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Abstract: Instance segmentation has been developing rapidly in recent years. Mask R-CNN, a two-
stage instance segmentation approach, has demonstrated exceptional performance. However, the
masks are still very coarse. The downsampling operation of the backbone network and the ROIAlign
layer loses much detailed information, especially from large targets. The sawtooth effect of the edge
mask is caused by the lower resolution. A lesser percentage of boundary pixels leads to not-fine
segmentation. In this paper, we propose a new method called Boundary Refine (BRefine) that achieves
high-quality segmentation. This approach uses FCN as the foundation segmentation architecture,
and forms a multistage fusion mask head with multistage fusion detail features to improve mask
resolution. However, the FCN architecture causes inconsistencies in multiscale segmentation. BRank
and sort loss (BR and S loss) is proposed to solve the problems of segmentation inconsistency and the
difficulty of boundary segmentation. It is combined with rank and sort loss, and boundary region loss.
BRefine can handle hard-to-partition boundaries and output high-quality masks. On the COCO, LVIS,
and Cityscapes datasets, BRefine outperformed Mask R-CNN by 3.0, 4.2, and 3.5 AP, respectively.
Furthermore, on the COCO dataset, the large objects improved by 5.0 AP.

Keywords: instance segmentation; sawtooth effect; segmentation inconsistency; rank and sort loss;
boundary region loss

1. Introduction

Instance segmentation is a classical task in computer vision that combines object-
detection and semantic-segmentation tasks. It is widely used in fields such as unmanned
vehicles and medical image analysis. HTC [1] designed a multitasking, multistage hybrid
cascade structure that combines cascading and multitasking at each stage to improve
information flow. It also incorporated a semantic segmentation branch to further improve
accuracy. Fine boundaries, according to Cheng and others [2], can offer precise localization
and improve the visibility of the mask segmentation. Object masks and boundaries are
learned using the exemplary boundary information, and a mask head with preserved
boundaries is built. Kirillov and others [3] viewed the image-segmentation problem as
a rendering problem, and optimized object edge segmentation with a novel upsampling
approach with better performance on edge segmentation. PointRend iteratively performs
point-based predictions at blurred areas for high-quality image segmentation. CondInst [4]
uses an instance-based dynamic instance-aware network instead of ROI, which lacks
cropping and alignment operations, and speeds up inference. SOLO [5] transformed the
instance segmentation problem into a category-aware prediction problem and an instance-
aware mask-generation problem by dividing the grid and improving inference speed.
YOLACT [6] generates instance masks with the linear combination of prototype masks
and mask coefficients, and this process does not rely on repooling, which improves mask
quality and inference speed. BlendMask [7] achieves high-quality mask prediction by
combining top–down and bottom–up approaches to exploit fine-grained information at
lower layers. Polytransform [8] is a postprocessing method that first generates instance-
level masks using the segmentation network, and then transforms the masks into polygons
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and inputs them into the deformation network, which transforms these polygons into
object boundary shapes.

Mask R-CNN [9], a top–down detector that follows the idea of detection first and
segmentation subsequently, is the most representative instance-segmentation approach. It
uses a deep backbone network that drives the detector to obtain powerful localization and
differentiation capabilities to recognize objects at different scales. However, deep networks
result in coarse feature resolution. When these features are mapped back to the original
input space, a large number of image details are lost. Feature alignment operation [9] further
exacerbates this phenomenon. Unlike instance segmentation, semantic segmentation can
gradually fuse shallow features through multiple upsampling operations to obtain high-
resolution features with a large amount of detailed information, such as Unet [10]. Instance
segmentation shares some traits with semantic segmentation.To prove this conjecture, the
P2 feature map with the finest feature information in feature pyramid networks (FPNs) [11]
is used as the input feature of the mask network. As shown in Figure 1, using the P2
layer as segmentation feature achieved the same performance as that using different layer
features as segmentation features. This indicates that the P2 layer is fully equipped with
different scales of mask information and has higher feature resolution.

Figure 1. Comparison of mAP for different feature layers. P2, P3, P4 and P5 denote the output
features of FPN [11]. Its output features are extracted by RoIAlign [9] and passed into the FCN [9].
(a,c) Extraction of the P2 feature layer of the FPN as the input features of the FCN. (b,d) Extraction of
all its feature layers as input features to the mask head. (a,b) Resnet50 is used [12]. (c,d) Resnet101 is
used [12]. On COCO2017 validation using a 1 training strategy, the above experiments were evaluated.

The greater the resolution is, the more detailed the mask prediction in terms of feature
space resolution. However, the experiment showed that the results were not so. With the
change in resolution, inconsistency in segmentation appared at different scales. As shown
in Figure 2, the performance effect of small- and medium-object segmentation decreases
when the performance on large objects is improved. When the segmentation performance
of large objects is poor, the segmentation performance of small and medium-sized objects is
better. The loss function may be to blame for this phenomenon.To address this phenomenon,
subsequent work will revolve around the loss function.
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Figure 2. Comparison of the mask evaluation at different resolutions. The first 14 of 14-14 denotes
that the input size of FCN is 14× 14 and the second 14 denotes that its output size is 14× 14. Different
input and output were obtained in the same way. The above experiments used Resnet50 [12] as the
backbone network, and were trained and validated on the COCO dataset using a 1 training plan.

The significance of the object’s boundary and shape information was ignored by
previous instance segmentation methods [1,4–6,9,13,14], which treated all pixels equally.
More consideration is given to object boundaries for a segmentation task. It is challenging to
categorize the pixels of the boundary since the proportion of boundary pixels is significantly
smaller than the proportion of overall object pixels (around 1% and even smaller for large
targets). As shown in Figure 3, the boundaries are rough, and the overlap between objects
is not reasonable. The prediction of the boundary pixels almost completely determines
the segmentation quality. Fine boundaries, according to Cheng and others [2], can offer
precise localization and improve the visibility of the mask segmentation. Object masks
and boundaries are learned using the exemplary boundary information, and a mask head
with preserved boundaries is built. Kirillov and others [3] viewed the image-segmentation
problem as a rendering problem, and optimized object edge segmentation with a novel
upsampling approach with better performance on edge segmentation.

On the basis of the analysis above, our primary goal was to build a straightforward and
effective mask head that produces high-quality masks while retaining the robust detection
capabilities of Mask R-CNN [9].To implement it, the FCN [9] mask-prediction network
was used as the base network. The fine-grained mask features were then supplemented
with much detailed information in the P2 layer. The detailed information that the model
loses can be supplemented by these fine-grained features. The multistage idea is widely
used in object detection [13,15] and image segmentation [1,3]. We applied this idea to
instance segmentation to compensate for the loss of detailed features caused by ROIAlign.
In particular, upsampling is used to gradually increase the 14× 14 feature map to 56× 56
using FCN as the baseline. Then, after convolutional layers, fine-grained features are
gradually fused to produce high-quality mask prediction by parallelizing a fine-grained
feature complimentary auxiliary line that extracts various resolution features on the P2
layer using RoIAlign. To address the difficulty of boundary partitioning, the cross-entropy
loss function is extended, and boundary region cross-entropy loss (BRCE) is proposed.
This loss function enables the model to put the focus on top of the boundary that is
difficult to partition. Replacing the mask head with the proposed mask head, the multiscale
segmentation inconsistency shown in Figure 2 occurs. Different resolutions may impact the
cross-entropy loss function, which results in unstable segmentation. Balanced cross-entropy,
focal [16], Dice [17], and their combinations of loss functions are used, and the effect is
mitigated to some extent, but does not completely solve the problem. Due to the poor effect
of a single loss function, multiobjective loss function was established.Rank and sort [18]
loss (R and S loss) was introduced to solve the segmentation inconsistency. Boundary
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region cross-entropy loss was proposed to segment a finer boundary. By combining the
two loss functions above, the BRank and Sort loss function is proposed. BRefine obtains
significant results in segmentation tasks, especially in the target’s curved parts, and could
obtain clear boundary masks.

Figure 3. Display of predicted effects.The first row is the Mask R-CNN test sample. The second row
is the labels.

We evaluated BRefine on different datasets and achieved significant segmentation
results. Compared with Mask R-CNN, BRefine could output better segmentation quality,
especially in difficult boundary regions. For large targets, the performance was improved
by 5.0 AP.

2. Related Work

Instance segmentation. In recent years, the mainstream instance segmentation meth-
ods adopted a top–down segmentation method, that is, a powerful detector is used to
generate a target frame, and then each pixel in the object frame is classified into the fore-
ground and background. Deeper backbone networks are frequently used to enhance the
performance of object detectors. This type of network, however, uses more downsampling
operations, resulting in the loss of a large amount of image detail information. RoIAlign [9]
performs scale normalization and feature extraction from the feature pyramid [11], which
exacerbates the loss of image details and hinders producing high-quality instance masks. To
obtain high-quality instance masks, instance segmentation is performed by supplementing
detailed features.

Semantic segmentation. To supplement detailed information, the encoder–decoder
structure of semantic segmentation increases the spatial resolution of the features. The
renowned UNet [10] network joins the feature map of the encoder to the feature map of the
decoder at each stage. The feature pyramid network (FPN) and ResNet network structure
of the Mask R-CNN network resembles that of UNet [12]. The UNet network is different
in that it only employs shallow features as segmentation features. The P2 layer provides
rich mask information, as shown in Figure 1. Therefore, we used the P2 layer as a mask
detail supplement feature. The detailed features of different resolutions are fused by a
multistage approach. Loss function. Cross-entropy loss in segmentation tasks is susceptible
to foreground and background pixels, favoring the side with more pixel points. Therefore,
it requires a high balance of positive and negative pixels. Focal loss [16], proposed by He
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and others, addresses hard and easy samples, and positive and negative samples. On the
basis of the cross-entropy loss function, we added the coefficients of positive and negative
sample coefficients, and hard and easy sample coefficients. During the training process, the
model focuses on samples in the priority order of positive hard, negative hard, positive
easy, and negative easy. Dice [17] loss is a region-dependent loss function that, in semantic
segmentation, primarily addresses the issue of extreme imbalance between positive and
negative samples. In extreme circumstances, it may result in training instability. In addition
to the above traditional loss functions, ranking-based loss functions directly optimize the
performance metric, rendering the training and evaluation consistent, representing loss
functions such as AP loss [19], and aLRP loss [20]. Such loss functions address classification
and regression inconsistencies by concentrating more on positive than on negative samples.
On the basis of these ranking-based loss functions, rank and sort loss [18] (R and S loss)
is proposed. It further ranks the positive samples according to IoU and can address data
imbalance. In addition, this function uses a heuristic algorithm to unify the multitask
loss function.

3. Method

An overview of BRefine is shown in Figure 4. BRefine performs high-quality instance
segmentation on the basis of an FPN [11] with two feature-processing lines in parallel.
One is the main line that obtains semantic information from different feature layers of the
feature pyramid. The other is the auxiliary line that takes the highest resolution features in
the feature pyramid as the most input and complements the detailed features. These fine
features go through convolutional layers to obtain contextual information at that resolution.
The mask head is executed in multiple stages. At each stage, it merges the semantic features
with the fine features. Then, the contextual information at different scales is obtained
through the residual perception module. BRank and Sort is proposed to render the model
focused and bounded.

Figure 4. Framework for multiple-stage fusion. On the basis of FPN, different feature layers are
extracted as the main line to provide deep semantic information. Parallel auxiliary lines with a
fine-grained features complement the shallow detail information. The extracted detail features of
different sizes are integrated with detail information by 3× 3 convolution and then incorporated into
the main line with deep semantic information. Each stage has a residual-aware module that obtains
contextual information at different scales. These features are upsampled (bilinear interpolation) to
gradually fuse higher-resolution detail information. To solve the segmentation inconsistency problem
and the boundary pixel-scale imbalance problem, the BRank and Sort loss function is proposed.
Higher mask quality is obtained.

3.1. Multistage Fusion Mask Head

Mask R-CNN’s FCN mask head [9] was adopted as a baseline that provides multiscale
semantic information (ROIAlign extracts ROIs in different feature layers with an initial
resolution of 14× 14). Fine-grained features (obtained from the P2 layer of features in
FPN [11] with an initial resolution of 14× 14) are supplemented in parallel with an auxiliary
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line. To obtain the fine-grained features’ contextual information, a convolutional layer
is used on the extracted fine-grained features. The initial mask fusion features are then
created by fusing the baseline semantic features with the auxiliary line fine-grained features.
No additional processes are needed in this procedure, in keeping with the principles of
simplicity and efficiency.

Following the aforementioned methods, the initial fusion features containing semantic
and fine-grained features are obtained. To obtain more contextual information, a simple
residual-aware module was designed. The fused features are first processed via a 1× 1
convolutional compression channel to lessen the number of parameters, as shown in
Figure 5. It is then fed into three parallel dilated convolutions to obtain different-scale
contextual information. A residual branch is parallelized to keep the original local details.
The obtained feature information is summed to obtain perceptual features with different
scale information. The original feature channels are restored after 1 × 1 convolution.
The features are upsampled to obtain high fine-grained features (bilinear interpolation
is used here. The experiments showed that transposed convolution does not work as
well as bilinear interpolation does). The previous step is repeated to lastly obtain high-
resolution features with a resolution of 56× 56 as our final prediction features. Higher-
resolution features introduce more computational effort, which is not desirable. Therefore,
we designed the resolution as follows.

Figure 5. Residual-aware module: to extract varied-scale contextual information, the input features
are first compressed by half through a 1× 1 convolutional channel before being fed into three dilated
convolutions (convolutional kernel is 3× 3, and the dilated rates are 1, 2, and 3). A residual branch is
paralleled, keeping the original resolution’s detailed information. These features are fused and then
restored to the original channel after 1× 1 convolution.

3.2. Boundary Rank and Sort Loss

In combination with the cross-entropy loss function, a loss function based on the
boundary region is proposed. This loss can automatically adjust the boundary width
according to the image size. It enables the model to focus more on boundary regions that are
difficult to partition due to more severe punishment. Multiscale segmentation inconsistency
is a novel and thorny problem. R and S loss [18] solves the classification and regression
inconsistency problem in detection tasks. The use of IoU as a classification label can solve
the imbalance between positive and negative samples. It achieved excellent results in
solving multiscale segmentation inconsistency. BR and S combines these two loss functions,
and can achieve excellent performance in robustness and boundary segmentation.

Boundary region loss: The erosion of labels using morphological principles. Rhis is a
binary mask that is eroded (iterated according to image size) to obtain the erosion mask.
The original mask minus the corrupted mask is regarded as the boundary mask (Figure 6).
The formula is as follows:

Bk(H, W) = GO(H, W)− GE(H, W) (1)
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where GO(H, W) denotes the original true mask, and GE(H, W) denotes the eroded mask
after erosion of the original mask.

The obtained boundary region is combined with the cross-entropy loss function to
propose the boundary region’s loss function. Its formula is as follows:

Lb =
1
Z ∑

i∈K
(1 + λBi(H, W))CE

(
Yi,
∼
Yi

)
(2)

where Z denotes the number of samples, and K denotes the set of samples. The weight

factor is 1.0 by default.CE
(

Yk,
∼
Yk

)
denotes the cross-entropy loss.

Figure 6. Boundary region: B(H, W) is the adaptive boundary are generated according to image size.
The label’s width and height are W and H, respectively.

Boundary rank and sort loss: R and S loss [18] uses IOU as the optimization objective.
The formula is as follows:

LRS =
1
Z ∑

iε(P∪N )

(
L(i)−LGT(i)

)
(3)

where the first item of L(i) = rank−(i)
rank(i) +

∑
iεP

H(xij)(1−yj)

rank+(i)
is the rank error, and the second item

is the sort error. P is the positive sample set. N is the negative sample set. For error labels,
rank error first expects all positive samples to be ranked before negative samples when the
label value is 0. The sort error expecting only predicted scores with label scores larger than
those of sample can be larger than itself, thus generating error. The label function equation
is as follows:

LGT(i) = 0 +
∑

jεP
H
(
xij

)[
yj ≥ yi

](
1− yj)

∑
jεP

H
(
xij

)[
yj ≥ yi

] (4)

Multitask loss function boundary R and S loss (BR and S) is proposed, combining the
two loss functions above using a tuning strategy, which was formulated as follows:

LBRandS =
3

∑
k=1

(
Lk

RS + λkLk
)

(5)
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where Lk
RS is the R and S loss function for different tasks. λk = Lk

RS/Lk. Lk is the average of
the weighted sample loss, which is a weighting strategy based on the classification score.
Its formula is as follows:

Lk = ∑
i∈P

wi

∑
j∈P

wjL
k (6)

where P is the positive sample set. wi and wj are the sample classification scores for
different tasks.

k = 1 denotes RPN loss, where wi and wj are the RPN classification score. L1 =
wLGIoU . The default value of w is 0.2. LGIoU is GIoU loss [21].

k = 2 denotes the loss of object detection, where wi and wj are the target detection
classification score. L2 = LGIoU . The inputs of L1

RS and L2
RS correspond to the IoU in RPN

and the IoU in target detection, respectively.
k = 3 denotes mask loss, where L3

RS = 0. λ3 = L2
RS/L3. wi and wj are the target

detection classification score. L3 = Lb.

3.3. Experimental Details

We used Mask R-CNN as the baseline and replaced the default FCN mask head with
the proposed multistage fusion mask head. The original multitask loss was replaced with
the proposed BR and S loss to obtain the desired segmentation effect.

All experiments were implemented in MMDetection [22]. Due to the configuration of
3 RTX 3090 graphics cards, the learning rate for all model training was set to 0.0075. Except
for the proposed novel approach, the hyperparameters were consistent with Mask R-CNN.
Additionally, the ResNet50 [12] backbone network and the 1 learning strategy were used to
train each model in the ablation experiment.

4. Experiment

To prove the effectiveness of the model, extensive experiments were performed on
three datasets, namely, COCO [23], LVIS [24], and Cityscapes [25]. The standard mask
evaluation provided by MMDetection [22] was ysed as the evaluation metric in the test
experiments to ensure the uniformity of the evaluation criteria.

4.1. Main Results

The model performance was first tested at COCO 2017 using different backbones
and different learning plans (Table 1). The performance of BRefine was much better than
that of the baseline [9] while ensuring that other extraneous parameters were consistent.
Adopting the ResNet50 [12] backbone, BRefine improved by 3.0 AP over the Mask R-CNN
baseline, and by 5.0 AP for large-object evaluation. It still performed well under different
training schedules.

Table 1. Comparison with Mask R-CNN on COCO val2017.

Method Backbone Schedules AP APS APM APL APbbox

Mask R-CNN R50-FPN 1× 34.8 18.7 37.9 47.4 38.3
BRefine R50-FPN 1× 37.8 20.8 40.9 52.4 40.4
Mask R-CNN R50-FPN 2× 35.5 18.9 38.9 48.5 38.8
BRefine R50-FPN 2× 38.4 21.3 41.7 53.4 40.9
Mask R-CNN R101-FPN 1× 36.2 19.1 40.0 49.5 40.1
BRefine R101-FPN 1× 39.1 21.6 43.1 54.6 42.2
Mask R-CNN R101-FPN 2× 36.7 19.6 40.6 51.5 40.2
BRefine R101-FPN 2× 39.6 21.9 43.7 56.4 42.5
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4.2. Comparison with Previous Methods

On the COCO 2017 dataset, BRefine was compared with previous methods. The COCO
dataset is a large-object detection and segmentation dataset that contains 80 categories, and
features many categories and complex scenes. We trained the compared methods on
train2017 and validated them on val2017. In the comparison experiments, a unified back-
bone network and a training plan were used to train different methods for comparison.
Table 2 shows the COCO val2017 single-model performance comparison results used to
compare with the previous methods. BRefine outperformed the previous model in most of
the evaluated metrics. Since the used baseline is a top–down structure, the performance of
upstream tasks affects the performance of downstream tasks. BRefine achieved superior
results in masking even though the bbox performance metrics were weaker than HTC. This
indicates that BRefine achieved more powerful segmentation performance.

Table 2. Single-model comparison on COCO val2017. The above experiments were tested on 3 RTX
3090s using 1 training plans.

Method Backbone AP APS APM APL APbbox fps

Mask R-CNN [9] R50-FPN 34.8 18.7 37.9 47.4 38.3 24.6
Mask scoring [14] R50-FPN 36.0 18.5 39.1 49.9 38.1 27.7
Bmask [2] R50-FPN 36.1 19.1 40.8 50.9 - -
HTC [1] R50-FPN 37.3 19.4 40.2 51.3 41.9 8.2
CMask R-CNN [13] R50-FPN 35.9 19.4 38.6 49.5 41.2 15.9
BRefine (ours) R50-FPN 37.8 20.8 40.9 52.4 40.4 12.8
Point- prend [3] R50-FPN 36.2 19.9 39.2 48.7 38.4 16.8
Blend- Mask [16] R50-FPN 34.5 18.2 36.4 47.0 - -
Yolact [6] R50-FPN 28.9 11.3 32.5 43.4 31.2 42.3
Solo [5] R50-FPN 33.1 12.2 36.1 50.8 - -
CMask R-CNN R101-FPN 37.3 19.7 40.6 51.5 42.9 14.1
Yolact R101-FPN 30.4 12.0 33.9 46.2 33.1 36.4
HTC R101-FPN 39.6 21.3 42.9 55.0 44.8 7.1
BRefine (ours) R101-FPN 39.1 21.6 43.1 54.6 42.2 10.1
Mask R-CNN R101-FPN 36.2 19.1 40.0 49.5 40.1 18.9
Mask Scoring R101-FPN 37.7 19.8 41.4 52.3 40.4 19.2

4.3. Ablation Experiments

Extensive ablation experiments were performed on COCO val2017 to analyze the
effectiveness of each part of BRefine. In the ablation experiments, a unified ResNet50 [12]
backbone network was used along with a 1 training program (12 epochs). Except for
the mentioned hyperparameters in the model, the remaining hyperparameters were kept
consistent when not specifically stated.

The effectiveness of the multistage fusion mask head. The FCN mask head of Mask
R-CNN was replaced with our proposed multistage mask head, and no residual-aware
module was added here. As shown in Table 3, the more stages of fusion there were,
the better the effect was, but the parameters showed exponential growth. Therefore, the
number of stages was set to 3. The multistage fusion mask head could obtain better results
for large objectives, but brought inconsistency in multiscale mask segmentation.

Table 3. The effectiveness of the multistage head. The FCN mask head in Mask R-CNN was replaced
with a multistage fusion mask head, and detailed experiments were performed for each stage.

Stages Output Size AP APS APM APL APbbox Parameter

1 14 × 14 36.5 19.8 38.4 48.1 39.9 1.0 M
2 28 × 28 37.0 20.2 39.5 49.8 40.1 2.0 M
3 56 × 56 37.8 20.8 40.9 52.4 40.4 4.1 M
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The effectiveness of the residual-aware module. The residual perception module
was adapted to different stages to obtain different-scale contextual information. As shown
in Table 4, after adding this module to obtain enough different-scale contextual information,
the evaluation metrics were all effectively improved.

Table 4. Effectiveness of the residual-aware module. RAM denotes the residual-aware module. We
conducted careful experiments on each part of the RAM. The dilated convolutions were increased in
the order of dilated rates of 1, 2, and 3.

RAM AP APS APM APL APbbox

1 single 3 × 3 Conv 36.2 19.4 38.4 49.1 39.8
2 parallel 3 × 3 Convs 36.7 19.8 39.2 50.2 40.0
3 parallel 3 × 3 Convs 37.1 20.2 39.9 51.1 40.2
3 parallel 3 × 3 Convs + Residual 37.8 20.8 40.9 52.4 40.4

The effectiveness of R and S loss. As shown in Table 5, the introduction of this
loss function caused a slight decrease in large-target segmentation, but a significant im-
provement in small- and medium-target segmentation. In particular, the small-target AP
improved by 4.3 points. To further demonstrate the effectiveness of the multistage head in
combination with R and S, the R and S loss function was used on the baseline [9]. Table 5
data show that the loss function achieved good performance improvement, but the combi-
nation of the multistage fusion mask had even better results. As a comparison, we show in
the table the results using different loss functions.

Table 5. Effectiveness of rank and sort loss function. Multistage denotes the use of a designed mask
head; multistage RS and RS Mask R-CNN denotes the combination of rank and sort loss function with
the multistage mask head and with the baseline, respectively. In addition, the results of Focal [16],
Dice [17] and their combinations applied to the mask head are shown.

Method AP APS APM APL APbbox

Multistage 35.4 16.2 38.0 52.0 38.6
Dice 35.7 16.5 38.7 51.7 38.7
Focal 35.8 16.7 38.9 51.9 38.7
CE + Dice 36.0 16.9 38.9 51.8 38.9
RS + multistage 37.3 20.5 40.2 51.4 39.9

The effectiveness of boundary region loss. Boundary area loss allows for the model
to focus on those boundary pixels that are more difficult to focus on, improving model
performance. As the object scale grows and the boundary pixels become fewer, the segmen-
tation effect on large objects becomes increasingly obvious (Table 6).

Table 6. The effectiveness of boundary region loss.

Method AP APS APM APL APbbox

Multistage RS 37.3 20.5 40.2 51.4 39.9
BRefine 37.8 20.8 40.9 52.4 40.4

4.4. Experiment on LVIS

The LVIS [24] dataset is long-tailed with large-scale fine-grained lexical tagging, and
the annotation quality is higher than that of the COCO dataset to reflect the mask quality
more accurately. The dataset contains 1203 categories with about 2 million high-quality
instance segmentation annotations for the training, validation, and testing of images. The
results are shown in Table 7, where BRefine improved AP by 4.2 points compared with the
Mask R-CNN baseline. Due to the finer annotation, it was better than the COCO dataset on
top of the segmentation effect.
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Table 7. Results on the LVISv1.0 validation set. All models were trained with a 1 schedule, and the
hyperparameters were kept the same as those of MMDetection [22] except that the learning rate was
set to 0.0075.

Method Backbone Schedules AP APr APc APf APbbox

Mask R-CNN R50-FPN 1× 21.7 9.6 20.9 27.9 22.5
BRefine R50-FPN 1× 25.9 18.2 25.2 30.8 26.5

4.5. Experimenting on Cityscapes

We also evaluated different models on the Cityscapes [25] dataset, which collects
a variety of stereo video sequences recorded in street scenes from 50 different cities. In
addition to containing 20,000 weak annotations, it contains 5000 frames of high-quality
pixel-level annotations and 8 semantic classes for instance segmentation training, validation,
and testing. As shown in Table 8, BRefine achieved superior performance.

Table 8. Results on the Cityscapes validation set. All models were trained on an 8-epoch
training schedule.

Method Backbone Schedules AP APS APM APL APbbox

Mask R-CNN R50-FPN 8-epoch 36.5 12.7 33.2 57.2 40.9
BRefine R50-FPN 8-epoch 40.0 14.1 37.3 63.9 44.3

4.6. Qualitative Results

The model visualization on the COCO dataset is shown in Figure 7. The mask quality
of BRefine was much larger than that of Mask R-CNN, especially for curve-change regions,
such as the gloves that the person is wearing (first column) and the skeletonized region (sec-
ond column). In some segmentation areas, the segmentation effect was better than labeling,
such as the human shoulders (first column) and the tail of the machine (fourth column).

Figure 7. Visualization of the model on the COCO dataset. The first row indicates the Mask R-CNN test
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sample; the second row indicates the BRefine test sample; and the third row indicates the labels. The
mask quality of BRefine was much better than that of Mask R-CNN, and better than the labels in the
strongly changing edge areas.

5. Discussion

In this work, we aimed to solve the mask coarseness problem in instance segmenta-
tion. The visualization (Figure 7) demonstrates that BRefine could output high-quality
masks, especially in curved boundary areas to overcome polygon annotation defects. In
comparison with previous methods (Table 2), BRefine achieved excellent performance.

However, BRefine still has limitations, mainly in the form of poor real-time per-
formance (Table 2) and the lack of the interpretability of segmentation inconsistencies.
Extracting the detailed information of objects at different scales on shallow features and
higher output resolution features increases the computational cost, which results in poor
real-time performance. The experiments (Table 5) show that the multiscale segmentation
inconsistency is not caused by a single loss function, but by multitask losses. In a detection
task, classification and regression are trained separately, and the loss is calculated and
reverse-optimized. However, in prediction, it is filtered with classification scores. This may
result in a bbox with high classification scores, but with bad regression being retained. Due
to the top–down structure, feature maps are cropped using the bbox. The cropped feature
maps are fed into the mask head. Thus, the segmentation task is directly influenced by the
detection task.

Our future work will build on this foundation to design lightweight feature extractors
that reduce computational cost and increase inference speed. We also aim to further explore
the reasons for inconsistencies being generated in multiscale segmentation.

6. Conclusions

The research carried out in this paper introduced a high-quality image segmentation
method based on deep learning. The method achieves high quality image segmentation
through a simple and effective mask design with a better loss function. The overall results
were better than those of other advanced instance segmentation algorithms, and they are
summarized as follows.

1. The characteristics of the different feature layers of the FPN were analyzed in a
segmentation task. Its lighter layer features had a different scale of mask information.
On this basis, a multistage fusion mask head was proposed. The structure of this mask
head was simple, but inconsistency in multiscale segmentation appeared. Having this
problem in the FCN mask head architecture was experimentally found to be universal
and a brand new problem.

2. Experimental data demonstrated that a single loss function cannot solve the incon-
sistency problem of segmentation. The multitask loss function of rank and sort can
effectively solve this new problem. Despite solving this problem, there is still a lack
of clear understanding and theoretical interpretability of this phenomenon. We will
further investigate the root cause of this phenomenon.

3. The proposed boundary region loss function solved the problem of difficult boundary
segmentation and achieved good segmentation results.

The BRefine model proposed in this paper has a simple structure and good segmenta-
tion effect, and can have broader application prospects in downstream tasks.
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