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Abstract: Earthquakes threaten people, homes, and infrastructure. Early warning systems provide
prior warning of oncoming significant shaking to decrease seismic risk by providing location, mag-
nitude, and depth information of the event. Their usefulness depends on how soon a strong shake
begins after the warning. In this article, the authors implement a deep learning model for predicting
earthquakes. This model is based on a graph convolutional neural network with batch normalization
and attention mechanism techniques that can successfully predict the depth and magnitude of an
earthquake event at any number of seismic stations in any number of locations. After preprocess-
ing the waveform data, CNN extracts the feature map. Attention mechanism is used to focus on
important features. The batch normalization technique takes place in batches for stable and faster
training of the model by adding an extra layer. GNN with extracted features and event location
information predicts the event information accurately. We test the proposed model on two datasets
from Japan and Alaska, which have different seismic dynamics. The proposed model achieves 2.8
and 4.0 RMSE values in Alaska and Japan for magnitude prediction, and 2.87 and 2.66 RMSE values
for depth prediction. Low RMSE values show that the proposed model significantly outperforms the
three baseline models on both datasets to provide an accurate estimation of the depth and magnitude
of small, medium, and large-magnitude events.

Keywords: batch normalization; deep learning; attention layer; earthquake prediction; graph convo-
lution network; the seismic network

1. Introduction

Several natural hazards like fire, tsunami, flood, earthquake, etc., are damaging hu-
mans, buildings, animals, and other infrastructures. These hazards can not be stopped
but can be prevented using several techniques like remote sensign [1], LiDAR [2], and
seismic stations [3]. One of the goals of earthquake hazard analysis is to limit the impact of
earthquakes on society by minimizing damage to buildings and infrastructure. Predicting
seismic events from continuous data and applying it in real-time to early warning systems
or analyzing it offline to look for previously unpredicted earthquakes is an important task.
Conventional algorithms can easily predict earthquakes of moderate or large magnitudes
because they are so infrequent and scarce in seismic catalogs. A small magnitude earth-
quake may go unnoticed by expert analysts or automatic detection systems if, for example,
the traces have a low signal-to-noise ratio (SNR) or overlapping events are recorded. Thus,
small magnitude earthquakes may be missing from earthquake inventories. Early auto-
matic earthquake prediction from raw waveform data collected by seismic station sensors
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has been a significant study subject in recent years for emergency response [4]. Earthquake
early-warning (EEW) systems serve this function by generating instantaneous alerts to
potential hazards in high-risk locations within seconds of an earthquake’s waves being
detected. Computational technologies based on machine learning hold great promise for
earthquake prediction.

Numerous automated tasks, such as text processing [5,6], image processing [7,8], and
speech recognition [9,10] have shown that traditional machine learning and deep learning
methods perform well. One of the main issues with the traditional machine learning model
is their reliance on feature selection methods. However, numerous comparison studies
reveal that there is no global feature selection method that is effective with all kinds of
traditional machine learning models [11,12]. Unlike traditional machine learning models,
deep learning models use hidden layers like convolutional, activation, pooling, batch
normalization, and attention layers to automatically extract important and useful features
for a range of tasks. Instead of depending on manually selected features, deep learning
models automatically extract useful and significant features from the raw input data [13].
This feature allows deep learning models to utilize all of the information contained in
an event’s waveforms. The aim of the EEW system is to issue an alert within seconds
if eartquake waves are detected. To achieve this aim, deep learning models use their
hidden layers to quickly process waveform data after receiving it from seismic stations
and to predict earthquakes efficiently. Several recent studies show that deep learning
models on raw seismic waveforms can effectively predict earthquake parameters like
magnitude [14–16], location [16,17], and peak ground acceleration [14].

Hyper-parameter tuning is a difficulty with deep learning models. Some of the
parameters of a model include the number of epochs, the number of convolutional filters,
and the batch size. When it comes to parameter tuning, finding the optimal values for these
parameters might take a lot of time and effort. To train deep learning models more reliably
and quickly, batch normalization is employed [18,19]. Batch size refers to the number of
examples given at a time to the model for processing in a single iteration. Small batch
sizes improve training by requiring less memory and time [20]. Batch normalization is a
process that makes a model faster and more stable by adding an extra layer to the model.
This batch normalization layer performs standardizing and normalizing operations on the
output of the previous layer. The normalizing process in batch normalization takes place in
batches, not as a single input [7].

In convolutional neural networks (CNN), a feature map is obtained from a convolu-
tional layer that has contextual information among the features but does not focus on the
important feature. According to CNN, the attention process can be thought of as a way to
improve quality by picking out the most beneficial parts of a wave [15,21]. We can adjust
feature map weighting by the attention value after computing the attention value based on
relevance or saliency in the feature map produced by the convolution layer [22]. Including
batch normalization and attention layers in CNN helps to improve training and prediction
accuracy [21].

In recent years, CNN [8,16], graph neural networks (GNN) [23], and their ensemble
model graph convolutional neural networks (GCNN) [4,8] have shown promising results
for earthquake prediction. GNNs are particularly designed to analyze data from networks.
Nodes of a graph represent the stations of a network and the edges among nodes represent
connections among stations [24]. The raw seismic waveform data is used by CNN to extract
significant information. Convolutional layers in CNN extract contextual local features from
the input waveform data while the pooling operation makes it possible to learn global
features [21,25]. Accurate earthquake predictions are made possible by combining these
features with the geographic information provided by the stations [14]. Faster and more
stable model training can be achieved by implementing batch normalization in CNN [18].
CNN with an attention mechanism can be thought of as a way to improve characteristics
by isolating the most useful parts of a signal [22,26]. We may obtain refined feature map
weighting by the attention value after computing the attention value by the attention
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layer based on importance or saliency in the feature map generated from the convolution
layer [22]. What to focus on and where to focus are the two major components of the
attention process [21].

Deep learning algorithms have been used in the past to predict earthquakes. For
seismic source characterization, Ref. [16] employed a GNN approach and appended latitude
and longitude values to the feature maps extracted by CNN. For earthquake prediction, a
graph partitioning approach using CNN has been proposed in Ref. [27]. These methods
only employed conventional graph theory rather than the true GNN technique. Recently,
Ref. [4] conducted a study that combined GNN and CNN to classify seismic events from
multiple stations without using any geographical information or meta-data about the
stations. However, the models that have been proposed publicly so far use fixed time
windows of input waves and do not process data with different lengths. In a similar way,
all models, with the exception of the model by Ref. [16], either process waveforms from a
single seismic station or depend on a fixed set of seismic stations defined at training time.
The model by Ref. [16] allows for the usage of a variable station set, however, it uses a
simple pooling technique to aggregate measurements from various stations.

Therefore, in this study, we propose a GCNN model with batch normalization and
attention mechanisms for earthquake prediction. The CNN component of the model uses
a convolutional layer to extract valuable and important information from seismic raw
waveform data gathered from multiple stations. The batch normalization layer, which
comes before the activation layer, enhances learning and shortens training [18,19]. The
convolutional layer’s information is used by the attention layer to enhance the feature
map and identify the signal’s most valuable components. GNN analyses spatial data and
meta-data about the base stations. In this way, the proposed model can accurately and
efficiently predict earthquakes by processing seismic data from multiple station networks.

We made the following contributions to this study, in brief:

1. We propose a graph convolutional neural network with batch normalization and
attention mechanisms for the early prediction of earthquake magnitude and depth;

2. For experiments, we use two datasets with different seismic dynamics; Alaska with
sparse events distribution and Japan with dense events distribution;

3. By carefully adjusting many hyper-parameters of our model, we have systematically
analyzed how well it performs;

4. We selected the GCNN [16], GCNN with batch normalization (BNGCNN), and GCNN
with attention mechanism (GCNNAtt.) as baseline models to compare the results
obtained from the proposed model.

The rest of this article has been organized as follows: in Section 2, we discuss related
studies employing seismic data, convolutional networks, and graph networks. In Section 3,
the architecture of the suggested model and the baseline models is discussed. A brief
summary of the issues, the comparison, and the two seismic datasets are given in Section 4.
The experimental results for the proposed model and the baseline models are presented in
Section 5. The conclusion and the future work are included in Section 6.

2. Related Work

The concept of earthquake early warning has been known for more than a century,
but the tools and procedures needed to implement it have just recently been created in the
previous three decades. Early warning systems’ main goal is to alert users if shaking levels
that could result in damage are about to happen [28]. Deep learning techniques have become
popular in recent years as a useful tool for the quick assessment of earthquakes [14,29].

Traditional machine learning models like decision trees [30], naïve Bayes [30], and
support vector machines [31] use different feature selection techniques like information gain
and gain ratio to extract meaningful features from data for classification. The performance
of these models is significantly impacted by these feature selection techniques [17,32].
Furthermore, employing feature selection techniques on unprocessed data is more labor-
intensive and error-prone. In deep learning models, several hidden layers are used to
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automatically choose features to generate a feature map [33]. When these layers are used
for dimensionality reduction, deep learning models can analyze complex and nonlinear
inputs more successfully. Deep learning models like graph neural networks [4,34], and
multilayer perceptrons [16] effectively capture spatial information, such as stations and
their interactions.

On a range of tasks, including image processing [7,8], text classification [5,6], speech
recognition [9,10], and others, when it comes to processing complex and large datasets
efficiently and accurately, deep learning models have been shown to work better than
traditional machine learning models. CNN, GNN, and RNN are the three primary architec-
tures utilized in deep learning [8]. These models have primarily been inherited from the
machine learning model multi-layer perceptron (MLP). MLP is a powerful fully-connected
layered architecture with input, hidden, and output layers, but the depth of the model is
restricted because of the significant amount of computational time required by the algo-
rithm. To understand complex data and enhance performance, the advanced design of
MLP has incorporated many layers of different types (convolutional, pooling, dropout, and
softmax) [33].

CNN-based models have been used in some studies for data classification, processing
seismic data, and extracting seismic features [23,35]. Jozinović et al. [35] used CNN to pre-
dict earthquakes and earthquake epicenter categorization from a single station waveform
data. The proposed CNN model predicts earthquake sources over a wide range of distances
and magnitudes with an accuracy of 87%, according to tests utilizing three-component
waveform data collected from the USGS. Jozinović et al. [35] employed CNN to forecast the
degree of ground shaking caused by an earthquake after 15–20 s had passed since the time
the earthquake originated. According to Ref. [23], two CNN-based models were developed
to assess the seismic reaction of the surface. In their study on earthquake prediction and
source region estimation [3], the authors utilized a deep CNN model. Both the amplitude
and the natural periods can be reasonably well predicted by the models that have been
developed. These studies have all relied on waveform data collected from a single base
station and do not take into account geographical information in their predictions.

In recent times, a hybrid deep learning model known as a graph convolutional neural
network (GCNN) has gained popularity for its ability to accurately forecast earthquakes
by exploiting seismic data. In Refs. [8,24], they used the GNN model to demonstrate how
sensor position data, when combined with time-series data, may be utilized by graph-based
networks. They used graph-based networks, which served as proof of this. The results of
studies conducted on two seismic datasets that include earthquake waveforms point to
promising outcomes. A deep CNN and GNN model, known as GCNN, was developed
by Ref. [4] and Ref. [16] for the classification of earthquake events using a large number of
stations. When combined with the spatial data provided by the stations, the features that
the CNN layers extract from the waveform data help the GNN provide accurate earthquake
predictions. Based on geophysical array data, a model using CNN and GNN to predict
earthquakes was put out by Ref. [27]. This model is based on graph partitioning technique.
Although they utilized data from numerous seismic stations, they completely disregarded
the geographic information of these seismic stations.

Multiple stations in various locations can pick up on a variety of events. There is a
connection between the observations that were gathered from the various stations, even
if it is possible to generate diverse data due to the presence of multiple stations [4]. A
great amount of consistent data can be generated from a single station’s measurements.
As a result, earthquake prediction using data from numerous stations is a more difficult
challenge for deep learning models to accomplish than earthquake prediction using data
from a single station [24]. While CNN-based models are frequently utilized for processing
single-station datasets [14,29], GCNN models are effective for the processing of multiple-
station datasets [8,16]. In this study, our aim was to design a method for quick and reliable
estimation of an earthquake’s magnitude directly from raw seismograms recorded on a
single station.
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One of the drawbacks of deep learning models is the difficulty of fine-tuning the
parameters. Batch normalization is a technique that can be used to speed up and improve
the accuracy of deep learning model training [18,19]. The goal of the batch normalization
method during training is to normalize the layer output by utilizing the statistics of each
mini-batch size. Recently, numerous studies have presented deep learning models and
used batch normalization to enhance the model performance in areas such as the detection
of brain tumors [7], the construction of gas-liquid interfaces [36], and the diagnosis of
machine faults [7,37]. Unfortunately, batch normalization has not been used for automatic
earthquake identification from seismic data provided by several stations.

Table 1 provides a synopsis of the research on the subject of earthquake prediction that
was covered in this section. CNN and GCNN have spent the majority of their resources
investigating the matter, but there are still a few questions that need to be answered. This
research makes use of a straightforward CNN architecture that does not incorporate batch
normalization or attention layers to enhance the performance of CNN [11,19]. Additionally,
simple CNN architecture was utilized by GCNN models to generate feature maps from
waveform data [1,23]. The majority of the studies do not incorporate event spatial infor-
mation, which can boost the accuracy of earthquake detection [13,33]. A few studies have
looked into the possibility of event detection using data from multiple stations as compared
to data from only one station. In this research, we address the topic of earthquake prediction
using a proposed deep learning model that is comprised of two primary components: CNN
and GNN. CNN is built with a series of convolutional layers, as well as batch normalization
and attention layers. GNN combines the spatial information of the event with the CNN
feature map to increase the performance of the model. In this study, events have been
collected from multiple stations and station location information is included in both of the
analyzed datasets.

Table 1. Summary of the studies that investigated earthquake prediction using different types of
deep learning models. In the fourth column, BN stands for batch normalization and Att. stands for
attention mechanism.

Study Used Spatial Info BN/Att. Data Station

[21] CNN No BN/Att. South Korea Single
[29] SVMR No No Bogota, Colombia Single
[14] CNN No No IRIS Single
[27] CNN and Graph No No MeSO-Net Japan Multiple, single
[28] CNN and Transformer Yes Att. Japan, Italy Multiple
[4] GCNN No – Multiple

[16] GCNN Yes No California Multiple

[15] CNN + LSTM + BiLSTM +
Transformer No Att. STEAD Single

[24] GCNN Yes No Italy and
California Multiple

[23] Deep CNN No CARABOBO Single
[35] CNN No No Central Italy Multiple

3. Methods

Graphs have been used to show relationships between chemicals, urban infrastructure,
and social networks as nodes and edges. Balsa-Barreiro et al. [38] use spatial networks to
map population dynamics nodes representing the human settlements and links showing
hierarchies between nodes. Wu et al. proposed a graph convolutional network to detect a
social spammer that operates on a directed social graph by explicitly considering three types
of neighbors [39]. Due to the lack of spatial ordering in graphs, mathematical operations
must be order invariant [24,40]. Graph operations must be able to handle an arbitrary
number of nodes and/or edges at any given time since nodes and their connections (edges)
may not be fixed. In general, suitable graph operations can be applied to a set of unknown
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cardinality [34]. Each seismic station represents a node in a graph. Regardless of station
location, information is transmitted from the seismic source station to each receiver station.
Since local site amplifications may be extremely important in classifying seismic sources,
such information should be recorded in each station’s absolute position rather than its
relative position [16]. We exclude the links between stations from the study since they
are not physically significant, which turns the graph into an unordered collection. When
station relationships are relevant, such as in seismic array beamforming, edge information
should be provided (which relies on relative locations and arrival times). Our graph
comprises nodes with locations and seismic waveform time series. Latitude, longitude,
depth, and seismic magnitude are displayed on the graph. GNN predicts graph properties
by collecting and analyzing node information [16,27].

In this paper, to enhance the performance of the model to predict earthquakes from
multiple stations, we propose an attention-based GCNN structure with batch normalization
called BNGCNNAtt. Attention mechanisms have the potential to make feature maps more
discriminative, allowing the model to concentrate more on the essential characteristics
of the data. In this research, we present an improved attention module that is based on
modeling interdependencies between the channels of an extracted feature map [21]. We
also present a structure for a CNN in which the approaches of batch normalization and
dropout are arranged in a manner that is appropriate for earthquake event prediction. Both
batch normalization and dropout regularization reduce overfitting, which could potentially
improve the suggested model’s stability and performance. Batch normalization prevents
the input distribution from varying between the layers, and dropout regularization prevents
overfitting [19].

Figure 1a shows the general architecture of the GCNN model proposed in Ref. [16],
where the CNN part takes three channels of input waveform data and extracts a feature map
using a convolutional block. This block has convolutional filters to perform a convolutional
operation, an activation layer to add non-linearity, and a max-pooling layer to extract
useful features from the convolutional operation. The input to the second part of GCNN
is the feature map taken from CNN, and the location information is appended with the
map. Figure 1b,c shows different variations of the CNN convolutional block. Figure 1b
shows a simple layered architecture of convolutional, activation, and max-pooling layers
as described above. Figure 1c represents a layered architecture similar to the model
architecture proposed by Ref. [20], where the fourth layer is the batch normalization layer.
Overfitting is prevented through batch normalization and dropout regularization, which
ensure that the input distribution does not differ between layers. Figure 1d also represents
a four-layered architecture of the CNN block where the attention layer is added at the end
of the layers of Figure 1b. The attention layer makes the feature map more discriminative
by concentrating on the most essential characteristics of the data. Figure 1e shows the
proposed CNN block that consists of five layers: convolutional, batch normalization,
activation, pooling, and attention layers. The proposed architecture is the combination
of Figure 1c [16] and Figure 1d [20]. Experiments on two seismic datasets show that our
proposed model outperforms the baseline models of GCNN given in Figure 1a–c as it uses
both batch normalization and attention layers to achieve high accuracy.

Input to the BNGCNNAtt is a data structure of size Ns × 510× 3 where Ns is the total
number of stations, which is 50, the sampling rate is 510, and 3 is the number of waveform
components. Data is padded with zeros if it was collected by less stations than Ns. Each
waveform begins at its origin time, and the station order is maintained. In order to enhance
CNN performance, we have normalized the waveform by its maximum value [35]. The
received input is then fed into a stack of five feed-forward convolutional blocks, each of
which is made up of three convolutional layers and two-dimensional convolution filters
of size 1× 5× fi, where f = {4, 8, 16, 32, 64} is the number of filters in the ith block and
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ranges from 4 to 64. A linear combination of all the (k− 1)th layer components makes up an
element of a kth layer feature map. The definition of a convolutional operation is as follows:

yl+1
i (j) = kl

i ∗Ml(j) + bl
i , (1)

where yl+1
i (j) denotes the input of the jth neuron in the feature map i of layer l + 1. kl

i
is the weights of the ith filter kernel in layer l, Mj is the jth local region in the layer l and
bl

i is the bias. An activation function is used to extract the nonlinear features after each
convolutional layer. A typical activation function used for this is the Rectified Linear Unit
(ReLU), which is defined as:

ReLU(x) = max(0, x), (2)

where x represents the convolutional layer’s output. It is a piecewise linear function that
returns zero if the input is negative and outputs the value directly if the input is positive.

TanH(x) =
ex − ex

ex + e−x = 1− 2
1 + e2x ∈ [−1, 1]. (3)

The Euler constant, where e is constant. This activation function has the benefit of being
able to return negative values, which is advantageous if the desired output distribution
includes negative values.

Before the activation function, batch normalization is added. ReLU introduced the
non-linearity, which was followed by a spatial dropout. Three convolutional layers are
followed by 1× 4 max-pooling with stride 1 and data reduction. Tanh activation function
without a dropout is used in the last layer of the final block to preserve the extracted
features. The data was reduced by the max-pooling layer from Ns× 32× 64 to Ns× 1× 64.
It generates a 64-dimensional feature vector for each station Ns. This feature vector is input
to an attention layer in order to maintain the essential features while reducing the feature
vector. A feature vector Ns× 1× 66 is produced for each of the Ns stations by adding
spatial information (longitude and latitude) to the generated feature vector.

A multi-layer perceptron that recombines spatial information with time-series data
makes up the second component of the proposed BNGCNNAtt. It has two convolutional
layers, ReLU activation function, and spatial dropout. Applying 1× 1 convolutional on
Ns feature vector gives an output of size Ns× 1× 128 . that represents the feature vectors
of each graph node (each seismic network station) and encodes spatial information in its
elements. Max reduction procedures along the station dimension aggregate node feature
vectors into a graph feature vector. For a set xs = {x1, x2, x3, . . . , xNs} the ith element of the
reduced vector x is represented as follows:

xi = max({x1i, x2i, . . . , xNsi}). (4)

The graph feature vector holds 128 elements with no node-specific information. This
vector is used by another MLP of 2 hidden layers with 128 neurons that maps this vector
to the output of size 2 (magnitude and depth) after Tanh activation. These predictions are
compared with the actual labels scaled between −1 and +1 using root mean squared values.
Because all the model components are intimately related to one another by differentiable
operations, we train all of the model components together as a single model. All weights in
the model are initialized through an orthogonal initialization scheme [41].
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4. Seismic Dataset

In this study, we use two datasets from Alaska and Japan. The area of study is
important because both are the central hub for economic and social activities. Both datasets
are made up of three raw waveforms (BHN, BHE, and BHZ) that are directly captured from
seismic stations. N was vertically orientated, E was west-to-east, and Z was aligned north-
west. For all the available events, we extracted 120 s-long time windows that contained
the beginnings of both P- and S-wave arrivals. No consideration was given to earthquakes
having a magnitude less than 3.0. Three channels are simultaneously sampled by each
station at a resolution of 24 bits. A sac file is created from each waveform file. Waves are
filtered at a frequency range from 0.1 to 8.0 Hz and interpolate onto time base 1 < t < 10 s
after the event origin time, over 512 evenly spaced time sample (5 Hz sampling frequency).
We consider the waveform’s whole length, from the moment of its beginning to 120 s after
its end time.

To gather data, we used the ObsPy Python package. The broadband inventory and
seismic catalogues for Japan and Alaska are downloaded by ObsPy. There are 3577 total
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events in Alaska (AK) dataset, which was collected from 210 stations between 1 January
2020, and 31 December 2021 (2 year). We set the limits for latitude from [52 to 71] and
longitude from [−174 to −131] for both seismic stations and event locations, respectively.
Figure 2a depicts the locations of these seismic stations as triangles, and Figure 2b shows
the event sites as dots.
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Figure 2. The study’s spatial distribution information for the stations and events that were examined.

The map in Figure 2c shows the distribution of stations in the Japan dataset, while the
locations of the events are shown in Figure 2d. The network used for data collection is the
Japan Meteorological Agency Seismic Network (JMASN). There are a total of 1354 events
collected from 19 base stations. This dataset is collected from the period 1st January 2000
to 31 December 2022. The latitude and longitude boundaries are [24◦ to 44◦] and [123◦ to
143◦]. A comparison of both datasets is given in Table 2.

Table 2. Statistics of both the Alaska and Japan datasets.

Dataset Detail Alaska (AK) Japan (JP)

Period 2020–2021 2000–2022
Min. and Max. Latitude [52◦ to 71◦] [24◦ to 44◦]
Min and Max. Longitude [−174◦ to −131◦] [123◦ to 143◦]
Minimum magnitude 3.0 3.0
Number of events 3577 1354
Number of stations 210 19
Filter the waveform 0.1–8 Hz 0.1–8 Hz
Time-base 1 < t < 101 1 < t < 101
Even spaced time sample 512 Hz 512 Hz
Scaled Min. max. source depth 0 to 30 km 0 to 30 km
Scaled magnitude 3–6 3–6
Data split 80–20 80–20
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The magnitude distribution of events in a catalog of both datasets is given in Figure 3.
In the first row, the Figure 3a histogram shows that the events in the Alaska dataset are not
equally distributed by magnitude values. There are a total of 3577 events in the catalog
with magnitude values ranging from 3.0 to 8.2. More than 60% of events have a magnitude
range of 3.0 to 3.4 while 40% of the events have a 3.5 or greater magnitude. Therefore,
it is concluded from the histogram in Figure 3a that the Alaska region frequently faces
earthquakes with small magnitude (<3.4). Studies show that machine learning or deep
learning models are good to detect small magnitude events. Figure 3b shows the magnitude
distribution of events in the Japan dataset. There are a total of 1354 events in the catalog
ranging from 3.9 to 7.3 magnitude. More than 80% of events have magnitude values from
4.0 to 4.9 while 20% of events have a larger magnitude than 5.0 or a smaller magnitude than
4.0. From the comparison of both histograms in Figure 3a,b we find that high magnitude
events are dominated in the Japan catalog while the Alaska catalog is dominated by events
with small magnitudes. We further divided the event catalog into small, medium, and
large magnitude events, and their distribution is shown in the histograms in Figure 3c,d for
Alaska and Japan. This distribution helps to investigate the event detection with different
magnitude values, as large magnitude events are harder to detect than smaller events. The
average magnitude value for Alaska events is 3.5 and for Japan is 4.5.
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Figure 3. Magnitude distribution of events for both Alaska (left column) and Japan (right column).
The top row shows the overall magnitude distribution of events while the bottom row shows
magnitude distribution in three categories: small, medium, and large magnitudes.

Events with their depth distribution for Alaska as a histogram is shown in Figure 4a
and for Japan in Figure 4b. A large portion of the catalog includes events with short depth
and small magnitude in Alaska. A total of 2333 events out of 3577 have depths up to 30 km
(60% events). In Figure 4b, the distribution of events concerning depth is given for Japan.
More than 50% of the events have depths up to 40 km while the catalog is dominant with
events with depths of 0 to 10 km. The average value of the depth for Alaska is 33.5 km and
for Japan it is 68.0 km.
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Figure 4. Histograms showing the depth distribution of the Alaska and Japan datasets.

5. Experiment
5.1. Training the Network

We created a test set and a training set from the dataset so that we could have two
separate and distinct sets. We divided the Alaska and Japan datasets into 80:20 ratios. A
total of 20% is for testing the model performance on unseen events, while 80% is for training
the model. The training set contains the remaining 2861 (80%) and the testing set contains
716 (20%) events in Alaska. For Japan, the training set has 1083 (80%) events, and the testing
set has 271 (20%) events. We used the Adam algorithm for optimization, which kept track of
first- and second-order moments of the gradients and was insensitive to diagonal rescaling.
We used a learning rate of 10−4. A list of experiments has been conducted to analyze the
values of the hyperparameters of our model, and the best performing parameter values
used in this study are given in Table 3. We ran all of our tests on a system with a NVIDIA
GeForce GTX 1080 graphics processor unit, an Intel Core i7-7700 central processing unit, 16
GB of RAM, and the Windows 10 operating system. We use Keras, TensorFlow 2.3, and the
CUDA toolkit.

Table 3. Detail of the hyperparameter values of the BNGCNNAtt. model.

Dataset Detail Alaska (AK) Japan (JP)

Batch Size 32 32
Number of Epochs 500 300
Dropout 0.4 0.6
Training:validation:testing 60:20:20 60:20:20

We evaluate the performance of our models using root mean squared error (RMSE)
measures. Since the RMSE reflects the degree to which the actual values deviate from
the anticipated values, having a number that is as low as possible is preferable. Let the
values y1, y2, y3, . . . , yn be the ones that were observed in the dataset, and let the values
ŷ1, ŷ2, ŷ3, . . . , ŷn be the ones that were predicted by the model. RMSE can be calculated
using the following equation:

RMSE(y, ŷ) =

√
1

Nsamples
∑

Nsamples
i=1 (y− ŷ)2. (5)

5.2. Result Comparison and Discussion

In the first step of this process, we evaluate the accuracy of our model in relation to
those of the baselines. Following the first P wave arrival at any station in the network, we
evaluate the models at a set of predetermined times: t = 0.5, 1, 2, 4, 8, and 25 s after the first
P arrival. The RMSE values obtained from these evaluations are given in Figure 5. The time
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is the amount of time that has passed since the first P arrival at any station, and the RMSE is
expressed in magnitude units [m.u.]. For the events on the Alaska dataset, initially, RMSE
values are high and reduced rapidly for all the models before 5 s, and error is reduced
slowly after it. All the models show good performance with a long P wave arrival time. The
proposed model outperforms the others because its RMSE value is smaller than the others.
On the Japan dataset, the magnitude prediction error of BNGCNNAtt. is again better than
the other models. As on the Alaska dataset, initially on a short time of less than 5 s, all the
models have error values between six and five but after it, all the models improved their
prediction accuracy. Overall, the RMSE values on both datasets show that the proposed
model significantly performs better than the baseline models for magnitude estimation.
In many applications, the accuracy of magnitude estimation methods for large events is
of utmost importance. This is because such events are more likely to cause catastrophic
damage.
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Figure 5. Magnitude prediction performance of the BNGCNNAtt. with other three baseline models
after the first P arrival at the station.

We compare the RMSE of BNGCNNAtt. to other models, in the groups of small,
medium, and large events according to the catalog magnitude. The distribution of events
of both datasets into small, medium, and large groups is given in Figure 3c,d. Table 4
shows the RMSE values with the arrival time of the P wave for the Alaska dataset. Values
in Table 4 show that all the models with low RMSE values estimate magnitude values
significantly more on small magnitude events than on medium and large magnitude
events. In addition, these models show good performance over a large time value instead
of a small time value. As the time increases, the RMSE values decrease. The simple
GCNN model shows the least performance even with batch normalization. The attention
mechanism shows more significant performance than normal GCNN and GCNN with
batch normalization. Comparatively, the proposed model BNGCNNAtt. outperforms
the other three models. Our proposed model shows better performance than others on
small, medium, and large magnitude event estimation. Our model takes advantage of both
batch normalization and attention mechanisms with quick and reliable magnitude value
estimation. The performance of all the models to estimate large magnitude events is not
like that for small magnitude event estimation. It is because in our Alaska dataset, the
number of large events is small, which may lead to insufficient training of the models.
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Table 4. RMSE scores were obtained from the small, medium, and large magnitude events prediction
from the Alaska dataset after P-wave arrival time.

Time
Small Medium Large

GCNN BNGCNN GCNNAtt. BNGCNNAtt. GCNN BNGCNN GCNNAtt. BNGCNNAtt. GCNN BNGCNN GCNNAtt. BNGCNNAtt.

0.5 2.42 2.62 2.33 2.82 3.12 3.82 3.42 3.18 5.48 5.38 5.32 5.45
1 2.35 2.44 2.38 2.75 3.16 3.63 3.22 2.98 5.42 5.35 5.26 5.38
2 2.28 2.31 2.42 2.71 2.91 3.54 3.15 2.76 5.37 5.31 5.29 5.26
4 2.25 2.39 2.23 2.63 2.73 3.21 3.08 2.59 5.36 5.28 5.25 5.18
8 2.17 2.11 2.12 2.48 2.65 3.04 2.94 2.42 5.32 5.22 5.22 5.11

16 2.27 2.03 2.04 2.35 2.36 2.79 2.85 2.28 5.25 5.12 5.13 5.02
25 2.2 2.21 2.11 1.94 2.32 2.63 2.71 2.04 5.21 5.04 5.03 4.93

For the Japan dataset, the estimated performance of all the models is almost the same
for large and medium-magnitude events as the results given in Table 5. Our model takes
advantage of batch normalization and attention mechanism techniques to predict medium
and large magnitude events very well. On small magnitude events, the performance of
all the models is significantly lower than large and medium magnitude events that are
different than Alaska. GCNN, BNGCNN, and GCNNAtt. estimate the magnitude value
similarly. It is because of the dense distribution of large and medium magnitude events
and the sparse distribution of small magnitude events. Events with large magnitude values
are better predicted than medium and large magnitude events. Overall, BNGCNNAtt.
significantly outperforms the others on both the Japan and Alaska datasets to predict small
as well as large magnitude events.

Table 5. RMSE scores were obtained from the small, medium, and large magnitude events prediction
from the Japan dataset after p wave arrival time.

Time
Small Medium Large

GCNN BNGCNN GCNNAtt. BNGCNNAtt. GCNN BNGCNN GCNNAtt. BNGCNNAtt. GCNN BNGCNN GCNNAtt. BNGCNNAtt.

0.5 3.64 3.43 3.41 3.38 2.86 2.44 2.41 2.38 2.84 2.62 2.63 2.54
1 3.62 3.35 3.36 3.32 2.68 2.36 2.38 2.31 2.63 2.59 2.58 2.37
2 3.57 3.32 3.25 3.27 2.57 2.54 2.52 2.32 2.59 2.53 2.54 2.32
4 3.45 3.28 3.29 3.22 2.51 2.48 2.46 2.28 2.54 2.52 2.42 2.38
8 3.41 3.27 3.27 3.16 2.48 2.40 2.43 2.24 2.42 2.44 2.44 2.22

16 3.36 3.22 3.21 3.08 2.42 2.38 2.40 2.29 2.38 2.32 2.36 2.21
25 3.32 3.21 3.23 2.93 2.38 2.31 2.28 2.18 2.35 2.28 2.31 2.09

We applied our model to both datasets to predict the depth of events of small, medium,
or high magnitude. Figure 6 shows the estimation of depth in kilometers for Alaska in
Figure 6a and Japan in Figure 6b. All the models agree that the depth of high magnitude
events is harder to detect than smaller magnitude events. The RMSE values show that the
proposed model detects the depth efficiently for both small and large magnitude events.
As the average depth of events in the regions of Alaska is very low when compared to
Japan events (35 km approximately), all the models show superior accuracy in Alaska
than in Japan for small and medium magnitude events. However, for the Japan region,
where medium and high magnitude events dominate over smaller events, all the models
do not have high performance and produce approximately the same results. Even batch
normalization and attention mechanisms do not help to improve performance. A significant
improvement in depth estimation is noted for the proposed model when it is applied to all
groups of magnitude events.
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medium, and large magnitude events for both the Alaska and Japan datasets.

6. Conclusions

In this study, we proposed a deep learning-based model batch normalized graph
convolutional neural network with an attention mechanism to estimate the magnitude
and depth of an earthquake event. For the experiments, we used two seismic datasets for
Alaska and Japan. Alaska is dominated by events with small magnitude and small depth
while Japan is dominated by high magnitude and high depth events. We preprocessed the
dataset and categorized the events into three groups—small, medium, and high—according
to their magnitude. Following the first P wave arrival at any station in the network, we
evaluate the models at a set of predetermined times: t = 0.5, 1, 2, 4, 8, and 25 s after the first
P arrival. Our results show that the proposed model efficiently detects the event magnitude
(either small or high) and depth using attention and batch normalized techniques. Our
model outperformed the other baseline models by achieving significant scores of RMSE.
It achieved 1.62, 2.54, and 2.87 RMSE scores for Alaska events and 2.21, 2.43, and 2.66 for
Japan events for small, medium, and large magnitude events, respectively. The proposed
model provides accurate estimates of the depth and magnitude of small, medium, and
large events, as evidenced by low RMSE values, greatly outperforming the three baseline
models on both datasets.
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