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Abstract: Fringe projection profilometry (FPP) is widely applied to 3D measurements, owing to its
advantages of high accuracy, non-contact, and full-field scanning. Compared with most FPP systems
that project visible patterns, invisible fringe patterns in the spectra of near-infrared demonstrate
fewer impacts on human eyes or on scenes where bright illumination may be avoided. However,
the invisible patterns, which are generated by a near-infrared laser, are usually captured with severe
speckle noise, resulting in 3D reconstructions of limited quality. To cope with this issue, we propose
a deep learning-based framework that can remove the effect of the speckle noise and improve the
precision of the 3D reconstruction. The framework consists of two deep neural networks where
one learns to produce a clean fringe pattern and the other to obtain an accurate phase from the
pattern. Compared with traditional denoising methods that depend on complex physical models, the
proposed learning-based method is much faster. The experimental results show that the measurement
accuracy can be increased effectively by the presented method.

Keywords: fringe projection; speckle noise; phase retrieval; denoising; deep learning

1. Introduction

An optical three-dimensional (3D) measurement [1] is extensively used in many fields,
such as industrial manufacturing, biomedicine, and defect detection, because of its high
robustness, high efficiency, and high accuracy [2,3]. As a representative optical 3D mea-
surement technique, fringe projection profilometry (FPP) is able to capture a full-field and
high-resolution 3D image rapidly compared to the coordinate measuring machine that re-
lies on physical contact [4–6]. The measured surface is illuminated with pre-designed fringe
patterns and the phase is measured from the patterns and converted into 3D coordinates
in FPP. Consequently, the accuracy of FPP is fundamentally dependent on the accuracy
of phase demodulation. According to the used phase retrieval methods, classic methods
such as Fourier transform profilometry (FTP) [7] and phase-shifting profilometry (PSP) are
developed [8,9]. FTP that uses the filtering in the frequency domain can measure the phase
through a single fringe pattern. However, it usually assumes that the surface under test is
smooth and requires the spatial frequency of the projected grating to be sufficiently high.
In contrast, PSP exploits the change in the light intensity of the pixels on the time axis to
calculate the phase information of an object, thus showing a higher spatial resolution than
FTP and making it suitable for phase measurements on complex surfaces.

Recently, the deep learning technique has been applied to 3D measurements, providing
new potentials to improve the performance of phase recovery and 3D measurements [10–22].
Yan et al. [14] constructed a deep convolutional neural network (DCNN) consisting of
20 convolutional layers to process fringe image denoising. Jeon et al. [15] proposed
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a fast speckle noise reduction method for digital holograms using a multiscale CNN.
Feng et al. [16,17] proposed a fringe analysis method based on deep learning, which can
achieve a high-accuracy phase measurement and maintain the details of object contours.
Qian et al. [18] proposed a deep learning-based geometric constraint and phase unwrapping
method that can satisfy the measurement needs of a single absolute 3D shape. However,
these methods are developed for visible fringe patterns, which may be compromised when
these methods are used to handle invisible patterns of poor quality.

During the imaging of invisible infrared images, the unprocessed laser beam causes
the uneven illumination of the detection area and creates a large amount of laser speckle
in the detector image plane. The speckle noise causes a randomized distribution of image
pixel amplitudes, producing a fuzzy, grainy distribution structure that blurs the fine fea-
tures of the image. In a straightforward way, the speckle noise may be reduced by using
phase-shifting methods with a large step. However, the efficiency would be decreased.
Generally, speckle denoising methods based on image processing can be classified in the fol-
lowing categories: (1) spatial-domain denoising methods, (2) transform-domain denoising
methods, and (3) learning-based denoising methods. Muhire et al. [23] applied the Wiener
filter to the denoising of speckle images obtained from digital speckle interferometry. In
the Wiener filter, a statistical estimate of the noise is obtained and minimized; however, it
also causes blurring at sharp edges. Leng et al. [24] employed the Lee filter for the speckle
denoising in the images reconstructed from digital holograms. By employing the criterion
of minimum mean square error filtering, this filter achieves a great speckle denoising
performance. Moreover, in the homogeneous regions, it denoises the speckles very well.
However, it causes blurs at the edges and textures at the same time. Qian et al. [25,26]
proposed the Fourier transform-based denoising method called windowed Fourier trans-
form (WFT), which is a transform domain denoising method. An appropriate thresholding
technique is applied to the obtained WFT coefficients of the speckled image in order to
eliminate the spectral contribution of speckle noise. However, the threshold of this method
needs to be determined by experience for different scenarios. Huang et al. [27] constructed
another transform-domain denoising method known as bidimensional empirical mode
decomposition (BEMD), which is the extension of the empirical mode decomposition. With-
out any thresholding function, it shows a great performance for speckle denoising, but it
is computationally inefficient due to the use of the sifting process and the interpolation
type in this algorithm. Zhang et al. [28] proposed a flexible denoising convolutional neural
network, termed FFDNet. The FFDNet was proposed for the elimination of ordinary
Gaussian noise and further implemented for speckle denoising by Hao et al. [29]. In
addition, to perform image denoising, the block matching and 3D collaborative filtering
(BM3D) method is widely applied [30–32], which is a fusion of spatial-domain denoising
and frequency-domain denoising algorithms, and it can preserve the structure and details
of images while ensuring the image of a good SNR. However, the BM3D algorithm is
susceptible to the sigma parameter, which needs to be adjusted according to the input
source to control the degree of denoising for different objects and environmental scenes.
Further, its time cost is high, which may affect the measurement efficiency.

This paper proposes a 3D measurement method for near-infrared invisible fringe
projection, which introduces the deep learning technique to eliminate the effect of speckle
noise and produce accurate 3D models efficiently. Firstly, a deep learning denoising network
is built to remove the speckle noise by learning the ground-truth results obtained by the
BM3D. Then, another deep neural network is constructed to calculate the sine term and the
cosine term of the phase with the filtered fringe pattern. The outputs of the phase retrieval
network are substituted into the arctangent function for the final phase computation. The
experiments demonstrate that our method can obtain high-precision phase information
from a single fringe image with heavy speckle noise and achieve the 3D measurement
accuracy of 80 µm.
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2. Principles

In a typical setup of FPP, fringe patterns are projected on measured objects by a
projector and then are captured by one or several cameras. The phase information is
retrieved through fringe pattern analysis and then converted into 3D reconstructions. Our
approach to NIR FPP consists of two parts: the NIR fringe pattern denoising and the phase
measurement from the processed fringe image. As shown in Figure 1, we build a deep
learning framework consisting of two convolutional neural networks (CNN1 and CNN2).
CNN1 learns to remove the speckle noise in the raw fringe patterns, and CNN2 is trained
to obtain the sine term (i.e., the numerator) and the cosine term (i.e., the denominator) of
the phase from the processed fringe pattern, which is the output of CNN1. The wrapped
phase can then be acquired by substituting these terms into the arctangent function. After
the phase unwrapping and the stereo matching using the phase as the cue, the 3D model
can be obtained.

3D reconstruction 
result

Infrared Fringe Image 
from Left Camera

Infrared Fringe Image 
after Denoising

Denoising 
Network CNN1

CNN2 Wrapped Phase Absolute Phase

Numerator

Denominator

Infrared Fringe Image 
from Right Camera

Denoising 
Network CNN1

CNN2Infrared Fringe Image 
after Denoising

Numerator

Denominator

Wrapped Phase Absolute Phase

Figure 1. The flowchart of the proposed deep learning-based 3D measurements using NIR FPP. For
CNN1, the input is the raw fringe image with speckle noise and the output is the denoised image. For
CNN2, it learns to obtain the numerator and denominator. As the phase can be used as temporary
texture, the 3D reconstruction is then calculated with stereo vision.

2.1. The Elimination of Speckle Noise in NIR Fringe Pattern Using Deep Learning

Assuming that the reflected light intensity of the scenario is represented as I, the image
impacted by speckle noise when captured by the camera can be computed as:

I′ = δ(x, y)× I, (1)

where δ is multiplicative noise, and (x, y) is the pixel coordinate.
In order to remove the noise, the denoising algorithm we chose is BM3D:

I′ BM3D−→ IB, (2)

where IB is the denoised image.
The idea of BM3D is to use image block matching to collect and aggregate the similar

structures and then orthogonally transform them to obtain a sparse representation, making
full use of sparsity and structural similarity for filtering.

Although BM3D shows promising potentials for removing the speckle noise, it is
complicated and time-consuming. In order to propose a flexible and efficient denoising
strategy, we develop an end-to-end deep neural network for fringe pattern denoising. We
construct pairs of training data from captured noisy images and clean images and then
train a network to remove the noise from these given noisy images. The fringe images
processed by BM3D are used as the ground-truth clean images. This ensures that the output
of CNN1 enjoys accuracy and a satisfying denoising effect, which removes the noise while
preserving the detail of image features. The structure of CNN1 is shown in Figure 2, which
consists of a residual block and several convolutional layers. Here, H is the input image
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height and W is the image width. C is the number of filters which is set as 50 in our CNN1.
To train the network, the loss function is defined as:

loss1 =
1

H ×W

∥∥∥Ig − IB
∥∥∥2

, (3)

where Ig is the denoised image obtained by BM3D. IB is the output of CNN1.

Denoising Network 

CNN1

Conv layerResidual block

W W W W

Input

Infrared Fringe Image 
from Camera

Output

Infrared Fringe Image 
after Denoising

Figure 2. Schematic diagram of the denoising network CNN1, consisting of a convolutional layer
and multiple residual blocks.

2.2. Analysis of Denoised Fringe Pattern Using Deep Learning

The mathematical expression for the denoised fringe pattern processed by CNN1 can
be written as:

IB(x, y) = A(x, y) + B(x, y) cos φ(x, y), (4)

where IB represents the intensity of the fringe pattern after the processing of CNN1, (x, y)
is the pixel coordinate, A is the background light intensity, B is the fringe amplitude, φ is
the desired phase distribution.

In most phase demodulation techniques, the background light intensity A is regarded
as an interference term and should be removed. The wrapped phase map is recovered by
applying an inverse trigonometric function to a fraction, whose numerator and denominator
are the phase sine and the phase cosine, respectively:

φ(x, y) = arctan
M(x, y)
D(x, y)

= arctan
cB(x, y) sin φ(x, y)
cB(x, y) cos φ(x, y)

, (5)

where c represents a constant dependent on the phase demodulation algorithm. The CNN2
is trained to predict the numerator M(x, y) and the denominator D(x, y) of the arctangent
function by feeding the network with IB.

The ground-truth data of CNN2 is generated by using FPP. In N-step phase-shifting
algorithm, the fringe pattern can be written as:

In(x, y) = A(x, y) + B(x, y) cos[φ(x, y)− δn], (6)

where In represents the nth captured image, the index n = 0, 1, . . . , N − 1, and δn the phase
shift that equals 2πn/N.

The object phase φ can be calculated using the least square method:

φ(x, y) = arctan
∑N−1

n=0 In sin δn

∑N−1
n=0 In cos δn

, (7)
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Here, the phase information can be expressed as:

φ(x, y) = arctan
M(x, y)
D(x, y)

, (8)

where M(x, y) and D(x, y) are:

M(x, y) =
N−1

∑
n=0

In(x, y) sin δn =
N
2

B(x, y) sin φ(x, y), (9)

D(x, y) =
N−1

∑
n=0

In(x, y) cos δn =
N
2

B(x, y) cos φ(x, y), (10)

The wrapped phase φ(x, y) has a truncated spatial distribution and 2π phase jumps.
Therefore, the unwrapping process is required to obtain the absolute phase [6]. The absolute
phase can be obtained by:

Φ(x, y) = φ(x, y) + 2πk(x, y) (11)

where Φ(x, y) is the absolute phase, k(x, y) represents the fringe order.
In this work, CNN2 is developed to learn M(x, y) and D(x, y), according to the

denoised fringe pattern. Its structure is shown in Figure 3. The deep neural network is
constructed by four path convolutional layers with residual blocks. From up to down, the
sampling rate increases by the number of 2 with a rise in the depth of the path. By using this
strategy, the network can extract both local and global features and finally combines them
together to ensure the best performance of the network. The residual block can speed up
the convergence of the deep network and improve its performance by adding layers with
considerable depth. Moreover, the structure of the residual block can prevent overfitting
while the network gets deeper. After different scales of downsampling, the tensors’ sizes
are inconsistent. Therefore, upsampling blocks will be used to make the tenors from various
paths uniform. The number of residual blocks per path is 4, and the number of filters (C)
in the convolutional layer and the upsampling block is 50. For each path in the network,
the tensor will be downsampled by 1, 1/2, 1/4, and 1/8 times, respectively, using different
scales of pooling layers. In addition, to avoid the overfitting problem common to deep
neural networks, L2 regularization is used in each convolutional layer of the residual and
upsampling blocks, enhancing the network’s convergence ability. The loss function for
CNN2 is described as:

loss2 =
1

H ×W

[
‖YM − GM‖2 + ‖YD − GD‖2

]
, (12)

where GM and GD are the ground-truth numerator and denominator obtained by BM3D
along with eight-step PS, respectively. YM and YD are the numerator and denominator
predicted by CNN2, respectively.
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Figure 3. Schematic representation of phase information in fringe images demodulated using deep
neural network CNN2.

3. Experiments

To verify the proposed method, an NIR FPP system was built, which consists of a
MEMS-based single-axis infrared laser scanning module (1280 × 960 resolution) and two
industrial cameras (acA640-750um, Basler). The wavelength of the NIR illumination is
830 nm. The cameras were equipped with two 5 mm lenses, in front of which we place two
NIR band filters for capturing the desired NIR patterns. To collect the training data, we
captured 800 fringe images of different scenes. The scene consists of many objects, most of
which are plaster models. The raw NIR image is obtained by collecting images of different
objects and their combinations at different angles. The BM3D was used to remove the
speckle noise and generate the ground-truth data of CNN1. As different scenes require
BM3D implementations of different parameters (e.g., the sigma), fine-tuning is thus needed
when handling different scenes. To generate high-quality labels, we carefully tuned the
parameter of the BM3D and found that speckle noise can be well removed when the proper
sigma was selected from 6 to 14. To form the ground-truth data of CNN2, we applied
the BM3D to the captured phase-shifting patterns. Then, the eight-step phase-shifting
algorithm was used to calculate the numerator and the denominator by using the denoised
patterns. To train the networks, 75% of the whole dataset was used for training and the
remaining 25% for validation. Before being fed into the two networks, the input image was
divided by 255 for normalization. The adaptive moment estimation (ADAM) was used to
tune the parameters to find the minimum of the loss function for CNN1 and CNN2. All
the DNN’s training and testing were implemented in Python by using Keras by using an
NVIDIA GeForce GTX 1080 Ti GPU with 11 GB video memory. The total training time
for CNN1 and CNN2 is 6 and 10 h, respectively. Their loss curves are shown in Figure 4.
For CNN1, as shown in Figure 4a, we can see that the loss curves of the training data and
validation data converge, and their final loss values are around 3. For CNN2, as shown in
Figure 4b, the loss curves converge to values near 6.
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CNN1 Loss CNN2 Loss(a) (b)
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Figure 4. The loss curve of (a) CNN1, (b) CNN2.

To test the proposed CNN1, we measured some objects that were not in the testing set.
The results are shown in Figures 5 and 6. In Figure 5, the first column is the original NIR
fringe images captured by the camera. We can see that these images were heavily destroyed
by the laser speckle noise. The second column shows the NIR fringe images processed by the
BM3D, which are treated as the ground truth. The last column shows the output of our CNN1,
which is comparable to ground truth in terms of the noise removal and the preservation of
the edge details. We plotted the 300th row of the third scene, and the results are shown in
Figure 6. We can clearly see that CNN1 can remove the noise effectively. Moreover, we also
tested the efficiency of the proposed CNN1. As shown in Table 1, the time cost of the BM3D is
around 1.9 s. When CNN1 was applied, the processing time could be reduced to less than
0.07 s, showing that the proposed CNN1 is 30 times faster than the BM3D in removing the
speckle noise.

Original Ground truth Our method
（a1）

（c3）（b3）

（c2）（b2）

（a3）

（a2）

（c1）（b1）

Scene1

Scene2

Scene3

Figure 5. The performance of the trained CNN1. (a1–a3) The captured raw NIR fringe patterns
of different scenes. (b1–b3) The ground-truth-filtered NIR fringe patterns processed by BM3D.
(c1–c3) The filtered NIR fringe patterns obtained by CNN1.
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Figure 6. The comparison of the algorithm in the 300th row from Figure 5a3,b3,c3.

Table 1. Comparison of image denoising processing time between BM3D and our deep learning-based
method for different scenes.

Time Cost of Fringe Analysis BM3D/s Our Method/s

Scene 1 1.983 0.0648
Scene 2 1.995 0.0673
Scene 3 1.997 0.0633

The CNN2 was then trained with the denoised fringe patterns obtained by CNN1.
Figure 7 shows the predicted results of CNN2. The first and second columns of Figure 7
show the numerator and denominator obtained by CNN2, respectively. The third column
shows the wrapped phase calculated by Equation (5), and the fourth column shows the
absolute phase obtained by the temporal phase unwrapping. To test the accuracy of
the predicted results of CNN2, the absolute phase of CNN2 was compared with the ones
obtained with (1) the raw fringe images analyzed by the three-step phase-shifting algorithm
and (2) the denoised fringe images with the three-step phase-shifting algorithm.

Numerator Denominator Wrapped Phase Absolute Phase
（a1） （b1） （c1） （d1）

（a2）

（a3）

（b2）

（b3）

（c2） （d2）

（c3） （d3）

Figure 7. The numerator (a1–a3) and denominator (b1–b3) estimated by our method. (c1–c3) The
wrapped phase calculated with numerator and denominator. (d1–d3) The absolute phase obtained
by TPU using the wrapped phase.
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The results of the phase error are shown in Figure 8. From left to right, the first column
shows the ground-truth absolute phase obtained from the NIR fringe image after BM3D
processing with the eight-step phase-shifting algorithm. The second column is the absolute
phase of the original NIR fringe image obtained by the three-step phase-shifting algorithm.
The mean absolute error (MAE) is 0.0716, 0.1071, and 0.1117 rad for the scenes, respectively.
The third column shows the absolute phase of the NIR fringe image, which is obtained by
BM3D processing first and the three-step phase-shifting algorithm later. The corresponding
error is 0.0571, 0.0760, and 0.0710 rad. The last column shows the absolute phase obtained
by our method and the error is 0.0278, 0.0356, and 0.0332 rad. It can be seen that our method
can effectively reduce the error caused by the speckle noise in NIR fringe projection.

（a2）

（a1）
Ground truth

（a3）

（e1）

（e2）

（e3）

（b2）

（b1）
Raw

（b3）

（f1）

（f2）

（f3）

（c2）

（c1）
BM3D+3-step PS

（c3）

（g1）

MAE=0.0716 rad MAE=0.0571 rad MAE=0.0278 rad

（d2）

（g2）

MAE=0.1071 rad MAE=0.0760 rad MAE=0.0356 rad

（g3）

MAE=0.1117 rad MAE=0.0710 rad MAE=0.0332 rad

（d1）
Our method

（d3）

0

0.3𝜋𝜋

0

0.3𝜋𝜋

0

0.3𝜋𝜋

Figure 8. (a1–a3): The ground-truth label of the unwrapped phase which was calculated by the NIR
fringes denoised by BM3D followed by the eight-step phase-shifting algorithm. The unwrapped
phase obtained by (b1–b3) the raw NIR patterns followed by the three-step phase-shifting algorithm,
(c1–c3) the NIR fringes denoised by BM3D followed by the three-step phase-shifting algorithm, and
(d1–d3) our method. (e1–e3,f1–f3,g1–g3): Absolute phase error maps of the corresponding cases.
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When two views of the fringe patterns were processed by our method, the 3D recon-
structions were performed, and the results are shown in Figure 9. From the first to the
last column, we show the 3D reconstruction results of the ground-truth method, the raw
NIR patterns followed by the three-step phase-shifting algorithm, the NIR fringes denoised
by BM3D followed by the three-step phase-shifting algorithm, and the proposed method,
respectively. For the results of the second column, the objects were reconstructed as noisy
models and there are even some spike errors there. For the results of the third column,
we can see that the noise error has been removed to some extent because of the merit of
the BM3D. However, there are still some spike errors. From the results of our method, we
can see that most of the noise error has been eliminated, which shows that our results are
comparable to the ground-truth labels.

In addition, to quantitatively estimate the reconstruction accuracy of our approach, we
measured a ceramic sphere, whose radius, measured by a coordinate measuring machine,
is 25.4 mm. The results are shown in Figure 10. The reconstructed ceramic sphere of
our method has a radius of 25.369 mm with an error of 31 µm and the RMS error of 80
µm. Moreover, the surface of the sphere obtained by our method is smoother than the
one obtained by the raw fringe pattern with the three-step phase-shifting algorithm. We
can see that the result of the proposed method is also superior to the one obtained by the
fringe images denoised by BM3D together with the three-step phase-shifting algorithm, as a
smaller RMS error and the smoother shape are observed. In addition, our method only used
a single fringe image to retrieve the wrapped phase, which also shows higher efficiency.

（a1） （d1）（c1）（b1） 150

75

0

-75

-150

（a2） （d2）（c2）（b2） 150

75

0

-75

-150

（d3）（c3）（b3）（a3） 150

75

0

-75

-150

Figure 9. The 3D reconstruction of the NIR fringes obtained by (a1–a3) BM3D denoising followed
by eight-step phase-shifting algorithm, (b1–b3) three-step phase-shifting algorithm, (c1–c3) BM3D
denoising followed by three-step phase-shifting algorithm, and (d1–d3) our method.
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R=25.81mm

Raw（a） （b）BM3D+3-step phase shift （c）

R=25.37mm

Our method

RMS = 0.14mm RMS = 0.12mm RMS = 0.08mm
R=25.58mm

Figure 10. The 3D reconstructed sphere (top) and error pixels distribution (bottom) obtained by
(a) direct three-step PS of the original IR fringes, (b) BM3D denoising with three-step PS, and
(c) our method.

4. Conclusions

In this paper, we have proposed a deep learning-based framework that can decrease
the influences of speckle noise in the image captured by near-infrared laser and enhance the
quality of 3D reconstruction results. The framework consists of two deep neural networks
performing different tasks: one is the image denoising network, which is responsible for
the denoising of the fringe pattern, and the other is the phase retrieval network, which
obtains the accurate phase from the pattern. Inspired by the approaches to removing the
noise in general visual images, we have developed the proposed method. We believe it has
the potential to be extended to more kinds of images. Our method achieves an accuracy
of 80 µm using only one single fringe image. The experimental results have shown that
compared with traditional denoising methods, such as BM3D, the proposed learning-based
method can increase the denoising speed by more than an order of magnitude. Moreover,
the accuracy of the 3D reconstruction has been improved effectively with our method.
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