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Abstract: Multi-dimensional parameters joint estimation of multi-targets is introduced to imple-
ment super-resolution sensing in range, velocity, azimuth angle, and elevation angle for frequency-
modulated continuous waveform (FMCW) radar systems. In this paper, a low complexity joint
3D super-resolution estimation of range, velocity, and angle of multi-targets is proposed for an
FMCW radar with a uniform linear array. The proposed method firstly constructs the size-reduced
3D matrix in the frequency domain for the system model of an FMCW radar system. Secondly,
the size-reduced 3D matrix is established, and low complexity three-level cascaded 1D spectrum
estimation implemented by applying the Lagrange multiplier method is developed. Finally, the low
complexity joint 3D super-resolution algorithms are validated by numerical experiments and with a
77 GHz FMCW radar built by Texas Instruments, with the proposed algorithm achieving significant
estimation performance compared to conventional algorithms.

Keywords: FMCW radar; super resolution; array signal processing

1. Introduction

In recent years, with the development of millimeter-wave (mm-wave) semiconductor
technology, the application of frequency modulated continuous wave (FMCW) radar sensor
systems has become easy and popular [1] and many commercial radars can be used for
automotive applications [2,3], UAV detection [4,5], and medical diagnosis [6–8], etc. Radar
sensor systems play an important role in these applications to obtain state features such
as range, velocity, and angle of targets. Therefore, various estimation algorithms based
on FMCW radar have also been proposed due to the wide application of FMCW radar
sensor systems. In those traditional algorithms [9–11], the range, radial velocity, and angle
information of the targets can be estimated by taking the 3D fast Fourier transform (FFT)
on the beat-frequency (BF) signal, which is achieved by the dechirping operation of the
received and transmitted signal. Although this algorithm is simple and efficient to use, its
resolution is limited by hardware aspects such as the bandwidth of the transmitted signal,
the area of the receiving antenna aperture and the number of chirps transmitted [12]. The
resolution of the radar system often cannot meet our actual needs due to physical hardware
limitations, which has led to the super-resolution estimation algorithm based on FMCW
radar being intensively researched, especially for multi-targets detection scenarios.

The conventional one-dimensional (1D) multiple signal classification (MUSIC)
algorithm [13,14], Root-MUSIC algorithm [15,16], and ESPRIT algorithm [17,18], etc., pro-
vide super-resolution estimation through the subspace-based technique. However, these
algorithms only estimate the direction of arrival (DOA) and the estimation of only one
parameter cannot meet our actual needs. Moreover, the estimation of range, velocity, and
angle can be processed sequentially, solving each parameter estimation problem indepen-
dently, but this leads to a severe pairing problem of the estimated results as the number of

Sensors 2022, 22, 6474. https://doi.org/10.3390/s22176474 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22176474
https://doi.org/10.3390/s22176474
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22176474
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22176474?type=check_update&version=2


Sensors 2022, 22, 6474 2 of 19

targets increases [19]. Therefore, many joint estimation algorithms without pairing have
been suggested in recent years. For example, the L-shaped, matrix or other shapes of receiv-
ing antenna array are used to implement the algorithm for joint super-resolution estimation
of elevation and azimuth based on the two-dimensional (2D) MUSIC algorithm [20,21].
Additionally, the 2D MUSIC algorithm [22–24] achieves super-resolution joint estimation of
range and angle by extending conventional 1D MUSIC for the angle domain to 2D MUSIC
for the range-angle domain. However, the difficulty of this kind of algorithm in practice is
that a lot of calculations are required in the process of constructing the covariance matrix
and multi-dimensional peak searching; especially when the dimension is higher, the calcu-
lation amount is huge. To reduce the amount of calculation, the methods of dimensionality
reduction and beam projection are applied to the 2D MUSIC algorithm [25–27] and the
ESPRIT algorithm is used to replace the peak search process of MUSIC [28] in 2D. However,
such low-complexity and super-resolution estimation algorithms are rarely studied in
the joint 3D estimation of range, velocity, and angle. Although some 3D joint estimation
algorithms based on 3D MUSIC have also been proposed [29,30], they have not solved the
problem of high complexity in 3D.

Hence, in this paper, we propose a low-complexity super-resolution joint 3D estimation
algorithm of range velocity and angle of multi-targets. Based on 3D MUSIC, this algorithm
reduces the amount of computation through two-part processing. First, we reduce the
amount of matrix computation and data storage by extracting useful frequency information
in the beat signal. Then, the conventional 3D peak searching is transformed into three-level
cascaded 1D searching by applying the Lagrange multiplier method. Additionally, this
algorithm uses a three-dimensional spatial smoothing technique [31] to solve the problem of
coherent echoes. The results of simulation and actual experiments show that the algorithm
not only substantially reduces computation, but also maintains super-resolution ability.

This paper is organized as follows: Section 2 presents the radar system and signal
model. Section 3 introduces this low-complexity super-resolution algorithm. The results
of experiments and the performance analysis of this algorithm are discussed in Section 4.
Finally, the conclusion is presented in Section 5.

2. Signal Model

Consider a SIMO FMCW radar system, which consists of a uniform linear array (ULA),
and the system block diagram is as shown in Figure 1:

Figure 1. Block diagram of FMCW radar.

A chirp signal consists in transmitting a frequency-modulated signal which exhibits a
linear frequency increase or decrease over the bandwidth of Bw Hz in the duration time of
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Tc s. The linear frequency increase version transmitted by the FMCW radar can be modeled
as [32]:

st(t) =

{
ej2π( fct+ µ

2 t2) 0 ≤ t < Tc
0 elsewhere

(1)

where fc is the carrier frequency, µ = Bw/Tc is the ratio of the bandwidth of the transmitted
chirp signal to its duration time of sweep. Considering K narrowband sources impinging
on the ULA of the radar system reflected by K moving targets in the far field, the received
signals can be defined as:

sr(t) =
K
∑

k=1
st(t− τk) + w(t)

≈
K
∑

k=1
ej2π[

µ
2 (t−

2Rk
c )

2
]ej2π[ fc(t−τk)] + w(t)

(2)

τk =
1
c
{2[Rk + (l − 1)TcVk + Vkt] + (n− 1)d sin θk} (3)

where K is the number of targets, Rk, θk, Vk are range, angle, and velocity of the k-th target,
respectively, c is the speed of light, and d is the spacing of the uniform linear array antenna;
n = 1 . . . N, N is the number of elements of the received antenna array, l = 1 . . . L, L
is number of transmitted chirps, w(t) is the transformed additive white Gaussian noise
(AWGN) signal. The item τk stands for the phase shift in the received chirp signal, and it is
induced by range, velocity, and angle at the same time, as explained in [33]. To be more
specific, the item Rk + (l − 1)TcVk + Vkt denotes the instant range at time t for the received
l-th chirp reflected from the k-th moving target, and it deduces the phase shift induced
by range and velocity. Meanwhile, the item (n − 1) sinθk denotes the angle for the n-th
sensor element of the incoming signal reflected from the k-th target, and it deduces the
phase shift induced by angle. The beat signals can be achieved from the received signals
through mixers, and the down-converted signal can be expressed as:

sb(t) = sr(t)st(t)

=
K
∑

k=1
bkej2π

2µ
c (Rk+

fc
µ Vk)tej2π

fc
c (l−1)TcVk ej2π

fc
c (n−1)d sin θk + w(t)

(4)

where bk is the complex amplitude of the k-th received signal reflected by the k-th target,
after analog-to-digital conversion, we can get the discrete beat signal:

Sb[n, m, l] =
K

∑
k=1

bkej2π
2µ
c (Rk+

fc
µ Vk)

m−1
fs ej2π

fc
c d(n−1) sin θk ej2π

fc
c 2(l−1)TcVk + w[n, m, l] (5)

where fs is the sampling frequency, m = 1 . . . M, M is the number of time samples of one
chirp signal, and w[n, m, l] is the AWGN signal after discretization.

The received radar data cube with dimension N ×M × L can be constructed as shown
in Figure 2. In the Figure 2, y[n] is the 2D data matrix of beat signal received by the n-th
antenna and can be described as Equation (6), W is additive white Gaussian noise matrix.

y[n] =


Sb[n, 1, 1] Sb[n, 2, 1] · · · Sb[n, M, 1]
Sb[n, 1, 2] Sb[n, 2, 2] · · · Sb[n, M, 2]

...
... · · ·

...
Sb[n, 1, L] Sb[n, 2, L] · · · Sb[n, M, L]

+ W ∈ CL×M (6)
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Figure 2. The received radar data cube.

3. The Proposed Low-Complexity Super-Resolution Algorithm

In the previous multi-dimensional joint estimation [22–24], matrix operations and
multi-dimensional peak search are the main reasons for the high complexity. For coherent
signals, smoothing is necessary [34]. In this paper, matrix block selection and smoothing
are firstly performed, and then the algorithm to reduce the complexity is tried.

3.1. Targets-Located Blocks Selection

In Section 2, the time dimension of the 3D radar data cube is much larger than the
angle and velocity dimensions. Selecting the effective time dimension blocks, which contain
the range information of targets, can significantly reduce the size of the conventional 3D
covariance matrix.

As shown in Figure 3, the target-located blocks of interest corresponding to temporal
frequencies can be selected from the matrix Y2, which can be achieved by performing
1D FFT in range domain (range-FFT). Those peaks in temporal frequencies will locate in
several blocks, for example: Block 1(B1) with index range [m1, m2] and Block 2(B2) with
index range [m3, m4], and then the two blocks of data are jointly estimated, respectively.
The relationship between range and temporal frequency is: R = fc/2µ. This process has
two other advantages: one can roughly estimate the approximate range, and the other can
filter part of the white noise to improve the signal-to-noise ratios (SNR). The targets-located
blocks selection process is as shown in Figure 3.

Figure 3. Frequency domain processing.

3.2. Decorrelation Processing

The eigenvalue decomposition (EVD) of the covariance matrix can obtain the signal
subspace and the noise subspace. When the target echo signals are correlated, the size of
the signal subspace will no longer be equal to the number of targets [35,36]. It is necessary
to decorrelate the data, and the use of spatial smoothing technology is an effective means
to decorrelate related signals. Frequency domain processing and spatial smoothing need to
be done together. The process is as shown in Figure 4.
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Figure 4. Frequency domain processing and spatial smoothing.

We define a small cube of size [h1 × h2 × h3], which is identified with the red
frame in Figure 4, and scan all possible positions in the radar data cube, there are then
p1 = N − h1 + 1 positions in the angle dimension, p2 = M − h2 + 1 positions in the time
dimension, and p3 = L − h3 + 1 positions in the velocity dimension, and each sub-matrix
needs to be processed on the frequency domain as in Figure 3. The phase shift between the
adjacent samples in h1 dimension, h2 dimension, and h3 dimension are induced by angle,
range, and velocity, respectively, as shown in [36].

Perform frequency domain processing on the data of each sub-matrix [h1 × h2 × h3],
and then get the covariance matrix of each block. This paper takes the selected block B1
which contains K̂ targets as an example, and denotes its data matrix as Y3 for simplicity. Y3
is the sub-matrix with range index [m1, m2] of Y2, and Y2 is the matrix of Y1 after range-FFT,
and Y1 can be expressed as:

Y1 = Y[ p̃1 : ( p̃1 + h1 − 1), p̃2 : ( p̃2 + h2 − 1), p̃3 : ( p̃3 + h3 − 1)] (7)

Three exponential items, which respectively contain the phase shift induced by range,
angle, and velocity, are presented in Equation (5). The conceptual understanding of
three kinds of phase shift can be found in Figure 5a, and each kind of phase shift has
its corresponding 1D steering vector for conventional 1D MUSIC. It is important to notice
that the exploitation of orthogonality between signal subspace and noise subspace remains
true for the extension to 3D MUSIC. The phase shift in the received signal is obviously
comprised by the three kinds of phase shifts according to Equation (5), and thus the steering
vector for the 3D MUSIC is the Kronecker product of three above-mentioned 1D steering
vectors. We call the steering vector for the 3D MUSIC as 3D steering vector, which contains
three kinds of 1D steering vectors, and the search space for 3D MUSIC is a 3D grid of range,
velocity, and angle. Therefore, the covariance matrix of B1 can be constructed as:

D =
1

p1 p2 p3

p1

∑
p̃1=1

p2

∑
p̃2=1

p3

∑
p̃3=1

(
1

h1h4h3
CCH

)
(8)

where h4 = m2 − m1 + 1, C = vec(Y3) is the 3D steering vector, and the operation vec()
denotes vectorization of a matrix contained within, namely, reshaping the matrix with
size h1 × h4 × h3 to a vector with size h1h4h3 × 1. To be more specific, if we define vector
Aij =Y3(:,i,j) with i = 1,2, . . . ., h4 and j = 1,2, . . . ., h3, the size of vector Aij is h1 × 1. Then,
we define vector Bi = [Ai1, Ai2, . . . , Aih3,] with size h1h3 × 1, and the interested 3D steering
vector C can be denoted as C = [Bi, Bi, . . . , Bh4] with size h1h4h3×1. Obviously, Aij contains
the phase shift induced by angle, Bj contains the phase shift induced by angle and velocity,
and C contains the phase shift induced by angle, velocity, and range at the same time. The
construction of 3D steering vector C is as shown in Figure 5b.
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Figure 5. Understanding of the 3D steering vector C, (a) three kinds of phase shifts, (b) constructions
of vector elements.

3.3. Low Complexity Joint 3D Estimation of Range-Velocity-Angle

The signal subspace and the noise subspace can be obtained after performing EVD on
the constructed covariance matrix D:

D = UΛUH (9)

where Λ =
[
λ1, λ2, · · · , λh1h4h3

]
, the noise subspace can be defined as:

UN =
[
U
(
K̂ + 1

)
, U
(
K̂ + 2

)
, · · · , U(h1h4h3)

]
h1h4h3×(h1h4h3−K̂) (10)

Defining the first phase item R + fcV/µ of Equation (5) as G, the 3D MUSIC spectrum can
be calculated as:

P(G, θ, V) =
1

[β(G)⊗ υ(V)⊗ α(θ)]HUNUH
N [β(G)⊗ υ(V)⊗ α(θ)]

(11)

where

α(θ) =
[
1, ej2π

fc
c d sin θ , · · · , ej2π

fc
c d(h1−1) sin θ

]T

1×h1

υ(V) =
[
1, ej2π

fc
c 2TcV , · · · , ej2π

fc
c 2(h3−1)TcV

]T

1×h3

β̃(G) =

[
1, ej2π 2S

c G 1
fs , · · · , ej2π 2S

c G h2−1
fs

]T

1×h2
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the β(G) is index range [m1, m2] of β̃(G) after FFT, ⊗ denotes Kronecker product. The
item β(G) ⊗ υ(V) ⊗ α(θ) usually called the 3D steering vector, which represents the set of
phase-delays for the received signal at each sensor element. Since three arguments specify
the testing vector, the calculated spectrum P(G, θ, V) is a 3D matrix and the estimations of
range, velocity, and angle of all targets can be achieved from the value of 3D peaks of it.

For the calculated 3D MUSIC spectrum P(G, θ, V), conventional joint estimation
methods find the K̂ maximum values by 3D peak searching, and the range, velocity and
angle of multi-targets can be estimated by the indexes of the corresponding 3D peak.
However, the 3D peak searching presents a heavy computational burden. The conventional
Lagrange multiplier method [25,26] is adopted to reduce the computational complexity of
3D peak searching, so we define:

M(G, V, θ) = 1
P(G,V,θ) = [β(G)⊗ υ(V)⊗ α(θ)]HUNUH

N [β(G)⊗ υ(V)⊗ α(θ)]

= [υ(V)⊗ α(θ)]HQ1(G)[υ(V)⊗ α(θ)]
(12)

where Q1(G) =
[
β(G)⊗ Ih1h3

]HUNUH
N
[
β(G)⊗ Ih1h3

]
. Then, the above problem becomes a

quadratic optimization problem, and the Lagrange multiplier method is used to reduce its
dimension. We consider using eH

1 [υ(V)⊗ α(θ)] = 1,eH
2 α(θ) = 1 to eliminate the trivial solu-

tion of zero, where e1 = [1, 0, . . . 0]T ∈ Rh1h3×1,e2 = [1, 0, · · · 0]T ∈ Rh1×1. This optimization
problem can be defined as:

min
G,V,θ

[υ(V)⊗ α(θ)]HQ1(G)[υ(V)⊗ α(θ)]

s.t. eH
1 [υ(V)⊗ α(θ)] = 1, eH

2 α(θ) = 1
(13)

Let υ(V)⊗ α(θ) = T(V, θ), the cost function, be:

L(G, V, θ) = T(V, θ)HQ1(G)T(V, θ)− λ
(

eH
1 T(V, θ)− 1

)
− η

(
eH

2 α(θ)− 1
)

(14)

where λ and η are constant. Take the derivative of L(G, θ, V) as:

∂

∂T(V, θ)
L(G, V, θ) = 2Q1(G)T(V, θ) + λe1 = 0 (15)

∂

∂α(θ)
L(G, V, θ) = 2Q2(G, V)α(θ) + ηe2 = 0 (16)

where Q2(G, V) =
[
β(G)⊗ υ(V)⊗ Ih1

]HUNUH
N
[
β(G)⊗ υ(V)⊗ Ih1

]
Firstly, according to Equation (15), we can get T(V, θ) = µQ−1

1 (G)e1, where µ is a

constant. For eH
1 T(V, θ) = 1, µ = 1

eH
1 Q1(G)−1e1

, and to get T̂(V, θ) = Q1(G)−1e1
eH

1 Q1(G)−1e1
. Taking

T̂(V, θ) into Equation (13), G can be estimated as:

Ĝ = min
G

1
eH

1 Q1(G)−1e1

= max
G

eH
1 Q1(G)−1e1

(17)

Therefore, through a 1D local search at G ⊆
(

m1c
2µ , m2c

2µ

)
, the Ĝk

(
k = 1, · · · , K̂

)
of the

k-th target can be obtained.
Then, the Equation (16) can be rewritten as:

∂

∂α(θ)
L
(
Ĝk, V, θ

)
= 2Q2

(
Ĝk, V

)
α(θ) + ηe2 = 0 (18)
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Similarly, according to Equation (18), we get α(θ) = εQ−1
2
(
Ĝk, V

)
e2, where ε is a constant.

For eH
2 α(θ) = 1,ε = 1

eH
2 Q−1

2 (Ĝk ,V)e2
, to get α̂(θ) =

Q2(Ĝk ,V)e2

eH
2 Q2(Ĝk ,V)e2

. V can be estimated as:

V̂ = max
V

eH
2 Q2

(
Ĝk, V

)
e2 (19)

Through a 1D search, the V̂k
(
k = 1, · · · , K̂

)
of the k-th target can be obtained, and the

range of k-th target can be obtained from:

R̂k = Ĝk −
fc

S
V̂k (20)

Finally, using least square method to estimate the angle of k-th target, taking Ĝk and
V̂k into α̂(θ), we can get:

α̂(θk) =
Q2
(
Ĝk, V̂k

)
e2

eH
2 Q2

(
Ĝk, V̂

)
e2

(21)

for α(θ) =
[
1, ej2π

fc
c d sin θ , · · · , ej2π

fc
c d(h1−1) sin θ

]T

1×h1
, let q̂k = phase[â(θ)], q̂k can be ex-

pressed as:

q̂k =
[
0, fc

c d, · · · , fc
c d(h1 − 1)

]T
· (2π sin θk)

= p · bk

(22)

where p =
[
0, fc

c d, · · · , fc
c d(h1 − 1)

]T
,bk = 2π sin θk, the least square method as:

min
bk
‖p · bk − q̂k‖2

2 (23)

The solution of b is bk =
(

pT p
)−1 pTq̂k, the θ can be estimated as:

θ̂k = arcsin
(

bk
2π

)
(24)

Therefore, only 1 + K̂ 1D searches are used to estimate the range, velocity, and angle
of the targets, which greatly reduces the computational complexity of 3D the search.

We summarize the steps for the proposed low complexity algorithm in Figure 6.

Figure 6. Flowchart of the proposed low complexity algorithm.
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4. Experimental Results and Performance Analysis

This section presents the results of several experiments, mainly including three sim-
ulation experiments in Section 4.1 and four actual indoor and outdoor experiments in
Section 4.2, and the performance analysis of the proposed algorithm in Section 4.3.

4.1. Simulation Experiment

We consider the simulated FMCW radar parameters as carrier frequency is fc = 77 GHz,
the sweep duration is Tc = 40 µs, the signal bandwidth is Bw = 300 MHz, the time sampling
frequency is fs = 7 MHz, the number of time samples is M = 1/fs = 280, the number of
Chirps is L = 12, the number of array antennas is N = 6, and the spacing of antenna is
d = λ/2. The truncated length in the temporal domain for Block construction illustrated
in Figure 3 is selected as 10, namely, m2−m1 + 1=m4−m3 + 1 = 10. The size of the spatial
smoothing window is set to: h1 = 4, h2 = 250, h3 = 8, p1 = 2, p2 = 30, p3 = 4.

4.1.1. Detection Simulation

The first simulation experiment is conducted for verification of effectiveness of the
proposed algorithm under the scenario with six targets, Target 1 [30 m, −3 m/s, −20◦],
Target 2 [50 m, 4 m/s, 35◦], Target 3 [50.1 m, 6 m/s, 20◦], and Target 4 [70 m, 5 m/s, 40◦],
Target 5 [100 m, 7 m/s, −30◦], Target 6 [100.5 m, −4 m/s, 30◦], and the proposed algorithm
is used for super-resolution estimation of the targets. It can be noticed that the Target 2 and
Target 3 are very close to each other with a space of 0.1 m in the range domain, and Target
5 and Target 6 are spaced with 0.5 m. The estimation process is shown in Figure 7 and final
estimated results are listed in Table 1.

Table 1. The estimated results of the first experiment.

Target Number R̂ V̂ θ̂

1 29.9976 m −2.9965 m/s −20.1844◦

2 50.0114 m 4.087 m/s 34.2881◦

3 50.0857 m 5.8879 m/s 20.7431◦

4 69.9981 m 5.0175 m/s 40.2631◦

5 100.0015 m 6.9885 m/s −29.9204◦

6 100.5007 m −3.987 m/s 29.9461◦

According to the proposed algorithm, the range, angle, and velocity can be estimated
sequentially for each target following the flowchart presented in Figure 6. As shown in
Figure 7, four estimated range blocks, B1 to B4 (shown in Figure 7(a1–a4)), can be selected
for all targets in the first step. Obviously, the block B2 contains the range information of
Target 2 and Target 3, and the block B4 contains the range information of Target 5 and
Target 6 targets. Then, the cascaded estimation processes are performed for blocks B1 to B4,
as shown in Figure 7b,e, respectively. To be more specific, Figure 7b presents the estimated
G, in Figure 7(b1), and the estimated V for Target 1 in Figure 7(b2). Figure 7c shows the
estimation process of G and V for two targets, Target 2 and Target 3; namely: Figure 7(c1)
shows the estimated G of the two targets, and Figure 7(c2,c3) shows the corresponding
estimated V for the two targets, respectively. Finally, through the 1D search of estimated G
and V, the value of the peaks will be utilized to calculate the G and velocity for each target
by the Equations (17) and (19), respectively, and then the estimated G and velocity for each
target will be utilized to calculate the corresponding range and angle by the Equations (20)
and (24). The final estimated results are listed in Table 1.
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Figure 7. Simulation results of experiment for six targets at SNR = 10 dB. (a) is the targets-located
blocks selection for range estimation. (b) is the G and V estimation process of B1. (c) is the G and V
estimation process of B2. (d) is the G and V estimation process of B3. (e) are the G and V estimation
process of B4.

This simulation experiment performs the cascaded estimation process of the proposed
algorithm estimating the targets, and proves the effectiveness of the algorithm under a
simulated environment. The results in Table 1 show that the proposed algorithm can
accurately achieve the 3D joint estimation of the range, velocity, and angle of multi-targets.
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4.1.2. Algorithm Accuracy

The second simulation experiment is to compare the accuracy of the proposed algo-
rithm with 3D FFT and 3D MUSIC algorithm, and use root mean squared error (RMSE) to

evaluate the accuracy of the algorithm. Define the RMSE as: 1
K ∑K

k=1

√
1
N ∑N

n=1(ζn − ζk)
2
,

where K is the number of targets, N is the number of the experiments per target, ζn is
the estimated parameters of the Nth experiment, ζk is the parameter of set target. In this
experiment, the number of detections for each target is N = 100 and a total of K = 5 targets
are tested. The result is as shown in Figure 8.

Figure 8. The results of accuracy comparison. (a) the RMSE of range. (b) the RMSE of velocity. (c) the
RMSE of angle.

Through the second simulation experiment, it can be found that the accuracy of the
proposed algorithm is much higher than that of the 3D FFT algorithm under the same
experimental conditions, and slightly higher than that of the 3D MUSIC algorithm.

4.1.3. Complexity Analysis

The proposed algorithm to greatly reduce the complexity was introduced in Section 3.
In this simulation experiment, we analyze its complexity and compare the complexity with
3D MUSIC and 2D MUSIC algorithm. The main contribution of complexity includes: FFT,
correlation matrix, eigenvalue decomposition, and peak searching. The complexity of the
proposed algorithm is O (h1h2h3log2h2 + (mh1h3)3 + (h1mh3 – K) (nrh1h3 (h1h3 + m) + Knvh1
(h1 + mh3)) + Kh1). The complexity of 3D MUSIC is O ((h1h2h3)3 + (h1h2h3 – K) h1h2h3nrnvna).
The complexity of 2D MUSIC is O ((h1h2)3 + (h1h2 – K) h1h2nrnv), where K is the number of
targets, m is the frequency domain extraction length, nr is the number of steps for range
search, nv is the number of steps for velocity search, and na is the number of steps for
angle search. The result is as shown in Figure 9. The experimental results show that the
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complexity of the proposed algorithm is much lower than that of the 3D MUSIC algorithm,
and even lower than that of the 2D MUSIC algorithm.

Figure 9. The comparison results of complexity. (a) the relationship between the complexity and
the number of time samples when the search precision is 0.01. (b) the relationship between the
complexity and the search precision when the number of time sample is 750.

4.2. Actual Experiment

The actual experiments will be carried out in both indoor and outdoor environments
to demonstrate the feasibility of the proposed algorithm. The indoor experimental environ-
ment is in a small microwave anechoic chamber with size L ×W× H 2.4 m× 2.4 m× 2 m,
as shown in the Figure 10, and the outdoor experimental environment is on the road. The
FMCW radar sensor system is the AWR1443 radar device of Texas Instruments (TI).

Figure 10. Indoor experimental environment: (a) the inside view of the microwave anechoic chamber;
(b) illustration of the size of the chamber and the coordinate system.

Consider the FMCW radar parameters as: the carrier frequency fc = 77 GHz, the sweep
duration Tc = 58 us, the signal bandwidth Bw = 1.16 GHz, the time sampling frequency
fs = 5 MHz, the number of time samples M = 1/fs = 290, the number of Chirps L = 12,



Sensors 2022, 22, 6474 13 of 19

the number of array antennas N = 4, the spacing of antenna d = λ/2, The length of the
frequency domain extraction is 10. The size of the spatial smoothing window is set to:
h1 = 3, h2 = 260, h3 = 8, p1 = 1, p2 = 30, p3 = 4.

4.2.1. Corner Reflector Detection

The first and second actual experiments are detecting targets (corner reflectors with
regular shape) indoors which were carried out in these experimental scenarios as shown
in the Figure 11, which detected two stationary targets, one stationary and one moving
targets, respectively. Specific information for each target is listed in Table 2.

Figure 11. Experimental scenarios. (a,c) are the experimental scene and model diagram of experiment
1, there are two stationary targets in the experiment. (b,d) are the scene and model diagram of
experiment 2, one stationary and one moving targets in the experiment.

Table 2. Specific information of targets.

Target 1 Target 2

Experiment 1 [2.312 m, 0 m/s, −4◦] [2.403 m, 0 m/s, 30◦]
Experiment 2 [2.295 m, 0 m/s, 0◦] [1.832 m, −0.5 m/s, 12◦]

After the calculation of the proposed algorithm, the estimation process of G and V is
as shown in Figure 12 and final estimated results are listed in Table 3.

As with simulation experiments, the range and angle of the target can be obtained
from Equations (20) and (24) after obtaining the G and V. The final estimated results are
listed in Table 3.

In order to present the actual effect of the complexity-reducing effect of the proposed
algorithm, the computational times of real radar data for 3D-MUSIC, 3D-FFT, and the
proposed algorithm, respectively, are obtained. All implementations are performed on
a dual Intel(R) Xeon(R) Gold 5218 CPU 2.3 GHz server with 128 G of memory running
Ubuntu Linux 20.04, and the comparison results are listed in Table 4. The 3D-FFT is with
just sub-seconds but with very low resolution. Several days are needed for the 3D-MUSIC
algorithm, while the execution time of the proposed algorithm is just seconds.
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Figure 12. The estimation process of G and V. (a) is the targets-located blocks selection of experiment
1. (b) is the result of G and V of experiment 1. (c) is the targets-located blocks selection of experiment
2. (d) is the result of G and V of experiment 2.

Table 3. The estimated results of experiment 1 and experiment 2.

Target No. R̂ V̂ θ̂

Experiment 1 1 2.2987 m 0 m/s −2.8483◦

2 2.4447 m 0 m/s 28.1479◦

Experiment 2 1 2.2834 m 0 m/s −0.26748◦

2 1.8321 m −0.5 m/s 11.7486◦
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Table 4. The comparison results of computational times for real radar data.

3D-FFT 3D-MUSIC The Proposed Algorithm

Experiment 1 0.1115 s 3days 1.4936 s
Experiment 2 0.1123 s 3days 1.5018 s

The SNR of Experiment 1 and 2 is estimated as about 15 dB, and the calculated RMSEs
are as shown in Table 5. The corner reflectors are selected as experimental targets, and
the calculated RMSEs of range and velocity are a bit of bigger than the corresponding
simulated results as shown in Figure 8a,b. The estimated angle of Target 1 of Experiment
1 is estimated as −2.8◦, while the center of Target 1 (one corner reflector) is set up in the
angle of −4◦, and thus the RMSE of angle is around 1.49◦. However, the precision of the
estimated results of angle is in a very small value with about 0.028◦, which is similar to the
simulated RMSE result as shown in Figure 8c.

Table 5. The calculated RMSE for actual experiments.

R V θ

Experiment 1 0.0273 m 0 m/s 1.4913◦

Experiment 2 0.0721 m 0.0630 m/s 0.8776◦

4.2.2. Irregular-Shape Target Detection and 2D Imaging

In comparison with corner reflector detection, it is also necessary to test the proposed
algorithm with irregular-shape target detection. A small metal knife with irregular shape
is set up in the same plane with radar system, and the angle of its center is very mall, as
shown in Figure 13a. The target is detected through 1500 trials, and then the estimated
R̂ and θ̂ are used to calculate the position information of x = R̂ sin θ̂ and y = R̂ cos θ̂ in
the coordination system as shown in Figure 13b. As the proposed algorithm can achieve
super-resolution estimation of the range, velocity, and azimuth angle of the target, a shape
profile of the metal knife along the x-axis direction, namely, the projection of the target in
the azimuth cross range, can be estimated successfully as shown in Figure 14a. However,
3D FFT has worse resolution, especially in the angle domain, and thus only one point-like
target is estimated as shown in Figure 14b.

Figure 13. The experimental scene diagram. (a) is the experimental scene. (b) is the model diagram
of experiment.
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Figure 14. The result of the experiment. (a) is the imaging result of the proposed algorithm. (b) is the
imaging result of 3D FFT algorithm.

4.2.3. Targets Detection in Outdoor Environment

The fourth actual experiment is an outdoor targets detection experiment which was
conducted in the scenario as shown in Figure 15. The targets of this experiment are a
moving person and a stationary bicycle. The estimation process of G and V as shown in
Figure 16 and the result of this experiment is listed in Table 6.

Figure 15. Outdoor experimental scenes. (a) is the outside environment. (b) is the model diagram of
environment.
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Figure 16. The estimation process of G and V. (a) is the targets-located blocks selection. (b) is the
result of G and V of the experiment.

Table 6. The estimated results of experiment 4.

Target No. R̂ V̂ θ̂

Experiment 4 1 6.0998 m 1.1 m/s −16.3641◦

2 5.2129 m 0 m/s −2.1378◦

4.3. Discussion

A number of experimental trials were conducted in this section to verify the effective-
ness of the proposed algorithm. Experimental results show that the proposed algorithm can
successfully achieve the joint 3D estimation of range, velocity, and angle for multi-targets
with the characteristics of super resolution and low complexity when compared with the
conventional 3D FFT and 3D MUSIC algorithms. Moreover, the accuracy of the proposed
algorithm is much higher than that of the 3D FFT algorithm under the same experimental
conditions, and slightly higher than that of the 3D MUSIC algorithm because it slightly
improves the SNR. According to the analysis in Subsection 4.1.3, the complexity of the
proposed algorithm is lower than that of the conventional 3D MUSIC algorithm, and even
lower than that of the 2D MUSIC algorithm. However, similarly to the conventional 3D
MUSIC, the proposed method is still composed of a variety of matrix operations, such as
EVD, and two operations of 1D spectrum searching are inevitable. Thus, it is still difficult
to implement the low complexity algorithm on FPGA and DSP for real time application.

5. Conclusions

This paper has presented a low complexity 3D joint super-resolution estimation al-
gorithm for an FMCW radar system, implemented by the Lagrange multiplier method
and rank-reduced techniques. Various experiments, including simulation experiments,
corner reflector detection and irregular-shape target detection in the chamber, and the real
person and bike detection in outdoor environment, were conducted to clarify the proposed
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algorithm. The experimental results verified the super resolution and low complexity
performance. However, it was necessary to operate the proposed algorithm on a PC due to
the amount of matrix operations and searching costs. Development of a simpler version
of the suggested algorithm and novel hardware design would be needed for a real-time
detection FMCW radar system.
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