5 1/m, and α3 = 0.002 m in the proposed algorithm and get the registration results
MSE M0 and time T0. Then, the step size ∆α1 = 1 is set. When the threshold value is too
large and the number of extracted feature points is too small, the registration fails. The
next registration is performed under α1 = α1 + ∆α1, and the MSE M1 and time T1 are
obtained. By comparing these two registration results, the α1 under the smaller registration
result is selected for the next comparison. Finally, we get the value of α1 with the smallest
registration result in the range. The initial value of α1 is modified, and then calculate it in
the same way to get the value of α2. The step size ∆α2 = 1 and ∆α3 = 0.0001 are set.
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The value of all parameters in the proposed algorithm are listed in Table 2.

Table 2. All parameters of the proposed algorithm.

Parameters Value Definition

k 0.002 m Neighbourhood radius
α1 20 rad Threshold of normal vector change degree
α2 15 1/m Threshold of average curvature local characteristic weight
α3 0.001 m Threshold of ending the DDM algorithm

RFPFH 0.004 m Radius of calculating FPFH
εicp 0.01 m Max distance threshold of corresponding points for ICP

Itericp 50 Max iteration number for ICP

3.2. The Results of Experiments

The experiment is divided into two cases. Case 1: the point cloud under one angle is
converted into another angle by the matrix for registration. Case 2: two-point clouds are
collected under different angles for registration.

For Case 1, the target point cloud is converted from the source point cloud with
the same number of points, and the two-point clouds exhibit one-to-one correspondence
without missing points. Case 1 simulates the unique correspondence of feature points
under ideal conditions as a way to verify that the feature points extracted by our algorithm
are valid and correct. Theoretically, if the feature points are accurate, the two-point clouds
can overlap exactly.

Table 3 shows the registration results of each algorithm for the five models in Case 1.
ICP takes a long time to process the big data point cloud, has low efficiency, and exhibits
poor registration effects. As the number of point clouds increases, the time becomes longer.
The algorithms in [27,28] down-sample the initial point cloud and extract feature points
by a single feature. The number of the extracted feature points is large and it takes time to
complete the coarse registration. Although the registration is completed, the MSE of the
two algorithms is large, which indicates that the feature points contain the wrong points. It
can also be seen from Figure 6 that there is a position error between the two-point clouds.
The MSE of our algorithm is almost zero and the two-point clouds completely overlap,
which represents exact registration with accurate feature points.

In the Airplane model, the algorithms in [27,28] spend a lot of time on coarse registra-
tion. The reason is that the down-sampling is affected by point cloud density. The proposed
algorithm calculates the feature information based on the neighbourhood points without
the influence of the point cloud density. For models with particularly complex surfaces,
such as the Buddha, many feature points take time in coarse registration, but accurate
registration can also be accomplished. In the figures, the target point clouds are in green,
the source point clouds are in red.

For Case 2, i.e., the conventional case, there are occlusion, deletion, noise interference,
and other factors, which will lead to different point cloud data collected from different
views in multi-view 3D scanning. Therefore, the accuracy of feature points plays an
important part in registration.

Table 4 shows the registration results of Case 2 in different models. The accuracy
of the ICP algorithm and the algorithms in [27,28] is comparable, whilst the proposed
algorithm is more accurate. For general surfaces, the registration time of our algorithm is
considerably shorter than that of the ICP algorithm, 1/4 of that of the algorithm in [27] and
1/2 of that of the algorithm in [28]. When the point cloud density changes, there are too
many points after the down-sample, resulting in a long registration time of the algorithms
in [27,28]. The time of our algorithm is not affected by the point cloud density and is still
able to complete the registration in a relatively short time. For complex surfaces, although
our algorithm takes longer time in registration, the accuracy is high. As can be seen from
Figure 7, our registration effect is the best compared to the other three algorithms, especially
when registering objects with complex surfaces.
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Table 3. Registration results from the same angle.

Model Number of Points Algorithm Time of Coarse Registration Time of ICP MSE

Bunny
(0◦) 40,256

ICP / 61.758 s 1.939 × 10−7

Algorithm in [27] 11.805 s 1.088 s 2.560 × 10−7

Algorithm in [28] 3.443 s 0.652 s 9.116 × 10−7

Proposed 1.676 s 0.604 s 1.259 × 10−16

Armadillo
(60◦) 23,404

ICP / 20.287 s 5.169 × 10−7

Algorithm in [27] 8.593 s 0.663 s 3.041 × 10−7

Algorithm in [28] 2.839 s 0.412 s 8.219 × 10−8

Proposed 2.807 s 0.345 s 3.515 × 10−16

Dragon
(24◦) 34,836

ICP / 56.146 s 2.735 × 10−7

Algorithm in [27] 10.561 s 0.908 s 3.967 × 10−7

Algorithm in [28] 4.833 s 0.616 s 9.306 × 10−8

Proposed 1.610 s 0.511 s 8.385 × 10−16

Buddha
(0◦) 78,056

ICP / 164.677 s 5.632 × 10−8

Algorithm in [27] 30.416 s 4.158 s 8.658 × 10−8

Algorithm in [28] 4.098 s 1.418 s 4.228 × 10−8

Proposed 20.666 s 2.873 s 6.643 × 10−16

Plane 36,980

ICP / 39.74 s 5.185 × 10−12

Algorithm in [27] 324.319 s 3.639 s 5.932 × 10−7

Algorithm in [28] 132.853 s 1.103 s 1.904 × 10−7

Proposed 1.146 s 0.539 s 1.835 × 10−15
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Table 4. Registration results of different angles.

Model Number of Points Algorithm Time of
Coarse Registration Time of ICP MSE

Bunny
(0◦ and 45◦) 40,256, 40,097

ICP / 47.315 s 9.332 × 10−6

Algorithm in [27] 6.141 s 1.261 s 1.302 × 10−6

Algorithm in [28] 2.900 s 0.737 s 2.995 × 10−5

Proposed 0.991 s 0.599 s 4.481 × 10−8

Armadillo
(60◦ and 90◦) 23,404, 28,341

ICP / 19.867 s 6.527 × 10−6

Algorithm in [27] 11.957 s 0.815 s 2.230 × 10−6

Algorithm in [28] 3.580 s 0.519 s 4.474 × 10−6

Proposed 1.558 s 0.427 s 6.581 × 10−8

Dragon
(24◦ and 48◦) 34,836, 22,092

ICP / 27.818 s 1.559 × 10−5

Algorithm in [27] 3.385 s 0.709 s 6.722 × 10−6

Algorithm in [28] 4.701 s 0.531 s 2.325 × 10−5

Proposed 1.789 s 0.348 s 9.180 × 10−8

Buddha
(0◦ and 48◦) 78,056, 69,158

ICP / 224.568 s 2.223 × 10−5

Algorithm in [27] 9.837 s 2.454 s 2.159 × 10−5

Algorithm in [28] 3.789 s 1.511 s 2.158 × 10−5

Proposed 10.260 s 1.137 s 7.440 × 10−8

Airpane 36,980, 34,117

ICP / 165.056 s 2.235 × 10−4

Algorithm in [27] 274.603 s 6.119 s 6.248 × 10−6

Algorithm in [28] 49.362 s 2.317 s 5.254 × 10−6

Proposed 0.910 s 0.491 s 2.037 × 10−8

The comparison of the number of point clouds in each processing stage is provided in
Table 5. After the double threshold feature extraction of the original point cloud, the number
of point clouds is considerably reduced. After the feature description and finding the
corresponding point pairs, the mismatched point pairs are removed by the DDM algorithm,
and the number of finally registered point clouds is about 0.1% of the original point clouds.
Therefore, the selection of highly representative feature points is a prerequisite for high-
precision registration. Compared with those of the traditional ICP and improved algorithms,
the efficiency and accuracy of our proposed algorithm are significantly improved.

Table 5. Comparison of numbers in each processing stage.

Point Clouds
Number of Points

Original Points Feature Points Initial Matched Points Final Matched Points

Bunny 0◦ and 45◦ 40,256, 40,097 1044, 487 31 15

Armadillo 60◦ and 90◦ 23,404, 28,341 2324, 2711 73 38

Dragon 24◦ and 48◦ 34,836, 22,092 1441, 1228 79 49

Buddha 0◦ and 48◦ 78,056, 69,158 7436, 5648 884 375

Airplane 36,980, 34,117 1162, 879 15 10

The algorithm proposed in this study uses neighbourhood point information to extract
feature points, eliminate mismatched point pairs, reduce the number of point cloud regis-
trations, and improve the correspondence between point pairs, which is suitable for objects
that have distinctive features on the surface. The accuracy of the registration is not affected
by the density of the point cloud, but the registration time is related to the complexity of
the surface. Compared with those obtained via down-sampling, feature points extracted
on the basis of the normal vector and curvature are more representative and can achieve
high-precision point cloud registration.
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4. Conclusions

In the process of point cloud registration, feature points affect the registration results,
which represent the big data point cloud, and can improve the efficiency of the algorithm.
In addition, the descriptor can determine the final performance. It can provide a useful
representation of the shape around the fixed point and help search for the corresponding
relationship between the two shapes, avoiding an exhaustive search. The combination of
the two can considerably improve the efficiency and accuracy of registration.

In the current study, we proposed an improved registration algorithm based on double
threshold feature extraction and DDM. We studied the translation-rotation invariance of
point cloud geometric features during rigid body transformation, and we extract feature
points with double threshold by using normal vector and curvature. Wrong points may
occur in feature extraction under a single condition. The double constraints of the normal
vector and curvature make extracting more representative feature points possible. It also
greatly reduces the number of original point clouds and reduces the number of subsequent
calculations. Some feature points extracted via down-sampling cannot represent the feature
of this region, and the probability of wrong point pairs is relatively high. FPFH is applied
to describe feature points and find initial matching point pairs quickly. According to the
principle of the DDM algorithm, it can effectively remove the mismatched point pairs of
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the initial matching and further reduce the number of point clouds. The final number of
the point cloud is just 0.1% of the original point cloud. Through the above processing, we
not only improve the accuracy of the feature points, but also gradually reduce the amount
of data to be processed at the same time, which paves the way for subsequent registration.

However, the final corresponding point pairs cannot be guaranteed to be completely
correct and influence the final registration results due to noise and other interference
factors. Besides, the registration time of this algorithm is related to the complexity of the
object surface. Too many feature points lead to a longer registration time. In the next step,
we will first perform noise processing on the original point cloud data and investigate
feature descriptors to improve the accuracy of the corresponding point pairs to help make
registration more precise.
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