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Abstract: Cooperative network is a promising concept for achieving a high-accuracy decision of
spectrum sensing in cognitive radio networks. It enables a collaborative exchange of the sensing
measurements among the network users to monitor the primary spectrum occupancy. However, the
presence of malicious users leads to harmful interferences in the system by transmitting incorrect local
sensing observations.To overcome this security related problem and to improve the accuracy decision
of spectrum sensing in cooperative cognitive radio networks, we proposed a new approach based
on two machine learning solutions. For the first solution, a new stacking model-based malicious
users detection is proposed, using two innovative techniques, including chaotic compressive sensing
technique-based authentication for feature extraction with a minimum of measurements and an
ensemble machine learning technique for users classification. For the second solution, a novel deep
learning technique is proposed, using scalogram images as inputs for the primary user spectrum’s
classification. The simulation results show the high efficiency of both proposed solutions, where the
accuracy of the new stacking model reaches 97% in the presence of 50% of malicious users, while the
new scalogram technique-based spectrum sensing is fast and achieves a high probability of detection
with a lower number of epochs and a low probability of false alarm.

Keywords: cognitive radio network; compressive sensing; spectrum sensing; malicious users detec-
tion; machine learning; stacking; deep learning; convolutional neural network

1. Introduction

Cognitive radio is a potential technology that has proven its efficiency since it was
introduced by Joseph Milota in 1998. It is designed mainly for efficient radio spectrum
allocation using an intelligent system to identify and exploit vacant radio spectrum without
interferences [1]. The sophisticated structure of the cognitive radio system has addressed the
crucial spectrum-shortage problem in future wireless communications, where the number
of subscribers is growing rapidly. In a cognitive radio network (CRN), finding an unused
spectrum is performed using the spectrum sensing process [2], which uses nodes known
as secondary users (SUs) without legal licences to sense and check the occupation of an
optional spectrum used by other nodes known as primary users (PUs) with legal licences.

To achieve high spectrum sensing performances, centralized and distributed coopera-
tive networks are proposed as relevant solutions [3]. In the first network, SUs cooperate
and share their sensing data with a fusion center (FC), which initially gathers all the SUs’
sensing observations to then reach an optimal decision on the PUs’ spectrum occupancy.
In the second network, SUs cooperate, share the sensing information between them, and
make the final decision about PU spectrum occupancy autonomously, without any inter-
action with an FC. Despite the key benefits of cooperative networks, they are susceptible
to potential attacks by malicious users (MUs) causing undesirable interferences between
SUs and PUs, and consequently reducing the decision accuracy of the spectrum sensing
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process [4]. In this paper, we considered an MU as being an unreliable user that decreases
the CRN performances for various reasons, including a malicious attacker attempting
to harm the system, or a secondary user with a low received signal and uninformative
sensing data. Hence, the design of advanced cooperative network techniques are extremely
needed, to protect the network against MU threats in the first step, and to deeply explore
the spectrum of interest for a reliable decision in a second step.

In the literature, several techniques have been implemented and discussed for either
MUs detection or PU spectrum sensing. The conventional techniques are based mainly on
a thresholding comparison method, as proposed in [5–10]. For MUs detection, the authors
in [5] use the box-whisker plot based on a correlation metric to deal with MUs in CRN.
The box determines the inferior and superior quartile limits for each node. A given node
is declared a normal SU if its data are outside of these two quartile limits; otherwise it is
considered as an MU. The authors in [6] proposed an adaptive thresholding method based
on the mass values of the nodes. The authors use double thresholds Th1 and Th2 in the
sensing process to classify each node into three classes. A particular node is defined as a
legitimate SU if its mass value is greater than Th2. Otherwise, if the mass value is less than
Th1, the node is declared as an MU, and last, if the mass value is between Th1 and Th2,
the node is identified as a doubtful user. The authors in [7] introduce a new technique based
on fuzzy logic for reliable SU selection. This technique uses three measuring parameters
jointly: SNR, channel quality, and trust factor as inputs to increase the system accuracy.
For PU spectrum sensing, the authors in [8] proposed a new dynamic threshold based
on a time quite approach for matched filter technique-based spectrum sensing in CRN.
The authors in [9] introduced a new spectrum sensing technique for cooperative CRNs
using chaotic sensing matrices for signal acquisition, and an adaptive threshold-based
energy detection to achieve the final spectrum sensing decision. Another type of PU
spectrum sensing technique based on auto-correlation comparison is proposed in [10],
where the authors proposed a new Bayesian compressive method for a wideband signal
recovery process, followed by an auto-correlation-based detection technique to perform an
accurate PU spectrum sensing decision.

Most recently, techniques based on machine learning have been widely developed,
overcoming a number of existing limitations of conventional techniques. Machine learning
is the most popular field in artificial intelligence, and aims to give machines the abil-
ity to self-learn. The most commonly used machine learning techniques are supervised
learning [11], which performs a training process based on labeled input samples, and unsu-
pervised learning [12], which performs the training process with unlabeled input samples.
For the more complicated tasks, usually deep learning is used, which is a subset of the
machine learning field, and consists of layered structures known as artificial neural net-
works inspired by the human brain [13]. Examples of machine learning-based techniques
are proposed in [14–21] and summarized in Table 1. For MUs detection, the authors in [14]
implemented a new support vector machine (SVM) algorithm to separate MUs from SUs
under a three class hypothesis. They used the energy vector of the nodes cooperating in
the network as an input feature. The proposed algorithm is evaluated in terms of accu-
racy, receiver operating characteristic (ROC), probability of detection (Pd), and false alarm
(Pf a). In [15], the authors used three individual classifiers, namely logistic regression (LR),
k-nearest neighbors (k-NN), and SVM to detect MUs in energy harvested CR-IoT networks.
The proposed LR algorithm gives better performance results in terms of accuracy, sum
rate, and network lifetime. In [16], the authors presented a machine learning framework
using six individual classification models, namely LR, KNN, SVM, Linear Discriminant
Analysis (LDA), Decision Tree Classifier (DTC), and Gaussian Naive Bayes (NB) to evaluate
a PU emulation attack in CRN in terms of accuracy, recall, precision, and F-score. The au-
thors used a new pattern described as the link signature method for features extraction.
In the same context, the authors in [17] proposed a new algorithm based on the sparse
recovery technique to distinguish between a reliable PU and attackers. Then, a machine
learning operation was performed for classification and decision-making. The proposed
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technique was evaluated in terms of ROC and area under ROC metrics. For PU spectrum
sensing, the authors in [18] performed a comparative study of different machine learning
techniques; namely, random forest, SVM, KNN, DCT, NB, and LR, using the energy statistic
as the input feature vector, to investigate their efficiency for the spectrum sensing process.
The authors in [19] proposed an adaptive cooperative sensing technique using a weighted
ensemble model. This model used three different feature vectors: energy feature, wavelet
feature, and SNR feature. Each feature vector is trained by a different machine learning
technique; namely, DTC, SVM, and KNN, respectively. At last, the outputs of the three
techniques are combined using a weighted method to decide on the occupancy of the PU
spectrum. In the same context, the authors in [20] proposed a novel convolution neural
network (CNN)-based solution to perform PU spectrum sensing using the basic features:
cyclostationary and energy feature. The authors in [21] investigated an automatic features
extraction method based on a deep learning technique. This technique combined a CNN,
long short-term memory (LSTM), and fully connected neural network together, to reach
high PU spectrum sensing performances.

However, all the above-discussed techniques were firstly performed using either MUs
detection or PU spectrum sensing. Secondly, they depended mostly on the pre-knowledge
of the recent activity of the nodes, a requirement that is not always available due to the
possibility of dynamic changes in the parameters of an MU. Thirdly, the proposed machine
learning-based techniques commonly use one-dimensional signal analysis (in the time or
frequency domain), which prevents a full extraction of hidden features. To deal with these
different issues, we have proposed a comprehensive approach considering both the MUs
detection, as well as the PU spectrum sensing. Our approach involves two techniques,
namely stacking model-based authentication and deep learning-based spectrum sensing.
The first technique was inspired from our previous work [22]; it aims at selecting reliable
SUs and eliminating MUs using machine learning techniques, and without prior knowledge
of the activity of the users. The proposed stacking model-based authentication involves
a chaotic compressive sensing process used for gathering the features and building our
dataset, followed by a stacking learning process used for making an accurate decision
regarding node reliability. In addition, we have introduced new metrics to evaluate our
stacking model, namely, Hamming loss score, Jaccard score, authentication rate, and
intrusion rate. The second technique aims at performing PU spectrum sensing with a high
probability of detection via the time-frequency analysis of the received SU signal. In this
technique, we performed a comparative study between various deep learning models
based on scalogram images to decide on the occupancy of the PU spectrum.

The remainder of this paper is organized as follows: Section 2 presents the methodology
involved in the proposed approach. Section 3 presents the simulation results of the proposed
techniques based on different metrics. Finally, a conclusion is presented at the end.

Table 1. Comparison of existing works based on machine learning.

References Approach Machine Learning
Algorithms Features Evaluation Metrics

Ref. [14] MU detection SVM Energy feature Accuracy/ROC/
Pd and Pf a

Ref. [15] MU detection LR/KNN/SVM Energy feature Accuracy
Sum rate

Network lifetime

Ref. [16] MU detection LR/KNN/SVM/ SNR feature Accuracy/Recall
LDA/DTC/NB Entropy feature Precision/F-score

PU state

Ref. [17] MU detection Feed-forward network Energy decay rate ROC
Gradient vectors Area under ROC
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Table 1. Cont.

References Approach Machine Learning
Algorithms Features Evaluation Metrics

Ref. [18] PU detection SVM/KNN/DCT/ Energy feature Accuracy
NB/LR Pd/Pf a

Ref. [19] PU detection DTC/SVM/KNN/ Energy feature Accuracy/Pd
Weighted ensemble Wavelet feature ROC/Training time

SNR feature Predection speed

Ref. [20] PU detection CNN Cyclostationary feature Loss function
Energy feature Pd

Ref. [21] PU detection CNN/LSTM/ Automatic features ROC
Fully connected neural

network extraction Pd

2. Materials and Methods

In this section, we proposed a new approach based on two machine learning solutions
to improve cooperative CRNs by considering two main aspects: (i) the confidentiality of the
sensed data and (ii) the accuracy of the spectrum sensing decision. For the first aspect, a new
machine learning solution-based stacking model is proposed for MUs detection using two
main techniques, including chaotic compressive sensing technique-based authentication
and the stacking machine learning technique. For the second aspect, a new deep learning
solution based on scalogram plots is proposed for the PU spectrum’s classification. Figure 1
represents the main blocks of the proposed approach, where an authentication process
is introduced before performing the spectrum sensing process. The first block aims at
avoiding the harmful interferences that can be caused by the presence of the MUs, which
directly affects the detection performance of a cooperative CRN. The second block performs
an intelligent and secure spectrum sensing with a high probability of detection.

Figure 1. System model blocks.

This section is organized into two sub-sections to introduce our approach. The first
sub-section outlines the detailed solution adopted to automatically reject the MUs into
the network using ensemble machine learning. The second sub-section discusses the
comparative analysis performed to select the most appropriate deep learning model for the
spectrum sensing process.

2.1. A Stacking Model-Based Malicious Users Detection

We considered a centralized cooperative CRN with I nodes classified into Z normal
nodes (SUs) and L abnormal nodes (MUs), which cooperate with an FC to perform the
spectrum sensing process. Before reaching the final decision about the spectrum occupa-
tion, all CRN users, including SUs and MUs, initially performed a double authentication
process based on compressive sensing technique [23,24], combined with a machine learning
approach to confirm their reliability. Then, once the corresponding FC has successfully
completed its classification, each user identified as a trusted user is automatically allowed
to start the spectrum sensing process. Figure 2 presents the main processes of the new
proposed technique, namely the authentication process and the machine learning process.
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In the authentication process, we assumed that the reliable nodes and the FC share two
secure pre-shared matrices, M1 and M2, which are generated using a Chebyshev map
[25]. These chaotic sensing matrices are used as a security key to distinguish between
normal and abnormal nodes [26]. The proposed double authentication process involves
two steps. The first step performed is the compression of a random sparse signal ms at
the FC, followed by a recovery of the same signal at the node using the same sensing
matrix M1. The second performed step is a compression of the recovered signal msr at
the node followed by a second recovery at FC using the same sensing matrix M2. More
details regarding the double authentication process are described in our previous work [22].
In the machine learning process, three main steps are performed by the FC, namely feature
selection, classification modeling, and node reliability decision. At the feature selection
step, the FC gathered different features based on the received compressive vectors from all
nodes (SUz and MUl) to build its dataset. At the classification-modeling step, the model is
generated, trained, and tested using individual or ensemble machine learning algorithms
[27]. At the decision step, the FC is able to recognize whether the node is a SU or MU, and
finally decides to accept or reject it. The following sections describe in detail the approach
adopted for the machine learning process.

Figure 2. Machine learning processes-based authentication.

2.1.1. Features Selection

Usually, the aim of the authentication process is the ability of the FC to distinguish
between an SU and an MU by comparing the original signal ms generated at the beginning
of the request, with the signal reconstructed based on the measurement vector Y2 received
from each node. The final recovered signal of nodei can be described as follows,

ri = argmin | mi
sr |1 subject to Yi

2 = M2 ×mi
sr + ei (1)

where r is the recovered signal of msr, ‖.‖1 is the norm 1, Y denotes the compressive
measurement vector, M2 presents the chaotic sensing matrix, and e is the additive Gaussian
noise. Consequently, different features can be selected and extracted by comparing the
original signal ms and the recovered signal ri described by Equation (1). In this paper,
we used five specific and relevant features, which can help to classify the nodes into two
categories (SU and MU). These features are: recovery error, spikes error rate, sparsity error,
magnitude-squared coherence, and mean squared error [28].
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1. Recovery error:
Also denoted by reconstruction error, this is a metric used to measure the error level
between the original signal and the recovered signal according to the distance between
the two signals. It can be formulated mathematically as

Re =
‖ms − r‖
‖ms‖

(2)

where Re is the recovery error, m is the original signal, and r is the recovered signal.
2. Spikes error rate (SER):

It estimates the error rate of a recovered signal in terms of its spikes. It is calculated as
a function of missed and false spikes. It can be described as follows,

SER =
N f s + Nms

N
(3)

where N f s and Nms are the number of false and missed recovered spikes, respectively,
and N is the length of the original signal.

3. Sparsity error:
The sparsity of a signal defines the number of significant samples included in a signal.
This characteristic takes a crucial function in the process of a compressive sensing
technique to achieve a perfect recovery of a sparse signal. Thus, the sparsity error
metric can be defined as the rate of failure between the original signal and the recovery
signal in terms of their sparsity level. The sparsity error of a recovered signal r can be
expressed as follows,

kerror =
Kr

Km
(4)

where Kr denotes the sparsity level of the recovered signal r and Km denotes the
sparsity level of the original signal m.

4. Magnitude squared coherence (MSC):
It evaluates the similarities of two signals in terms of frequency. It uses a linear model
to determine at which degree a signal can be predicted from another signal. The MSC
between two signals m and r is a real-valued function that can be defined as

Cmr( f ) =
| Gmr( f ) |2

Gmm( f )Grr( f )
(5)

where Gmr( f ) denotes the cross-spectral density between m and r, and Gmm( f ) and
Grr denote the auto-spectral density of m and r, respectively.

5. Mean squared error (MSE):
It aims at computing the squared error based on the measures of the square of each
element of the error signal resulting from the difference between two signals. It
measures the extent to which a reconstructed signal and an original signal are different.
It also usually used as a performance metric for predictive modeling. The MSE
between two signals m and r can be expressed as

MSE =
1
N

N

∑
i=1

(m(N)− r(N))2 (6)

where m is the original signal, r is the recovered signal, and N denotes the number
of samples.
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2.1.2. Classification Modeling

Malicious users detection can be represented as a binary classification problem with
a dataset D = (X, y) composed of the vector X = (X1, X2, X3, X4, X5) representing the
five input features of a nodei, and the vector y representing the target feature (or label)
of each node, with y = 0 if the node is SU, or y = 1 if the node is MU. To mitigate this
classification problem, a stacking model-based ensemble-learning technique is used to
achieve more stable and accurate predictions than with individual learning. Stacking or
Stacked Generalization is an advanced technique that aims at combining the prediction
results of multiple individual learning models to take the final predictions [29]. The stacking
architecture includes two or more base models, commonly denoted by level-0 models, and a
meta-model denoted by a level-1 model [30], as shown in Figure 3. In level-0, different
classification models are trained using the complete training set. Then, in level-1, a single
classification model is trained on the outputs of level-0 to best combine the predictions and
to take final accurate decisions.

Figure 3. Stacking model with three base models.

To provide an appropriate stacking with high performances, we used three varied
ranges of base models, namely Support Vector Machine (SVM) [31], Logistic Regression
(LR) [32], and Gaussian Naïve Bayes (NB) [33]. SVM is one of the most robust supervised
algorithms used for solving both regression and classification problems. It performs an
accurate classification using a hyperplane that splits two different classes by maximizing
the margin between them. LR is a linear technique, usually used for predicting binary
classification outputs. For this type of classification, the LR model is mainly based on
the logistic function, also called the sigmoid function, with the particularity to be always
within the range of 0 and 1. In this work, we used the LR algorithm for both the base model
in 0-level and the meta-model in 1-level. NB is a statistical model used for classification
problems, with its prediction outputs based on Bayes’ theorem. For our case, we used
Gaussian Naive Bayes, since our input features are real-valued. Thus, the proposed stacking
Algorithm 1 can be summarized as follows.
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Algorithm 1 Stacking model
Input: Training data D = (Xi, yi)
Level-0 classifiers C1, C2,C3
Level-1 classifier C
Output: Final prediction P
Step 1: Train level-0 classifiers
for t = 1 to 3 do

pt = Ct(D) % train a base model Ct based on D
end
Step 2: Generate new inputs to meta-model
for i = 1 to m do

Dnew = (Xnew
i , yi) with

Xnew
i = ((p1(Xi),p2(Xi), p3(Xi))

end
Step 3: Train level-1 classifier
pnew = C(Dnew) % train a meta model C based on Dnew

Step 4: Take final prediction P
P(X) = pnew ( p1(X),p2(X),p3(X))

2.2. Scalogram-Based CNN Models for Spectrum Sensing

We considered a secure cooperative CRN with a frequency band B = [ fn Hz to fm
Hz] of interest. The aim task of each SU cooperating in the network is the detection of the
occupancy of the band B by PU with a high probability of detection and accuracy. Let S f
be a set of frequencies being used by PU, and then the band is considered as occupied if
S f ⊂ B, otherwise, it is considered vacant. To perform the spectrum sensing process, the
traditional technique involves three steps [34]. The first step aims at defining a test statistic,
which varies according to the technique applied. For instance, energy-based detection takes
the sum energy of the received signal as a test statistic [35]. The second step consists of a
comparison between the test statistics and a predefined threshold to take a final decision as
a last step. However, this type of technique processes the received signal with only one
dimension (1D) (either time or frequency), which can reduce the reliability of the spectral
analysis, particularly in the presence of intense noises. Furthermore, these techniques
have to meet a certain number of requirements for efficient sensing (i.e., the energy-based
detection technique requires pre-knowledge of the noise variance).

An alternative to overcoming these issues is to formulate the spectrum sensing pro-
cess as an image classification problem with a binary hypotheses (H0: vacant band or H1:
occupied band) using deep learning, especially with CNN models for automatic features
extraction. In other words, the received signal can be processed as an image of 2D (time-
frequency) for better spectral analysis. The scalogram image is an adequate solution for
visualizing this time-frequency representation of a signal. It displays the variation of the ab-
solute value of the continuous wavelet transform (CWT) of a signal over time and frequency.
In addition, the scalogram provides an accurate frequency localization for long-duration
signals with low frequency, as well as a good temporal localization for high-frequency
and short-duration signals. Regarding the hardware aspect, coherent detection techniques
such as energy-based detection (using in-phase and quadrature (I/Q) data) require hard-
ware that is more complex than that used for the processing of spectrogram/scalogram
images [36]. Figure 4 presents examples of a scalogram of different cases.
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Figure 4. Examples of scalogram: (a) Presence of the PU signal in the band of interest; (b) absence of
PU signal (noise); (c) absence of PU signal (presence of frequencies out of the band of interest).

A scalogram-based CNN models technique for spectrum sensing involves two main
processes. The first process aims at transforming the received signal (1D) to a scalogram
(2D) using CWT. The second process operates the training of several CNN models with the
scalogram images obtained in the first process as the input, as shown in Figure 5.

Figure 5. Scalogram-based CNN models processes.

2.2.1. Continuous Wavelet Transform

The time-frequency analysis of signals is a crucial aspect in signal processing. It
aims at accurately localizing the frequency component of a signal as function of time;
i.e., instead of analyzing the signal with one dimension (time or frequency), the analysis is
performed using two dimensions (time-frequency). The most commonly used techniques
to perform time-frequency analysis are the short-time Fourier transform (STFT) [37] and
the continuous wavelet transform (CWT) [38]. STFT is an extension of Fourier transforms
used to identify the frequency component of the signal over the full time span, using a
uniform window size. In practice, the plot usually used for visualizing the STFT results is
the spectrogram. In contrast, CWT is a more advanced technique, which is derived from
the wavelet transform. Unlike STFT, CWT uses variable window sizes to process highly
modulated signals with different resolutions. In other words, CWT evaluates the similarity
between a signal and different dilation and shifted forms of a wavelet, which provides the
ability to extract more significant features at different scales. To visualize the results of a
CWT-based time-frequency analysis, a scalogram plot is usually used. Mathematically, the
CWT of a received signal y(t) can be formulated as follows,

Cwt(s, p) =
1√

s

∫ +∞

−∞
y(t)× ψ∗(

t− p
s

)dt (7)

where Cwt(s, p) are the wavelet coefficients, s and p are the scale and the position parameters,
respectively, ψ(t) is the original wavelet known as the mother wavelet, and ψs,p(t) is the
variation of ψ(t) at different scales and positions, known as daughter wavelets. In this
study, the Morse wavelet-based CWT are used as the mother wavelet, with Γ = 3, called
the symmetry parameter, and a constant b = 60, called the time bandwidth product for
normalization [39].

2.2.2. CNN Models

CNN is a robust model of the artificial neural network, also denoted ConvNet, which
is is mainly designed for image processing [40,41]. Basically, it includes two main parts,
namely features extraction and classification, as shown in Figure 6. The first part involves
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a sequence of convolutions to split and extract different features from the input images.
The second part includes fully connected layers and an output layer with a different
number of neurons, depending on the case study for predicting which class the input image
belongs to.

Figure 6. Main parts of CNN models.

To examine the efficiency of the scalogram-based spectrum sensing technique, we
performed a comparative study between two approaches based on different CNN models.
In the first approach, we explored a basic CNN model without the transfer learning
method [42]. In the second approach, we investigated four different CNN models based
on the transfer learning method; namely, model A, model B, model C, and model D.
Each model is designed based on four popular pre-trained models, namely, VGG16 [43],
inceptionV3 [44], efficientNetB0 [45], and DenseNet201 [46], respectively. The purpose of
this approach is to re-configure and train only the classification part of each model, while
the features extraction part remains the same un-trained, as shown in Figure 7; i.e., the last
layers of each pre-trained model are dropped and fine-tuned by two new layers close to
the classification layers of the simple model. These two layers are a fully connected layer of
16 hidden neurons with ReLU activation function, a dropout rate of 0.2, a decisive fully
connected layer with one neuron, and Sigmoid activation function for a binary classification
(H1/label 1 for the presence of the PU signal, or H0/label 0 for the absence of the PU signal).

Figure 7. The configuration of the newly added classification part.

• Simple CNN model: Includes an input layer, three convolution layers, three max-
pooling layers, three dropout layers, one fully connected layer, and an output layer.
The input layer takes images of size 128 × 128, and three channels. The three convo-
lution layers used filters of small size, 3 × 3, stride 1, and max pooling layers with
filters of 2 × 2 and stride 2. The first convolution layer contains 16 filters, while the
second and the third convolution layer contain 64 filters. For all hidden layers, the
ReLU activation function is used and a dropout rate of 0.2 is performed. Finally, a fully
connected layer with 16 neurons and an output layer with sigmoid activation function
are implemented for the final classification decision.

• Model A: is a combination of the features extraction part of the pre-trained VGG-16
model and the new proposed classification part. The VGG-16 model has a sequential
architecture with various number of filters. It includes 13 convolution layers, five
pooling layers, three fully connected layers, and an output layer. The input layer
takes images of size 224 × 224, and three channels. Each convolution layer used
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filters of size 3 × 3, stride 1, and the same padding and max pooling layers as the
filters of 2 × 2 and stride 2. Convolution layer 1 contains 64 filters, convolution layer
2 contains 128 filters, convolution layer 3 contains 256 filters, and convolution layer
4 and 5 contain 512 filters. For all hidden layers, the ReLU activation function is
performed. The first two fully connected layers contain 4096 neurons each, and the
third contains 1000. The output layer of VGG-16 used softmax activation function for
the final classification decision.

• Model B: is a combination of the features extraction part of the pre-trained InceptionV3
model and the new proposed classification part. InceptionV3 is an advanced version of
the standard InceptionV1 model that was released under the name GoogLeNet in 2014.
Compared to the other CNN model, the most important property of the InceptionV3
model is the integration of the inception module, which has a sparsely connected
architecture. This module performs multi-convolution at the input with different
filters sizes and pooling layers simultaneously, which therefore leads to more complex
features extraction. Overall, the InceptionV3 model includes 42 layers arranged under
several symmetric and asymmetric components, including convolutions, average
pooling, max pooling, concatenations, dropouts, fully connected layers, and an output
layer with softmax activation function.

• Model C: is a combination of the features extraction part of the pre-trained Efficient-
NetB0 model and the new proposed classification part. The key concept of Efficient-
NetB0 is the implementation of a new scaling method, unlike the conventional one.
This method scales the three dimensions of an input, namely width, depth, and resolu-
tion with a compound coefficient; i.e., it carries out the scaling using fixed coefficients.
The EfficientNetB0 architecture is organized as a seven mobile-inverted bottleneck
convolution, also known as MBConv block, which uses an inverted residual structure
for an improved performance of the CNN model. Each block has two inputs: data
and arguments. The data inputs are the output data from the previous block, and
the argument inputs are a set of attributes such as squeeze ratio, input filters, and
expansion ratio.

• Model D: is a combination of the features extraction part of the pre-trained DenseNet201
model, and the new proposed classification part. DenseNet201 architecture includes
four dense blocks using the concept of dense connections between the different layers.
To achieve this connection, each layer exploits the feature maps of all previous layers as
inputs. The input layer of DenseNet201 takes images with a size of 224 × 224 and three
channels. Each two dense blocks are separated by a transition layer, which contains a
convolution layer with a filter of 1× 1, followed by an average-pooling layer with a filter
of 2 × 2. At the end, a fully connected layer with 1000 neurons and an output layer with
softmax activation function are implemented for the final classification decision.

3. Results and Discussion

To evaluate the performance of the proposed approach, we conducted extensive
simulations using a computer with an Intel(R) Core(TM) i7-6600U CPU (Central Processing
Unit) at 2.60 GHz, 8 GB RAM (Random Access Memory), and Windows 10 64-bit OS
(Operating System). The simulation section is divided into two independent parts with
different datasets. In the first part, we focused on the performance study of the proposed
stacking model-based solution regarding the confidentiality aspect of the sensing data.
In the second part, we discussed the performances of different scalogram-based CNN
models proposed to improve the decision accuracy of the spectrum sensing process.

3.1. Simulation of Stacking Model-Based MUs Detection

In this sub-section, we carried out an extensive quantitative comparison study between
the performance results of the individual models (SVM, LR, and NB) and the stacking
model based on several performance metrics and in the presence of varying percentages
of MUs. For the simulation results, we generated a dataset composed of 2000 examples
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with five features (Re, SER, Saprsity error, MSC, and MSE) and a binary target (1 for MUs
and 0 for SUs). These examples were collected from the experimental results of an original
sparse signal ms of length N = 200 samples and randomly placed k = 20 spikes (10% of N).
For the compression processes, the sensing matrices M1 and M2 are generated based on a
Chebyshev map. For the recovery process, we used the Bayesian algorithm to speed up
the recovery time and to deal with uncertainty in the measurements [47]. For the training
process, the dataset is split into 60% for training and 40% for testing.

To measure the prediction performances of the proposed model-based MUs detection,
several evaluation metrics are used. These metrics can be classified into two categories.
The first category evaluates the model performances based on indirect comparison using
the confusion matrix output, which is a square matrix for our case, as we have a binary
classification problem [48]. The confusion matrix output includes the following four
variables:

• True Positive (TP): Malicious users successfully recognized as malicious users.
• True Negative (TN): Normal users successfully recognized as normal users.
• False Negative (FN): Normal users wrongly recognized as malicious users.
• False Positive (FP): Malicious users wrongly recognized as normal users.

Based on these variables, the performance metrics in the first category used in this
paper can be defined as follows:

- Accuracy: This refers to the percentage of successfully classified nodes over the global
number of nodes assessed. It can be defined as

Accuracy =
TP + TN

TP + TP + FP + FN
(8)

- Precision: This can be used as a quality metric to evaluate a machine leaning model.
It measures the degree of accuracy of the model on positive predictions. It can be
described as

Precision =
TP

TP + FP
(9)

- Recall: It can be used as a quantity metric to evaluate a machine learning model. It
quantifies the total number of correct positive predictions performed from all positive
predictions that could have been performed. It can be described as

Recall =
TP

TP + FN
(10)

- Authentication Rate (AR): This refers to the rate of the SUs detection. It can be
described as

AR =
TN

TN + FN
(11)

- Intrusion Rate (IR): This refers to the rate of the MUs misdetection. It can be de-
scribed as

IR =
FP

FP + TP
(12)

The second category evaluates the model performances based on a direct comparison
between the true values tested by the model and the final predicted values of the same
model. Examples of these evaluation metrics include the Log loss score, Hamming
loss score, and the Jaccard score.

- Log loss score: Also denoted by cross-entropy loss, it shows the extent to which the
prediction probability is approximately close to the related true value. A high log loss
score corresponds to a large divergence between the prediction probability and the
true value. It can be expressed as
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L(Xi, yi) = −
C

∑
c=1

yic × log (Pic) (13)

where Xi denotes the input vector, yi the corresponding target, and Pic is the probabil-
ity that the ith sample is classified in the class c.

- Hamming loss score: refers to the amount of incorrect labels relative to the total
number of labels. It can be defined as

H(y, ỹ) =
1

nlabels

nlabels−1

∑
j=1

(
yj 6= ỹj

)
(14)

where ỹ is the predicted value, y is the corresponding true value, and nlabels presents
the number of classes.

- Jaccard score: Also called the Jaccard similarity coefficient, it is used to evaluate the
similarity between the predicted values and the true values. It is computed as the
result of the quotient of the dimension of the intersection by the dimension of the
union of two labels. The Jaccard score can be expressed as

J(y, ỹ) =
| y ∩ ỹ |
| y ∪ ỹ | (15)

where y and ỹ are the true value and the corresponding predicted value, respectively.

Examples of the results are detailed in Table 2 and Figures 8–10. Table 2 represents
the comparative results of a balanced dataset containing equal proportions of MUs and
SUs (50%–50%) ) based on several metrics, namely accuracy, precision, recall, log loss score,
Hamming loss score, Jaccard score, and processing time. As one can see, the stacking
model achieves 97% accuracy and exceeds the individual models: SVM, LR, and NB, with
70%, 93%, and 80%, respectively. For the precision metric, the four models track almost
the same pattern of accuracy performances, with 96% for the stacking model, 66% for
the SVM model, 87% for the LR model, and 89% for the NB model. However, the LR
and NB models record the highest recall score with 99% for each one, followed by the
stacking model with 98%, while the SVM still has a low score value, with 75%. In terms
of the log loss and Hamming loss scores, the stacking model has a low value for both
metrics, with 0.86 and 0.02, respectively, followed by the NB and LR models, which learn
with log loss values of 2.07/2.37 and Hamming loss values of 0.06/0.07, respectively.
The SVM model reaches the highest log loss and Hamming loss, with values of 10.2 and
0.3, respectively. For the Jaccard score, the stacking model reaches a higher score, with
94%. The greater the percentage, the more similarity between the sets of real samples and
predicted samples. The SVM model performs with a lower Jaccard score of 55%, while
the LR and NB models perform roughly similarly, with acceptable values of 87% and 88%.
In addition, the required time for processing each model is another evaluation metric that
can be exploited for this quantitative comparison. Thus, in terms of processing time, MUs
detection takes 0.09 s, 0.05 s, and 0.12 s to be processed with the SVM, LR, and NB models,
respectively. Conversely, it takes a longer processing time with the stacking model, due to
the multiple tasks executed to provide an accurate prediction with a minimum of errors.
To summarize, the proposed stacking model achieves a high accuracy, precision, and
Jaccard score, as well as low log loss and Hamming loss scores. Therefore, stacking-based
MUs detection can be used as an efficient solution to enhance CRN nodes classification
compared to the individual models.
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Table 2. Quantitative comparison of the individual models and stacking model.

Models SVM LR NB Stacking

Accuracy 0.70 0.93 0.94 0.97
Precision 0.66 0.87 0.89 0.96

Recall 0.75 0.99 0.99 0.98
Log loss 10.2 2.37 2.07 0.86

Hamming loss 0.3 0.07 0.06 0.02
Jaccard score 0.55 0.87 0.88 0.94

Processing time 0.09 0.05 0.12 0.2

A further alternative for comparing the performance of the different models is via a
curve-based comparison, including the Precision-Recall (PR) curve. Figure 8 represents an
example of a PR curve, where the precision scores are plotted on the y-axis as a function of
the recall scores on the x-axis. It illustrates the trade-off between precision and recall for
various thresholds. The highest precision and recall values are desired to achieve a high
model performance; in other words, the appropriate PR curve has the greatest area under
curve (AUC). In Figure 8, the stacking model provides the best performance results, with
97.5% of the AUC, followed by the NB model with 94.2% of the AUC, the LR model with
93.3% of the AUC, and SVM with a low value, 70.4% of the AUC.

Figure 8. Precision-Recall curve.

In addition, to evaluate the robustness of the proposed model in the presence of
varying percentages of MUs, we plotted the authentication rate and intrusion rate of the
SVM, LR, NB, and stacking-based models against different percentages of malicious users,
including 10%, 30%, and 50%. Example of the results are presented in Figures 9 and 10.
Figure 9 illustrates the variation of the authentication rate for the different models. It can be
observed that the authentication rate increases slightly with the increase in the percentage
of MUs for all models with an acceptable rate. Otherwise, all models keep a suitable
authentication rate despite the decreasing number of SUs, to reach 98%, 99%, and 99% for
the LR, NB, and stacking models, respectively, with only 50% of SUs. The SVM model is an
exception, and shows a reduced authentication rate of 80% for the same percentage of MUs.
Figure 10 shows the variation of the intrusion rate for the different models. As one can see,
the intrusion rate increases progressively with the increase in the percentage of malicious
users for all models, which can be considered as acceptable. However, the stacking model
shows the low intrusion rate for all percentages than the other models. It reaches only 5% of
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the intrusion rate with 50% MUs, followed by LR with 12%, NB with 18%, and lastly, SVM
with the highest value of 20%. Therefore, the proposed stacking model provides a high
authentication rate and a low intrusion rate for the different percentages of malicious users.
Thus, we can conclude that the stacking model is still the best solution that gives better
performance results; and then it can be selected as a suitable choice for best classifying the
CRN nodes, even in the case of datasets with 50% of MUs.

Figure 9. Authentication rate of different percentages of malicious users.

Figure 10. Intrusion rate of different percentages of malicious users.

3.2. Simulation of a Scalogram-Based CNN Model for Spectrum Sensing

In this sub-section, we performed a comparative analysis between two approaches,
the one without transfer learning and the other with transfer learning, to select the suit-
able model for PU detection. For the first approach, three models of simple CNN were
considered, including, simple CNN based on the Adaptive Moment Estimation (Adam)
optimizer [49], simple CNN based on the Root Mean Square Propagation (RMSProp) opti-
mizer [50], and simple CNN based on the Stochastic Gradient Descent (SGD) optimizer [51].
For the second approach, four modified pre-trained models according to Section 2.2.2
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are considered; namely, the VGG-16-based model A, the InceptionV3-based model B, the
EfficientNetB0-based model C, and the DenseNet201-based model D.

For the simulation results, we generated a dataset of 550 sclagoram images, with
300 scalograms presenting occupied signals and 250 scalograms presenting unoccupied
signals (noise). For a proof of concept, we considered a band of interest B = [700–800 Hz],
a sampling frequency of 8 KHz, and an SNR range from −30 to 30 dB. The spectrum is
considered to be occupied if the scalogram shows frequencies in the range 700 to 800 Hz.
The spectrum is considered unoccupied (noise) if the scalogram shows either only noise
or frequencies in the range out of 700–800 Hz. For the training process, the dataset is
split into 70% for training and 30% for testing. For the performance evaluation, accuracy,
classification time, the probability of detection (Pd), and probability of false alarm (Pf a)
are considered as metrics related to the proposed approaches’ evaluation. The accuracy
metric is defined according to Equation (8). The classification time is the time required for
training data in the added classification part. The probabilities of detection and false alarm
are defined mathematically based on the confusion matrix parameters as follows:

Pd =
NTP
Np

Pf a =
NFN
Nn

(16)

where Pd is the probability that the predicted values are classified into class 1 (the presence
of a signal), while the actual values are classified into class 1 (the presence of a signal); NTP
is the number of true positives and Np is the total number of selected positives. Pf a is the
probability that the predicted values are classified into class 1 (a presence of signal), while
the actual values are classified into class 0 (an absence of signal). NFN is the number of
false negatives and Nn is the total number of selected negatives.

Examples of the results are detailed in Table 3 and Figures 11–14. Table 3 represents
the comparative results in terms of accuracy and classification time between the different
proposed CNN models, using a batch size equal to 5 and a number of epochs equal to 15.
As one can see, the RMSProp-based simple CNN achieves the highest performance results
in terms of both accuracy and time, with 100% training accuracy and testing accuracy, and a
faster classification time of 132 s; followed by an Adam-based simple CNN with very close
results and a training accuracy of 99.74%, a testing accuracy of 100%, and a classification
time of 135 s. The SGD-based simple CNN reaches a training accuracy of 95.55%, a testing
accuracy of 98.18%, and a classification time of 137 s. For the transfer learning-based models,
the EfficientNetB0-based model C is much faster than the other models (model A, model
B, and model D), with a classification time of 165 sec, and it also achieves an acceptable
accuracy performance, with 95.06% training accuracy and 96.36% testing accuracy. The
VGG16-based model A, InceptionV3-based model B, and DenseNet201-based model D
present lower accuracy performances, with 84.90%, 89.87%, and 90.39% of the training
accuracy, respectively; and 93.35%, 93.94%, and 96.97% of the testing accuracy, respectively.
As well, for the classification time, the three models (model A, model B, and model D) take
a long time to train compared to the other models, with 1218 s, 278 s, and 950 s, respectively.
Therefore, the proposed simple CNN models give high training and testing accuracies, and
a faster classification time.

An alternative way to properly analyze the difference between the models in terms of ac-
curacy is to display its variation as a function of the epochs, as illustrated in Figures 11 and 12.
As we can see, both the training and testing accuracies increase proportionally with the num-
ber of epochs for both techniques, the simple CNN without transfer learning and the models
with transfer learning. Furthermore, it is clear that the CNN models without transfer learning
achieve the highest results with a lower number of epochs, and then present a suitable choice
for PU detection. For the training accuracy, the CNN model with RMSProp optimizer reaches
100% accuracy in 13 epochs, the CNN model with Adam optimizer reaches 99.74% accuracy
in 14 epochs, and the CNN model with SGD optimizer reaches its highest accuracy value
of 95.55% in 11 epochs. For the testing accuracy, the CNN model with RMSProp optimizer
reaches 100% accuracy in eight epochs, the CNN model with Adam optimizer reaches 100%
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accuracy in 15 epochs, and the CNN model with SGD optimizer reaches its highest accuracy
value of 98.18% in 10 epochs.

Table 3. Comparison results between different CNN models.

CNN Model Optimizer Transfer Learning Training Accuracy Testing Accuracy Classification
Time

Simple CNN Adam No 99.74 100 135 s
Simple CNN RMSProp No 100 100 132 s
Simple CNN SGD No 95.55 98.18 137 s

Model A Adam Yes 84.90 93.35 1218 s
Model B Adam Yes 89.87 93.94 278 s
Model C Adam Yes 95.06 96.36 165 s
Model D Adam Yes 90.39 96.97 950 s

Figure 11. Training accuracy comparison results between different CNN models.

Figure 12. Testing accuracy comparison results between different CNN models.

Further performance results of our comparative study are presented in Figures 13 and 14,
where the probability of detection and false alarm are plotted against the number of epochs.
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As we can see, the Pd increases proportionally with the number of epochs, while the Pf a
decreases proportionally with the number of epochs for both techniques, the simple CNN
models without transfer learning and the models with transfer learning. In addition, the simple
CNN models with the RMSProp and Adam optimizers achieve the best performances results
in terms of Pd and Pf a. For Pd results, the CNN model with both the RMSPprop and Adam
optimizers reached 100% of Pd in six epochs and nine epochs, respectively. For the Pf a results,
the CNN model with RMSPprop optimizer met 0% of Pf a in eight epochs and the CNN model
with Adam optimizer met 12% of Pf a in 12 epochs.

Therefore, we can conclude that the significant performance differences between
the models trained with transfer learning and the simple CNN models without transfer
learning prove that an appropriate design of a sequential CNN model can be a more
efficient solution than transfer learning. Furthermore, the CNN model with RMSProp gives
the best performance results to perform scalogram-based spectrum sensing processes in
CRN, with high accuracy, a high probability of detection, a low probability of false alarm,
and a low classification time, with a lower number of epochs.

Figure 13. Probability of detection comparison between different CNN models.

Figure 14. Probability of false alarm comparison between different CNN models.
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4. Conclusions

In this paper, two new machine learning solutions are proposed for an improved
cooperative CRN. The first solution aims at classifying a set of users cooperating in the
same network into trusted and malicious users with high accuracy. This solution involves
two steps: compressive sensing-based authentication and binary classification based on
a stacking model. The first step performs a chaotic compressive sensing technique-based
authentication to gather the different features used to build our dataset. The second step
performs a binary classification (SU/MU) based on a stacking model with three base classi-
fiers, namely SVM, LR, and NB. The second solution uses the time-frequency representation
(2D) of a signal based on scalograms to decide on the occupancy of the PU spectrum (H0
or H1). To implement this solution, several CNN models are compared, including a sim-
ple CNN model with three different optimizers, and four modified pre-trained models:
VGG16, InceptionV3, EfficientNetB0, and DenseNet20. To review the effectiveness of the
proposed stacking model and CNN models, we opted for extensive simulation comparisons.
Firstly, the performances of the stacking model-based ensemble learning and the individual
learning are compared using several evaluation metrics, including accuracy, precision,
recall, log loss score, Hamming score, Jaccard score, processing time, authentication rate,
and intrusion rate. Secondly, the performances of the simple CNN models without transfer
learning and the modified pre-trained models with transfer learning are compared in terms
of accuracy, classification time, probability of detection, and false alarm. Based on the
simulation results, we conclude that the proposed stacking model is a promising solution
to improve the security issues of cooperative CRN, with a high accuracy of 97%, even in
the presence of 50% MUs. As well, the simple CNN model with RMSProp optimizers is the
efficient solution for performing a scalogram-based spectrum sensing process in CRN with
a high probability of detection, a low probability of false alarm, and a faster classification
time. In future work, we will improve the proposed technique for the classification of
the PU spectrum. A more extensive study will be performed using a wider and more
real-world dataset. In addition, we will apply the proposed concept to more than one SU,
with a detailed description of the approach for transmitting the sensing data from multiple
SUs to the fusion center, and the technique that will be used to make the final decision.
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