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Abstract: An electrocardiogram (ECG) is an essential piece of medical equipment that helps diagnose
various heart-related conditions in patients. An automated diagnostic tool is required to detect
significant episodes in long-term ECG records. It is a very challenging task for cardiologists to
analyze long-term ECG records in a short time. Therefore, a computer-based diagnosis tool is
required to identify crucial episodes. Myocardial infarction (MI) and conduction disorders (CDs),
sometimes known as heart blocks, are medical diseases that occur when a coronary artery becomes
fully or suddenly stopped or when blood flow in these arteries slows dramatically. As a result,
several researchers have utilized deep learning methods for MI and CD detection. However, there
are one or more of the following challenges when using deep learning algorithms: (i) struggles with
real-life data, (ii) the time after the training phase also requires high processing power, (iii) they are
very computationally expensive, requiring large amounts of memory and computational resources,
and it is not easy to transfer them to other problems, (iv) they are hard to describe and are not
completely understood (black box), and (v) most of the literature is based on the MIT-BIH or PTB
databases, which do not cover most of the crucial arrhythmias. This paper proposes a new deep
learning approach based on machine learning for detecting MI and CDs using large PTB-XL ECG
data. First, all challenging issues of these heart signals have been considered, as the signal data are
from different datasets and the data are filtered. After that, the MI and CD signals are fed to the
deep learning model to extract the deep features. In addition, a new custom activation function is
proposed, which has fast convergence to the regular activation functions. Later, these features are
fed to an external classifier, such as a support vector machine (SVM), for detection. The efficiency of
the proposed method is demonstrated by the experimental findings, which show that it improves
satisfactorily with an overall accuracy of 99.20% when using a CNN for extracting the features with
an SVM classifier.
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1. Introduction

A heart attack (the scientific name of which is myocardial infarction (MI)) is a condition
in which there is a blockage or narrowing in one or more of the coronary arteries that supply
the heart muscle. The main cause of this disease is atherosclerosis [1]. The hardening
process begins at a relatively young age and develops gradually over the years. This is
a complex process involving various blood cells, cholesterols, proteins, and hormones,
which together cause the formation of a hardening plaque in the walls of blood vessels.
This plaque develops from a thin layer to become a mass of tissue that grows into the
artery lumen and impedes blood flow through it. The causes of MI and risk factors are
as follows [2]:

• Coronary artery disease.
• Hypoxia.
• Taking drugs or certain toxic chemicals, such as cocaine.

The hazard of this type of health problem is that it typically strikes the patient un-
expectedly, necessitating immediate action to limit the crisis for fear of death or severe
cardiac damage. Therefore, early diagnosis of an MI can be critical for treatment [3]. An
electrocardiogram (ECG) is an examination that enables the progression of an electrical
wave that regulates the work of the heart muscle. In a typical pacemaker, this electrical
wave goes through the atria and forces them to contract, assisting blood flow from the
atria to the ventricles. The electrical signal then travels to the heart chambers via unique
conducting fibers, causing them to contract, resulting in blood flow from the left ventricle
to the bodily tissues via the aorta and blood flow from the right ventricle to the lungs. The
existence of abnormalities in the creation and conduct of the electrical wave, which may
be produced by disturbances in the heart conduction system, can be detected via an ECG
examination [4]. Moreover, changes in the ECG may be an indicator of the presence of
MI, whether they are recent or old. In short, the ECG processing methodology can help
detect the most common heart diseases, such as arrhythmias, coronary heart disease, and
heart attacks. However, manual evaluation of ECG signals is time consuming and tedious.
Therefore, accurate detection of MI in the medical field is very critical for timely diagno-
sis by doctors and clinicians. As a result, researchers are trying to develop an accurate
methodology for the automatic detection of MI.

Related Work and Motivation

As mentioned before, the previous methods are classified into two categories, namely,
machine learning and deep learning approaches. The different machine learning techniques
available in the literature are the support vector machine (SVM) and K-nearest neighbor
(KNN) [5], Fourier decomposition method (FDM) with SVM [6], etc. However, convolu-
tional neural networks (CNNs), recurrent neural network (RNNs) [7], residual networks [8],
and capsule networks [9] are also utilized to detect different types of beats.

However, the authors have only included approaches based on deep learning that
are relevant to the scope of the work presented. Furthermore, several recent review
studies in this field showed that almost all recent works in this field have focused on deep
learning [8,10–13].

Smigiel et al. [14] developed three deep learning methods to automatically classify
primary ECG signals. The first method was based on CNN, the second method was based
on SincNet, and, finally, the last method was based on CNN with entropy-based features.
They worked on five superclasses from the PTB-XL dataset and obtained the best overall
accuracy of 76.50% using a the CNN with entropy. In other studies, Smigiel et al. [8] also
automatically classified the ECG signals based on deep learning techniques and R-peak
detection. They worked on five superclasses from the same database (PTB-XL) and obtained
the best overall accuracy of 76.20%. Pałczynski et al. [11] determined the applicability of
using Few-Shot Learning (FSL) for the classification of ECG signals. They extracted the
QRS complex from the ECG signals and used a deep CNN for classification. They worked
on the PTB-XL database on the five superclasses and obtained the best overall accuracy
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of 79%. Prabhakararao and Dandapat [12] designed a method for multi-class arrhythmia
classification based on a CNN ensemble. They used data augmentation techniques and
preprocessing to reduce the computational burden and for baseline artifact removal. They
evaluated their method on the 12-lead of the PTB-XL database on the five superclasses and
obtained an overall accuracy of 85.65%. Zhang et al. [13] presented a multi-lead fusion
method for multi-class arrhythmia classification. They worked on the five superclasses
from the PTB-LX database and obtained an overall accuracy of 93.10%. All of these previous
methods [8,11–14] obtained low accuracy when using the five superclasses for classification.
The proposed method achieved the highest accuracy compared with these methods on the
five superclasses. Table 1 shows a comparison of related works based on different criteria.

Table 1. Comparison of related works.

Literature Year Database Classifiers Remarks
(Accuracy in %)

Smigiel et al. [14] 2021 PTB-XL
CNN

SincNet
72.00
73.00

Smigiel et al. [8] 2021 PTB-XL Neural networks 76.20

Pałczynski et al. [11] 2022 PTB-XL Neural networks 80.20

Prabhakararao et al. [12] 2022
PTB-XL

CinC-training DMSCE 84.50
88.30

Zhang et al. [13] 2021
China Physiological Signal

Challenge 2018 MLBF-Net 87.70

Jahmunah et al. [15] 2021 PTB GABORCNN 98.84

Alghamdi et al. [16] 2020 PTB VGG-Net 99.20

Anand et al. [17] 2022 PTB-XL CNN 95.80

He et al. [18] 2021
Combination of PTB and

PTB-XL

Multi-feature-branch
lead attention

neural network (MFB-LANN)
94.19

There are various artificial intelligence (AI) approaches that are employed for the
detection of MI based on the analysis of ECG signals [5,6,19]. These approaches are
categorized into two common approaches, namely, machine learning [7,20,21] and deep
learning approaches [17,18,22]. Deep learning methods are thought to be more reliable
than typical machine learning methods, especially when dealing with large amounts of
data. Furthermore, the multi-layer structure of deep learning techniques provides tools for
effective feature interpretation and pattern recognition, which are critical when classifying
large unstructured datasets. Despite their superior features, typical deep learning networks
are widely acknowledged to have several drawbacks, which include the following:

• Misclassification in some high-inter-class-imbalance cases.
• Increasing the data over-fitting as a result of depleting the datasets, which reduces

detection accuracy and, particularly, sensitivity.
• Obtaining low accuracy when implementing these methods in real-time applications.
• Requiring the detection of the QRS complex.
• Using complex signal processing methods and inefficient MI detection methods.

Consequently, this work is aimed toward overcoming the above drawbacks via a
novel technique based on deep learning approaches for MI detection. Recently, deep
learning approaches have shown success in many applications, such as pattern recognition
applications [23,24], internet of things (IoT) applications, medical applications [25], etc.

In this paper, we first filter the ECG signals to eliminate the noise. Then, we propose a
deep learning model based on a convolutional neural network (CNN) in order to extract
the deep features from the input signal. After that, we optimize and select the features from
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the convolutional layers. Finally, the selected features are fed to an external classifier, such
as an SVM, for MI detection. According to the results of the analysis and the investigation
into the PTB-XL database [26], the proposed method outperforms recent deep learning
methods. This paper has the following main contributions:

• The deep features are extracted from the fine-tuned CNN architecture, which elimi-
nates the requirement of handcrafted feature extraction techniques. The whole end-to-
end system can also be called explainable artificial intelligence (XAI).

• A new customized activation function is designed and the convergence of the function
is tested through experimentation. The proposed activation function is fast compared
to the regular activation functions, such as the sigmoid function.

• The network is validated on a large publicly available dataset, i.e., PTB-XL, which
allows the detection of crucial cardiac disorders, such as MI, CD, HYP, and STTC. This
is the major contribution of the work, as more than 90% of the literature is based only
on MIT-BIH and PTB.

• The proposed algorithm is able to achieve good results in classification tasks, which is
an important component of the development of automated computer-aided systems
for the detection of MI and CDs. The proposed method allows the user to understand
the cause of the decision of the machine learning by analyzing feature maps extracted
by the deep learning algorithm.

• The proposed end-to-end ECG beat classification system enables human users to
understand and effectively manage emerging decisions in intensive care units (ICUs).

2. Methodology and Dataset

The detailed methodology and the dataset (PTB-XL) used to evaluate the performance
of the proposed network architecture are described in this section. The dataset includes
a significant portion of healthy records, as well as a wide range of diagnostic classes.
Beyond the demonstration of the exceptional performance of closed-source algorithms
on customized datasets with restricted access, there are at least two significant barriers
preventing further advancement in this area: (1) the non-availability of large publicly
accessible datasets for proper training; (2) the absence of clear evaluation methods for these
algorithms. We hope to address both problems and close this research gap by combining
machine and deep learning techniques. PTB-XL is a large dataset with an outstanding
variety, and it is distinguished by its signal quality. Its rich coverage of pathologies, many
different co-occurring diseases, and a large number of healthy control samples is rarely
found in clinical datasets. Therefore, PTB-XL is a great choice for training and testing
algorithms in the real world, where machine or deep learning algorithms have to work
reliably no matter the recording conditions or the data quality. A detailed description of
the beats in the database is given in Section 2.1.

2.1. ECG Dataset Description

In this study, we employed the PTB-XL electrocardiography dataset [26], which is an
updated version of the PTB database and the most common dataset used for MI detection
in the literature [13,15–18,22]. This dataset consists of 21,837 records with a length of 10 s
collected from 18,885 mixed individuals (men and women). For each individual, there are
several ECG records (ranging from one to five records). The records in this dataset include
12 conventional leads with reference electrodes on the right arm. The signals have a 16-bit
resolution and are digitized at 500 samples per second. The dataset is labeled with two
classes, namely, the superclass and subclass. A detailed description of the superclass and
subclass is given in [26]. In this paper, we worked on the superclass, which is classified into
the normal class (NORM) and 4 diagnostic classes, namely, MI, conduction disturbance
(CD), hypertrophy (HYP), and ST/T change (STTC). In PTBXL data, ECG signals are not
annotated beat by beat; experts annotate the whole 10-second-duration signal with multiple
annotations. When one signal contains multiple labels, it is very difficult to classify it.
Therefore, we chose single-labeled data only. Table 2 shows the number of beats in the
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original dataset with and without overlapping. The detailed splitting of the data for the
experimentation is shown in Table 3.

Table 2. Original dataset without multiple annotations.

Beat Name
Number of Beats

Utilized for Training
and Cross-Validation

Number of Beats Utilized
for Testing

Normal (Norm) 5087 2150
Myocardial infarction (MI) 2055 881
Conduction disturbance (CD) 2240 992
Hypertrophy (HYP) 560 255
ST/T change (STTC) 2100 964

Table 3. Detailed splitting of the data to validate the proposed method.

Total Number of Beats in
the PTB-XL ECG Database

Number of Beats for Training
and 10-Fold Validation (70%)

Number of Beats for
Testing (30%)

17,232 12,040 5242

2.2. MI Methodology

The general block diagram of the proposed method for the detection of MI and CDs is
shown in Figure 1. As shown in the figure, we find that the proposed system comprises the
following stages: a signal preparation and pre-processing stage, a deep feature extraction
stage, a feature selection stage, and, finally, the detection stage. The detailed description of
these stages is as follows.

PTB-XL
   ECG Database

Filtering

   Selection of
 Super Classes

Pre-processing

Training

Validation

 Testing

Data Splitting
Conv Layer

Batch Normalization

Conv Layer

Batch Normalization

Max-Pooling

Conv Layer

Batch Normalization

Max-Pooling

Flatten

Dense

 Optimized features

 Recognized
  ECG beat

Fu
lly

 Tr
ain

ed
 C

NN
 M

od
el

Feature Set

   Support Vector Machine
               (SVM)

Training

Validation

 Testing

Data Splitting

Figure 1. General diagram of the proposed method.

2.2.1. ECG Signal Pre-Processing

First, the input ECG signals were down-sampled to 100 Hz, and a 10-s ECG signal was
present in each row of a particular class. ECG signals were then caught and recorded by
skin electrodes, making them susceptible to contamination from numerous sorts of artifacts



Sensors 2022, 22, 6503 6 of 14

or noise. Therefore, the down-sampled ECG signals were filtered using a band-pass filter of
0.1–100 Hz to eliminate the noise. Then, we selected the ECG signals from the superclasses
and split the data into training, validation, and testing sets using a 10-fold cross-validation
technique [27].

Figure 2 shows the network architecture of the proposed CNN model. As shown in the
figure, the proposed model consists of 14 layers, which are categorized as 4 Conv_layers,
2 max-pooling layers, 4 batch normalization layers, a flatten layer, and 2 dense layers. The
model summary (output shape and parameter numbers) is shown in Figure 2. The max-
pooling layer is important for suppressing the convolved feature’s dimensions. This layer
removes all noisy activations while also performing de-noising and dimension reduction.
The dense layer is frequently used to obtain nonlinear combinations of high-level properties
from the output of the convolutional layer.

Convolutional Layer I

Batch Normalisation Layer I

Convolutional Layer II

Batch Normalisation Layer II

Convolutional Layer III

Batch Normalisation Layer II

Max-Pooling

Convolutional Layer IV

Batch Normalisation Layer III

Max-Pooling

Flatten Layer

Dense

 ECG Signal
     (1000,1)

(1000,16)

(1000,16)

(1000,16)

(1000,16)

(500,16)

(500,32)

(500,32)

(500,32)

(500,32)

(250,32)

(8000)

 Detected ECG Beat

(1000)

Dense

(5)

Figure 2. The architecture of the deep learning model.

The proposed CNN model was used to extract the deep features of the input ECG
signals. In particular, we selected the output of one layer for the feature extraction. Here,
we selected the output of a dense layer as the feature for the proposed method with a
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dimension of 1 × 1000. We selected this layer because it provided a one-dimensional feature
set (F1 to F1000 for each ECG signal row). In addition, we obtained the highest accuracy
compared with the other layers when using the output of this layer as a feature extractor.
Moreover, as the ECG signals had a duration of 10 s, they had many beats in them, which
required more depth in the network in order to extract complex features. Finally, we fed
the selected features to the SVM classifier for classification.

The activation function used in this model was customized. We employed a new
activation function such that the convergence was fast compared to a regular activation
function, such as a sigmoid. The equation of the proposed activation function is as follows:

y = f (x) =
1

1 + 10−x (1)

The authors compared the proposed activation function with the sigmoid activation
function, as shown in Figure 3. In the figure, we can see that the proposed activation
function was faster in convergence than the sigmoid function. The major advantages of the
proposed activation function are as follows:

• The test loss is small compared to those of conventional activation functions.
• There was faster initial convergence, which decreased the training time of the network.
• There was greater convergence stability over a larger range of learning rates.
• Deep neural networks can be trained much faster than before. High learning rates

regularize the network, requiring a reduction of all other forms of regularization to
maintain a balance between under-fitting and over-fitting.

The performance of the proposed network with various activation functions is depicted
in Table 4.

Table 4. The performance of the proposed network with various activation functions.

No Activation Function Name Performance in Detection of the ECG
Beats (in %)

1 Sigmoid 98.46
2 tanh 96.32
3 ReLU 93.67
4 Customized activation function 99.56

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x
)

Convergence of the proposed (customized) activation function and sigmoid function

Customized
Sigmoid

Figure 3. Convergence of the proposed (customized) activation function and the sigmoid function.
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2.2.2. SVM for MI Detection

Classifiers are used to divide a batch of data into classes. This is a method of mapping
input data into a certain class by using an algorithm. In this study, the selected features
from the proposed deep CNN model were classified using an SVM. An SVM is a clas-
sification technique that can be used to solve problems such as data classification and
regression. An SVM uses a hyperplane for two separate classes when deciding on the best
separating hyperplane for linearly classifying data [28]. The hyperplane’s expression is
given as follows:

f (x) = wTx + b (2)

where x is the input, wT is the W transpose, w is a vector normal to the hyperplane, and b is
an offset. In problems where more than two classes are present for classification (as in this
study), a multi-class SVM classifier is used. For multi-class classification using an SVM,
several methods are used, which are:

• The one-vs.-one (OVO) approach.
• The one-vs.-all (OVA) approach.

One vs. rest is a heuristic technique for applying binary classification algorithms for
multi-class classification. One vs. rest is also known as one vs. all or OVA. The multi-class
dataset is divided into various binary classification issues. The most accurate model is used
to make predictions after each binary classification problem has been trained with a binary
classifier. With this method, each model must forecast a probability of class membership or
a score that resembles probability. The class index with the highest score, which is known
as the argmax, is then used to predict a class. In this paper, the OVA classification approach
is used to classify the ECG signals into NORM and 4 diagnostic classes, namely, MI, CD,
HYP, and STTC. The hyper-parameter settings used to implement the SVM in this study
are shown in Table 5.

Table 5. The default settings used to implement the SVM.

Hyperparameters Values

Regularization parameter C 1.0

Kernel ‘Radial Basis Function (RBF) kernel’

Degree of the polynomial kernel function 3

Gamma (kernel coefficient for ‘rbf’) ‘scale’

Shrinking True (if the number of iterations is large, then shrinking can shorten the training time)

Probability
False (Whether probability estimates are enabled—this must be enabled before running
the fit; it will slow down that method as it utilizes 10-fold cross-validation internally,

and the predict_proba may differ from predict).

Tol 0.001 (tolerance for the stopping criterion).

Cache_size 200 (specifying the size of the kernel cache).

max_iter −1 (hard limit on iterations within the solver, or −1 for no limit).

decision_function_shape ‘ovr’.

break_ties

True (if true, decision_function_shape = ‘ovr’ and number of classes > 2, predict will
break ties based on the confidence values of decision_function; otherwise, the first tied
class is returned. Please note that breaking ties incurs a somewhat large computational

cost relative to a simple prediction).

random_state
None (controls the creation of pseudo-random numbers for shuffling data for

probability estimates. When the probability is False, it is ignored. An integer is passed
for output that is reproducible over several function calls).

3. Computational Results and Discussion

A Python environment was used to implement the experiments in this paper, which
made use of the keras, tensorflow, matplotlib, and pandas libraries. The desktop work-
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station used in this study had the following specifications: The RTX 2060 graphics card
had six gigabytes of GDDR6 memory and 32 GB of RAM. We performed pre-processing
of the input ECG signals. After that, the pre-processed signals were fed to the proposed
deep CNN for extraction of the deep features. Finally, the classification task was performed
using an SVM. We applied a 10-fold cross-validation approach in order to evaluate the
proposed method. The PTB-XL dataset [26] was employed; this is the expanded version of
the PTB dataset [29], which is the most widely used MI signal database in the field of ECG
classification research. The average classification time when running the proposed method
was 0.2553 s.

3.1. Performance Metrics for Evaluating the Proposed Method

The effectiveness of the proposed method was evaluated using four statistical parame-
ters, i.e., precision (Pre), recall (Rec), accuracy (Acc), and the comprehensive F-score metric.
Rec is also called sensitivity (Sen). A detailed explanation of these metrics is available
in [12]. The following formulae were used to calculate the performance parameters of
the system:

Precision(Pre) =
Sum o f all True Positives

Sum o f allTrue Positives + Sum o f all False Positives
=

TP
TP + FP

(3)

Recall(Rec) =
Sum o f all True Positives

Sum o f allTrue Positives + Sum o f all False Negatives
=

TP
TP + FN

(4)

OverallAccuracy(OAcc) =
No o f correctly detectedinstances

Total number o f instances
=

TP + FN
TP + TN + FP + FN

(5)

F1 − score(F) =
2 ∗ Precision ∗ Recall

Precision + Recall
=

TP
TP + 1

2 (FP + FN)
(6)

where the true positive (TP) rate is concerned, this refers to the number of relevant cases
that the model properly identified as relevant. The true negative (TN) rate is the proportion
of outcomes in which the model predicted the negative class accurately. The false positive
(FP) rate is the number of irrelevant instances that were wrongly recognized as relevant
by the model. The false negative (FN) rate refers to the number of relevant events that the
model wrongly labeled as irrelevant.

We usually have two classes in binary classification, which are often referred to as
“positive” and “negative”, and we tried to predict the class for each sample. In a typical
multi-class classification problem, we must classify each sample into one of N different
classes. Precision is calculated in an imbalanced classification problem with more than two
classes as the sum of true positives across all classes divided by the sum of true positives
and false positives across all classes. In imbalanced classification problem with more than
two classes, recall is calculated as the sum of true positives across all classes divided by
the sum of true positives and false negatives across all classes. Maximizing precision will
reduce the number of false positives, while maximizing recall will reduce the number of
false negatives.

3.2. Comparative Analysis

Two scenarios were employed to evaluate the proposed model. Initially, we trained
the proposed deep learning architecture as an end-to-end model with the PTBXL data and
then performed the classification. Second, we extracted and selected the features from the
flatten layer and fed these features to the SVM to train and test the dataset.

3.2.1. Results of the Proposed End-to-End CNN Model (First Scenario)

In this scenario, we employed the deep CNN model for feature extraction and classifi-
cation as an end-to-end model. The classification was performed by using the layer in the
model (Soft-Max layer), where the inputs of this layer were the vector features resulting
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from the dense layer with a size of 1000 to classify five heart signal classes. The confusion
matrix of the proposed model is shown in Figure 4. In addition, the overall performance
of the proposed CNN model for each class based on the presented evaluation metrics is
shown in Table 6. Moreover, the accuracy and loss curves for the training and validation
are shown in Figures 5 and 6, respectively.

N M
I

C
D

H
YP

ST
TC

Predicted Label

N

MI

CD

HYP

STTC

Ac
tu

al
 L

ab
el

5054 0 16 2 15

0 2032 0 22 1

12 5 2222 1 0

5 18 0 537 0

23 0 7 5 2065
0

2000

4000

Figure 4. Confusion matrix of the proposed end-to-end CNN model.

Table 6. Overall performance of the proposed end-to-end CNN model for each class.

Class n (Truth) n (Classified) Accuracy
(in %)

Precision
(in %)

Recall
(in %) F-Score

N 5054 5087 99.39 99.21 99.35 0.992
MI 2032 2055 99.62 98.88 98.77 0.988
CD 2022 2240 99.66 98.98 99.20 0.990
HYP 537 560 99.56 94.74 95.89 0.953
STTC 2065 2100 99.57 99.23 98.33 0.987

Overall Accuracy 98.90 (in %)
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0.8
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1.0
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Performance acc racy vs Epochs
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Figure 5. Proposed end-to-end CNN training and validation accuracy curve.

From the confusion matrix in Figure 4, we can show that approximately 99.39% of the
ECG signals were correctly classified as normal signals, 0.61% of the normal signals were
wrongly classified as CD signals, 0.03% of the normal signals were wrongly classified as
HPY signals, and 0.31% were wrongly classified as STTC signals. In addition, 99.62% of the
MI signals were correctly classified as MI signals, 1.08% were wrongly classified as HYP
signals, and 0.04% were wrongly classified as STTC signals. Moreover, 99.66% of the CD
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signals were correctly classified as CD signals, 0.53% were wrongly classified as normal
signals, 0.22% were wrongly classified as MI signals, and 0.04% were wrongly classified
as HPY signals. In addition, 99.56% of the HYP signals were correctly classified as HYP
signals, 0.89% were wrongly classified as normal signals, and 3.21% were wrongly classified
as MI signals. Finally, 99.57% of the STTC signals were correctly classified as STTC signals,
1.09% were wrongly classified as normal signals, 0.33% were wrongly classified as CD
signals, and 0.23% were wrongly classified as HYP signals.

0 15 30 45 60 75 90 105 120 135 150
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0.0

0.2

0.4

0.6

0.8

1.0

1.2

Er
ro
r
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Figure 6. Proposed end-to-end CNN training and validation error curve.

From the analysis of the results shown in Table 6, we can observe that the overall
accuracy of the proposed end-to-end CNN model was 98.90% with a total TP equal to 11,710.
The average Pre for all five classes was 98.20%, the average Rec for all five class was 98.20%,
and the average F-score for all classes was 98.20%. From the curves in Figures 5 and 6, we
can observe that, after 90 epochs of training, the improvements were marginal, and after
120 epochs, the model could be considered fully trained.

3.2.2. Results of the Proposed Deep CNN Model with the SVM Classifier (Second Scenario)

In this scenario, we employed the proposed CNN as a feature extractor by selecting
the output of the flatten layer and fed the features to an external classifier for classification
(in this case, we used the SVM classifier). The flatten layer provided a 1D feature set (from
Feature 1 to Feature 1000) for each ECG signal row. A multi-class SVM classifier was used
in this paper to classify the used data into the five ECG classes. The confusion matrix of the
proposed model when using the SVM as a classifier is shown in Figure 7. In addition, the
overall performance of the CNN model with the SVM for each class based on the presented
evaluation metrics is shown in Table 7.

Table 7. Overall performance of the proposed CNN model with the SVM for each class.

Class n (Truth) n (Classified) Accuracy
(in %)

Precision
(in %)

Recall
(in %) F-Score

N 2140 2149 99.64 99.53 99.58 0.995
MI 877 881 99.58 97.99 99.55 0.987
CD 985 992 99.81 99.70 99.29 0.994
HYP 238 255 99.64 99.17 93.33 0.961
STTC 959 964 99.73 99.07 99.48 0.992

Overall Accuracy 99.20 (in %)

From the confusion matrix in Figure 7, we can see that 99.64% of the normal ECG
signals were correctly categorized as normal signals, 0.36% were wrongly categorized as
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MI signals, 0.09% were wrongly categorized as HPY signals, and 0.09% were wrongly
categorized as STTC signals. In addition, 99.58% of the MI signals were correctly cate-
gorized as MI signals, 0.42% were wrongly categorized as CD signals, and 0.34% were
wrongly categorized as STTC signals. Moreover, 99.81% of the CD signals were correctly
categorized as CD signals, 0.50% were wrongly categorized as MI signals, and 0.20% were
wrongly categorized as STTC signals. In addition, 99.64% of the HYP signals were correctly
categorized as HYP signals, 2.74% were wrongly categorized as normal signals, 3.13% were
wrongly categorized as MI signals, and 0.78% were wrongly categorized as STTC signals.
Finally, 99.73% of the STTC signals were correctly categorized as STTC signals, 0.31% were
wrongly categorized as normal signals, and 0.20% were wrongly categorized as CD signals.
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Figure 7. Confusion matrix of the SVM classifier.

From the analysis of the results shown in Table 7, we can observe that the overall
accuracy of the proposed CNN model with the SVM was 99.20% with a total TP equal to
5199. The average Pre for all five classes was 99.09%, the average Rec for all five classes was
98.24%, and the average F-score for all classes was 98.58%.

From the previous results, we can observe that the overall performance of the pro-
posed deep CNN model with the SVM was better than that when using the deep CNN
model for classification. A comparison between the proposed deep CNN model and other
recent works on the PTB-XL database is presented in Table 8. From the table, we can
observe that the proposed model was more robust and efficient than other deep learning
models. Therefore, in our future work, we can try new technologies for adaptive feature
selection and reduction of the feature dimension, such as those in [30–32], to improve the
performance of our method.

Table 8. Comparison between the proposed deep CNN method and other recent methods.

Literature Year Database Technique Acc
(in %)

Pre
(in %)

Rec
(in %) F-Score

Smigiel et al. [14] 2021 PTB-XL
CNN and

entropy-based features 89.14 71.40 66.20 68.00

Smigiel et al. [8] 2021 PTB-XL
Deep learning

and R-peak detection 76.20 66.7 66.7 68.30

Pałczynski et al. [11] 2022 PTB-XL
Deep CNN

and QRS complex detection 79.00 70.60 70.60 70.60

Prabhakararao et al. [12] 2021 PTB-XL CNN ensemble 85.65 84.25 85.21 84.55

Zhang et al. [13] 2021 PTB-XL
Multi-lead-branch

fusion network 93.10 94.30 93.10 92.80

Proposed Method 2022 PTB-XL
Deep CNN model

with SVM classifier 99.20 98.20 99.20 98.60
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4. Conclusions

The main contribution of this study is the proposal of a new approach based on the
selection of deep features for the detection of MI and CDs without using any handcrafted
feature extraction methods or requiring the detection of the QRS complex. The efficiency
of the proposed system was analyzed by using the PTB-XL database and was compared
with existing state-of-the-art methods in this field. In addition, we proposed a new custom
activation function, which was fast compared to regular activation functions, such as the
sigmoid function. A ten-fold cross-validation approach was applied in order to evaluate
the proposed method. Two scenarios were employed to evaluate the proposed model.
The first scenario used the proposed deep CNN model for classification, and the second
scenario used the CNN as a feature extractor and the SVM as a classifier to classify normal
ECG signals and four other heart diseases. The results showed that the second scenario
achieved better performance than those of the first scenario. The best accuracy, precision,
recall, and F-score of the proposed model were 99.20%, 99.09%, 98.24%, and 98.58%,
respectively. The proposed method was more robust and more efficient than other previous
deep models for the detection of MI and CD signals. In the future, we will test the proposed
deep model on several types of signals, such as electroencephalogram (EEG) signals, to
see how it performs. In addition, we can employ an optimization technique, such as a
genetic algorithm, to select the best features from the extracted deep features. Furthermore,
adaptive selection/weighting of features is typically used for dimensionality reduction
and performance improvement. The features with high discrimination, high accuracy, and
low correlation should be selected and provided with high weights. Finally, we can try
to employ more than one classifier (i.e., an ensemble classifier) on the same dataset and
observe the results.
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