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Abstract: Three-dimensional mesh post-processing is an important task because low-precision hard-
ware and a poor capture environment will inevitably lead to unordered point clouds with unwanted
noise and holes that should be suitably corrected while preserving the original shapes and details.
Although many 3D mesh data-processing approaches have been proposed over several decades, the
resulting 3D mesh often has artifacts that must be removed and loses important original details that
should otherwise be maintained. To address these issues, we propose a novel 3D mesh completion
and denoising system with a deep learning framework that reconstructs a high-quality mesh structure
from input mesh data with several holes and various types of noise. We build upon SpiralNet by
using a variational deep autoencoder with anisotropic filters that apply different convolutional filters
to each vertex of the 3D mesh. Experimental results show that the proposed method enhances the
reconstruction quality and achieves better accuracy compared to previous neural network systems.

Keywords: shape denoising; shape completion; deep learning; graph convolutional networks

1. Introduction

Three-dimensional (3D) geometric data have consistently received much attention
in the field of computer vision and graphics, and such data can be conveniently acquired
by using various types of affordable 3D scanning [1] and depth camera devices. Most
raw 3D shape data are represented as point clouds from low-cost hardware equipment.
Three-dimensional mesh data structures that consist of numerous vertices, edges, and
faces are also widely used in many industries and studies as well for the purposes of
visualization, design, and manufacturing [2,3], as they are capable of efficiently storing 3D
geometric shapes and reusing them. Converting 3D point cloud data into mesh data can be
easily accomplished by making use of several commercial and public mesh libraries [4,5].
However, low-precision hardware and a poor capture environment will inevitably cause
unordered point clouds with unwanted noise and holes that should be feasibly corrected
while preserving the original shapes and details. Moreover, 3D mesh data converted from
problematic point clouds are obviously not smooth and are unsuitable for use in isolation
without additional post-processing steps such as 3D mesh completion and/or denoising.

The successful completion and refinement of a partial 3D mesh are known to be
challenging and a crucial part of the modeling of high-quality industrial applications.
Previous mesh filtering methods [6–8] mainly based on analytic approaches efficiently
eliminate high-frequency noise in 3D mesh data and the geometric original details can
simultaneously be retained. However, the parameters must be carefully chosen, and several
instances of trial and error are mandatory before satisfactory results can be obtained.
Moreover, new vertices that fully cover the partial meshes are seldom generated as they do
not work very well when performing the shape completion task.

Recently, several studies have utilized convolutional neural networks (CNNs) to
represent and process 3D mesh data. Convolutional mesh autoencoder (CoMA) [9] intro-
duces spectral graph networks with Chebyshev filters to reduce the computational burden

Sensors 2022, 22, 6457. https://doi.org/10.3390/s22176457 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22176457
https://doi.org/10.3390/s22176457
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3467-9758
https://orcid.org/0000-0002-3901-0834
https://orcid.org/0000-0001-6637-8215
https://doi.org/10.3390/s22176457
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22176457?type=check_update&version=2


Sensors 2022, 22, 6457 2 of 13

imposed by the high dimensional and large amount of training mesh data. However, trans-
formation from the spatial to the spectral domain when training the networks results in
a loss of the original shape of the mesh, thereby degrading the reconstruction accuracy.
SpiralNet [10–12] outperforms CoMA owing to the well-designed spiral graph convolution
operations. However, a spiral convolution filter with fixed coefficients is applied to the
given mesh model and the representation power of the networks is therefore limited.

To overcome this issue, we propose a novel anisotropic graph convolution-based deep
learning framework that performs 3D shape completion and refinement in a fully automatic
manner (Figure 1). We utilize a graph convolutional autoencoder capable of extracting
meaningful features from the mesh training data at each convolutional layer by locally
observing the features to produce high-quality results. Specifically, we build the network
upon SpiralNet to generate fine-grained and smooth meshes from the partial meshes with
noise, and our anisotropic convolutions can apply a different filter to each vertex of the
3D mesh so as to improve the reconstruction power compared to previous CNN-based
graph neural networks such as FeastNet, CoMA, and SpiralNets [9–13]. Inspired by the
soft permutation of LSA-Conv [14], we model the spiral convolution weight matrix as a
linear combination of the base matrices that are shared by all of the vertices of the 3D mesh.
In contrast to conventional anisotropic filtering approaches that directly and independently
apply different filters to each vertex, the method proposed here computes a small number of
filter bases and corresponding coefficients for each vertex. Given that a typical 3D-scanned
mesh has various types of noise and discontinuities, our anisotropic filtering approach is
well-suited for this type of scanned mesh data. Our mesh autoencoder consists of several
convolutional layers and up-and-down sampling based on quadratic mesh simplification
for the pooling operations, as shown in Figures 1 and 2. We find that incomplete 3D meshes
passing through previous mesh autoencoders are not fully reconstructed and that holes
remain. To cope with this problem, we run the optimization in the prediction phase. More
precisely, we begin with the initial latent variables from the neural example to the decoder
input, after which we update the latent variables iteratively to fill the holes fully.
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Figure 1. The architecture of the proposed model is based on anisotropic filters for 3D shape comple-
tion and denoising. In the prediction phase, we undertake partial shape completion, which iteratively
optimizes the initial latent variable z by minimizing the errors between the valid parts of the input
mesh and the corresponding predicted parts Y while holding the network parameters constant. The
resulting output mesh Y∗ = dec(z∗) is obtained by passing the optimal latent variable through
a decoder.
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(a) (b) (c)

Figure 2. Mesh down- and upsampling results. The facial mesh (a) is downsampled for the pooling
operation (b), then it is upsampled for the unpooling operation (c).

In order to validate our system, we qualitatively and quantitatively compare the
proposed method with those in previous work. In the experiments conducted in this study,
our system achieves better performance as the anisotropic filters significantly improve
the representation power and maintain the original shape while removing noise and
filling the holes. We believe that our system can be considered as an efficient tool for the
post-processing of scanned and captured 3D mesh data with randomly distributed noise
and holes.

2. Related Work

Mesh restoration and modeling are important tasks in the computer vision and graph-
ics field. Mesh-smoothing algorithms with the Poisson equation introduced earlier [15,16]
are suitable for recovering small hole regions, but they do not work very well when han-
dling larger ones. The linear 3D morphable model [17] learns 3D facial models obtained
through scanning and expresses the texture and shape of the face in its partial space by
using principal component analysis (PCA). SCAPE [18], one of the most well-known body
models, utilizes PCA and runs a quadratic optimization process to represent natural human
body postures. FLAME [19] can adjust facial expressions by using linear blend shapes with
jaw and neck articulation. Most of these morphable models linearly represent the human
body model, whereas the proposed approach effectively models the non-linearity of the
human body structure by using well-designed deep learning frameworks.

Recently, deep-learning-based approaches have been attracting attention in the area of
mesh data processing. For example, CNNs [20] have achieved great success in the image
processing and computer vision fields [21]. CNNs are capable of learning the translation-
invariant localized features of the training data. Recently, there have also been studies of
various 3D mesh data structures [22–27]. Graph convolutional networks (GCNs) [28–30],
popular deep learning frameworks for training and representing mesh data, analyze the
geometric relationships between each node and its neighbors in a graph structure. There
are two different types of graph convolutional architectures: the spectral and spatial types.
Spectral GCNs [31] undertake convolutions by using the eigen-decomposition of the pre-
defined graph Laplacian matrix, eventually converting all information pertaining to the
vertices in the spatial domain into the spectral domain. Defferrad et al. [32] effectively
reduced the computational costs incurred when training graph-structured data by utilizing
the Chebyshev polynomial, which recursively approximates the graph Fourier transform
without direct eigen-decomposition. CoMA [9] employs spectral GCNs to establish a 3D
mesh autoencoder that also contains upsampling and downsampling layers based on a
mesh simplification approach [33]. FeaStNet [13] performs its convolution operation in
the spatial domain, and Litany et al. [34] proposes a CNN-based variational autoencoder
(VAE) [35] for the probabilistic modeling of the latent space. Similar to our approach, it
iteratively optimizes the latent variables by minimizing the errors between selected valid
input mesh vertices and the predicted vertices while fixing the autoencoder parameters.
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Spiral neural networks [10–12] have recently shown better results for processing and
representing 3D mesh data when compared to earlier GCN-based methods. SpiralNet [10]
defines the spiral structure that connects the vertices along the spiral trajectory and accu-
rately finds the correspondences between two 3D meshes that have the same geometry but
a different topology based on long short-term memory (LSTM) networks with the spiral
structure. Instead of randomly selecting spiral vertices [10], Bouritsas et al. [11] proposes
new ordered spiral sequences with a fixed length, resulting in improved performance for
3D mesh reconstruction with a fixed topology. SpiralNet++ [12] performs the convolution
operation of concatenating the mesh vertices following a spiral trajectory that is fed to
the multi-layer perceptrons (MLP) without truncation or zero-padding to construct the
spiral structure [11]. Similar to previous dilated convolutions [36,37], dilated spiral convo-
lution [12] has also been introduced to improve the performance without increasing the
size of the spiral convolution. However, identical convolution filter weights are applied to
all vertices in those SpiralNet-based methods, whereas we apply different filters efficiently
and independently to each vertex. Experimental results show that the proposed method
outperforms existing SpiralNet structures in terms of handling the holes and noise in the
scanned 3D mesh. Also, the prediction speed of our mesh autoencoder is faster than CoMA,
LSAConv, and SDConv [38], and similar to SpiralNet++.

3. Method

We propose a novel deep learning system that efficiently and automatically fills the
holes and gaps of a partial 3D mesh shape with noise. We employ a deep variational
autoencoder [35] that consists of an encoder and a decoder to predict the fine-grained 3D
mesh structure. A latent space that embeds the meaningful spectral and spatial features
of the 3D mesh data to achieve accurate hole filling and noise reduction outcomes is well
established after training the proposed deep variational autoencoder. The input of our
deep autoencoder are the complete 3D mesh vertices X = [x0, x1, . . . , xN−1]

> ∈ RN×F and
the output is Y = [y0, y1, . . . , yN−1]

> ∈ RN×F, where F is the feature dimension, F = 3
represents the XYZ values of each vertex, and N denotes the total number of mesh vertices.
Figure 1 shows our deep variational autoencoder in detail. The input 3D mesh X is encoded
as z = enc(X) in the latent space and the latent vector z ∈ R64 is decoded into the output
3D mesh Y = dec(z). In our system, there are six anisotropic spiral convolution layers;
we add three up-and-down pooling layers and three linear layers to our neural network
system, as shown in Figure 1. Specifically, SpiralNet++ [12] defines the k-ring and k-disk
for each vertex v in the 3D mesh structure as follows:

0-ring(v) ={v},
k-disk(v) = ∪i=0,... ,k i-ring(v),

(k + 1)-ring(v) =N (k-ring(v))/k-disk(v),

(1)

where 0-ring represents the starting vertex to define spiral sequences and k-disk denotes a
union of i-rings, where i = {0, . . . , k}. Here, N (V) denotes the set of neighboring indices
of the vertices in the set V and (k + 1)-ring is a set of vertex indices from N (V) excluding
those included in k-disk. The spiral sequences S(v, l) for a single vertex index v are the
following ordered set:

S(v, l) ⊂ (0-ring, 1-ring, 2-ring, . . . , k-ring),

where S(v, l) includes only a part of k-ring to define the length of the spiral sequences as
the user-defined length l. Figure 3 shows the vertices that form the spiral according to the
length l.
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(a) (b) (c) (d) (e)

Figure 3. Visualization of spiral sequences with different user parameter. (a) l = 9; (b) l = 12;
(c) l = 15; (d) l = 18; (e) l = 21.

The spiral convolution input can be defined as xi = ||j∈S(vi ,l)xj, where the l vertex
features included in the spiral sequences S(vi, l) of the starting vertex index vi are concate-
nated into a vector xi of the i-th vertex. The convolutional output yi is then computed with
the vertex feature xi ∈ RFin ·l , convolution weight matrix W ∈ RFout×Fin ·l , and bias vector
b ∈ RFout according to Equation (2):

yi = Wxi + b. (2)

LSA-Conv [14] constructs the vertex features Xi = [xi,0, xi,1, . . . , xi,K−1]
> ∈ RK×Fin for

each vertex and the corresponding local 1-ring neighbors, where K− 1 is the number of
neighbors for each convolutional layer. In addition, a trainable weight matrix Pi ∈ RK×K is
plugged into Equation (2) in a soft permutation form to sort the 1-ring neighbors for each
vertex on the mesh. Therefore, the output yi is obtained by the equation below:

yi = W[vec( f (PiXi))] + b, (3)

where vec converts the vertex feature matrix X into a column vector and f represents the
non-linear activation function.

LSA-Conv [14] devised the idea of effectively sorting all vertices by approximating
a set of weight matrices {Pi}N−1

i=0 ∈ RN×K×K as a linear combination of trainable basis
matrices V ∈ RN×D, where the number of bases is D, which is significantly smaller than
the number of vertices, N. Weight matrix parameterization enables the automatic sorting
of each vertex so that graph convolution can perform well. We modify this approach to
enhance the network representation power by using anisotropic spiral convolutional filters
such that each vertex has a different and desired convolution filter. Instead of directly and
independently applying different filters to each vertex, our subspace design computes a
small number of filter bases and corresponding coefficients for each vertex. We linearly
parameterize the convolution weights of SpiralNet++ [12] as follows:

Wi =v>i G

bi =v>i C

yi =Wixi + bi,

(4)

where {Wi}N−1
i=0 ∈ RN×Fout×Fin ·l includes spiral convolutional filters of length l for N

vertices, as represented in G ∈ RD×Fout×Fin ·l and its corresponding coefficient matrix
V = [v0, v1, . . . , vN−1]

> ∈ RN×D, which includes D-dimensional vectors. Here, B =
[b0, b1, . . . , bN−1]

> ∈ RN×Fout denotes the bias matrix, and each bias vector is also lin-
early parameterized with a vector of bases C ∈ RD×Fout . The computational cost of our
approach is similar to that in [12] while the reconstruction accuracy is greatly improved
when compared to other neural network architectures, as ours allows locally anisotropic
convolution filtering for all vertices on the 3D mesh. Figure 4 shows how our anisotropic
spiral filter works.



Sensors 2022, 22, 6457 6 of 13

The proposed deep variational autoencoder trains the encoder to build a variational
distribution q(z|X). The decoder is then trained to generate the resulting 3D mesh Y from
the latent vector z. We train the neural network with the KL divergence and reconstruction
L2 losses. We use the normal distribution N (0, I) to make the variational distribution
q(z|X) sample similarly as the prior distribution p(z) in the latent space. The loss function
of our network to be minimized is ϕ(X, Y)− λKL(q(z|X)||p(z)), where ϕ is the Euclidean
distance between X and Y with the L2 norm and λ is a constant weight value for KL
divergence. In our experiments, we set λ to 10−8.

In the prediction phase, we iteratively optimize the decoder parameters only to re-
construct the incomplete 3D mesh faithfully. First, we generate the initial facial mesh to be
optimized from the latent vector z that follows a normal distributionN (0, I) (see Figure 5b).
Second, we pass the initial latent vector z into the decoder and the latent vector is opti-
mized by iteratively solving ||X̂−Π(dec(z))||22, where X̂ is the incomplete input mesh (see
Figure 5a) and Π is a selection matrix. Hence, the resulting output mesh Y∗ = dec(z∗) is
obtained from the optimal latent vector z∗ (see Figure 5c). We would like to refer the reader
to [34] for the optimization of partial shape completion in detail.
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Figure 4. In the proposed anisotropic spiral convolution method, the spiral sequences S(vi, l = 9)
corresponding to the i-th vertex feature are concatenated from xi,0, xi,1, ..., xi,8; this is denoted
as xi. We linearly parameterize the convolutional filter weights {Wi}N−1

i=0 into the base matrices
G ∈ RD×Fout×Fin ·l and their coefficients V ∈ RN×D to ensure that each vertex has a different and
desired convolutional filter. In doing so, our method enhances the representation power compared to
the conventional isotropic convolutional filters.
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(a) (b) (c)

Figure 5. The leftmost mesh shows the partial input mesh (a). The initial mesh is obtained by the
decoder before performing network optimization (b), and the rightmost mesh shows the result
obtained from the decoder after the iterative optimization step (c).

4. Results

We quantitatively and qualitatively compared the proposed method with previous
network systems such as CoMA, SpiralNet++, LSAConv, and SDConv, for the shape recon-
struction and completion of the 3D mesh. We used two different datasets to train our neural
networks. First, the MPI Dynamic FAUST dataset [39] includes full-body character motion.
Our network was trained by using 37,557 frames out of a total of nearly 40,000 frames
with a total of 10 actors and approximately 13 expressions, and was evaluated by using
3563 frames that were not used for training. The second dataset is CoMA, which includes
various types of facial meshes of 18,845 frames with a total of 12 people and 12 expressions;
our network was also evaluated for 1620 frames that were not included in the training
dataset. All experiments were conducted by using PyTorch [40] on a system with an AMD
Ryzen 9 5900X processor, 64 GB of memory, and an NVIDIA RTX 3080Ti GPU. The specific
structures of the encoder and decoder are shown in Table 1. All networks were trained by
using the Adam optimizer [41], and the learning rate of 0.001 and 100 epochs were utilized.
For LSAConv and SDConv, 300 epochs were used.

Table 2 and Figure 6 show the reconstruction errors compared to the other neural net-
works. The proposed network outperforms CoMA, SpiralNet++, and SDConv on 3D mesh
reconstruction. Although our neural network has a bit more parameters than SpiralNet++,
the prediction speed is similar to that of SpiralNet++ when performing the mesh recon-
struction as our anisotropic convolution computation in Equation (4) is exactly same as the
spiral one in Equation (2) other than computing with {Wi, bi}. The precomputed {Wi, bi}
during the training step are reused in the prediction step, and we could not observe a
meaningful prediction speed difference between ours and SpiralNet++. In addition, we
synthetically and randomly added Gaussian noises on the input mesh data to test how well
our system gets rid of the noises in the mesh data. In Figure 7, SpiralNet++ (Figure 7c) and
CoMA (Figure 7b) successfully removed the given Gaussian noises, and CoMA showed
better results than SpiralNet++. Our system achieved the smallest errors in every case that
we have tested while preserving the original details of the mesh data (Figures 7d and 8).
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Table 1. The architectures of our network and other neural networks tested in this paper (CoMA and
SpiralNet++) are shown in detail. Note that ASNet represents our anisotropic convolutional filter
shown in Figure 4 and that the input and output shapes of each layer are identical across all networks.
∗ For variational autoencoder scheme, it requires two linear layers for mean (µ ∈ R64) and standard
deviation (σ ∈ R64).

CoMA / SpiralNet++ (Encoder) Ours (Encoder)

Layer Input Output Layer Input Output

CoMA/SpiralNet 5023× 3 5023× 16 ASNet 5023× 3 5023× 16

Pool 5023× 16 1256× 16 Pool 5023× 16 1256× 16

CoMA/SpiralNet 1256× 16 1256× 32 ASNet 1256× 16 1256× 32

Pool 1256× 32 314× 32 Pool 1256× 32 314× 32

CoMA/SpiralNet 314× 32 314× 64 ASNet 314× 32 314× 64

Pool 314× 64 79× 64 Pool 314× 64 79× 64

Flatten 79× 64 1× 5056 Flatten 79× 64 1× 5056

Linear 1× 5056 1× 64 * Linear 1× 5056 1× 64 *

CoMA / SpiralNet++ (Decoder) Ours (Decoder)

Layer Input Output Layer Input Output

Linear 1× 64 1× 5056 Linear 1× 64 1× 5056

Reshape 1× 5056 79× 64 Reshape 1× 5056 79× 64

Pool 79× 64 314× 64 Pool 79× 64 314× 64

CoMA/SpiralNet 314× 64 314× 64 ASNet 314× 64 314× 64

Pool 314× 64 1256× 64 Pool 314× 64 1256× 64

CoMA/SpiralNet 1256× 64 1256× 32 ASNet 1256× 64 1256× 32

Pool 1256× 32 5023× 32 Pool 1256× 32 5023× 32

CoMA/SpiralNet 5023× 32 5023× 16 ASNet 5023× 32 5023× 16

CoMA/SpiralNet 5023× 16 5023× 3 Linear 5023× 16 5023× 3

Table 2. Comparisons of the reconstruction errors, number of network parameters, and speed for
CoMA, SpiralNet++, LSAConv, SDConv, and ours. All the reconstruction average errors are measured
in millimeters.

Network

Dataset

DFAUST CoMA

Error Params Frame/sec Error Params Frame/sec

CoMA 12.416 1390K 548.0± 5.4 0.6661 1031K 450.6± 8.6
SpiralNet++ 7.510 1418K 1482.9± 24.9 0.4236 1059K 894.4± 8.7
LSAConv 1 10.493 2540K 347.2± 3.4 0.4203 1723K 356.0± 3.0
SDConv 1 10.488 564K 494.8± 2.4 0.4525 443K 448.5± 5.1

Ours 6.151 2147K 1463.1± 24.3 0.3551 1750K 912.3± 8.4
1 Zhongpai Gao, https://github.com/Gaozhongpai/SDConvMesh. (accessed on 14 July 2022).
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Figure 6. Qualitative comparison of reconstruction errors. (a–f): DFAUST dataset, (g–l): CoMA dataset.
(a,g): Ground truth; (b,h): CoMA; (c,i): SpiralNet++; (d,j): LSAConv; (e,k): SDConv; (f,l): Ours.
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Figure 7. Qualitative comparison of shape denoising. (a) Input; (b) CoMA; (c) SpiralNet++; (d) Ours;
(e) Ground truth.
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Figure 8. (a) This figure shows that our neural network system accomplishes faster convergence of the
network optimization with fewer errors for the shape completion when compared with other neural
network systems. (b) Our system achieves lower variance and errors than other neural network
systems for the shape denoising task. All the errors are measured in millimeters.

We also compared our approach with other networks for the 3D shape completion
task and removed half of the vertices on the input mesh for the test. During the prediction
step, the latent vector z was optimized 4000 times. We measured the average errors in each
iteration (see Figure 8) and the average errors of the resulting mesh obtained at the last
iteration (see Table 3). Figure 9 shows that CoMA (Figure 9b) generated a plausible overall
shape of the mesh but did not produce expression details well. Meanwhile, SpiralNet++
(Figure 9c) showed better performance in terms of both overall shape completion and
expressions, similar to the ground truth. However, some unnatural results were produced
in the region of the lips that did not exist in the input mesh data. Our method (Figure 9d)
successfully filled the holes and reconstructed the overall mesh shapes well while fewer
error results occurred in missing regions of input mesh data. Table 3 presents comparisons
of the 3D shape completion errors for each different mesh, where we find that the proposed
method resulted in a smaller average error value compared to the other neural networks.

> 10mm0mm

(a) (b) (c) (d) (e)

Figure 9. Qualitative comparison of shape completion. (a) Input; (b) CoMA; (c) SpiralNet++; (d) Ours;
(e) Ground truth.
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Table 3. Quantitative comparison of shape completion by using different actor models from the
CoMA dataset. All the average errors are measured in millimeter (mm).

Network
Actor ID

Mean
0137 3272 0024 0138 3274 3275 0128 3276 3277 3278 3279 0223

CoMA 1.073 1.179 1.057 1.107 1.161 0.890 1.306 1.059 0.999 0.926 1.040 0.873 1.071
SpiralNet++ 0.489 0.568 0.592 0.675 0.699 0.460 0.760 0.594 0.558 0.516 0.611 0.473 0.603

Ours 0.447 0.574 0.495 0.593 0.625 0.389 0.759 0.533 0.474 0.437 0.530 0.419 0.541

5. Conclusions

We have presented a novel anisotropic spiral neural network that faithfully recon-
structs and completes a partial 3D mesh. We found that the proposed method could enhance
the representation power owing to applying different convolutional filters to each vertex
on 3D mesh. We show that our anisotropic filter can improve the reconstruction and shape
completion accuracy for a facial and body mesh model. Our system can be useful for
post-processing to obtain visually appealing mesh results without noticeable artifacts.

There will be several desirable future works. It would be interesting to extend our work
to handle complex and arbitrary mesh structures mainly used in various engineering fields.
We can apply the anisotropic spiral filters to other different types of data such as images
and video sequences. Specifically, ours offers the possibility of successfully reconstructing
the defective and noisy medical image data obtained from magnetic resonance imaging
(MRI), computed tomography (CT), and ultrasonography [42]. Therefore, we believe that
detecting abnormal tissues based on the post-processed medical image data from our model
can be helpful to treat the patients. From the promising results in our work, we plan to
establish a modified system that can handle highly dense mesh data as well as extremely
problematic mesh data, in which it is difficult to differentiate original features from noise.
To do so, we will incorporate attention mechanisms in our neural networks to achieve
further improvement of the shape completion and denoise because they have the ability to
selectively focus on relevant features during the training procedure.
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3D Three-dimensional
CNN Convolutional neural network
CoMA Convolutional mesh autoencoder
PCA Principal component analysis
GCN Graph convolutional network
LSTM Long short-term memory
MLP Multi-layer perceptron
MRI Magnetic Resonance Imaging
CT Computed Tomography
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