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Abstract: Transportation Mode Detection (TMD) is an important task for the Intelligent Transporta-
tion System (ITS) and Lifelog. TMD, using smartphone built-in sensors, can be a low-cost and
effective solution. In recent years, many studies have focused on TMD, yet they support a limited
number of modes and do not consider similar transportation modes and holding places, limiting
further applications. In this paper, we propose a new network framework to realize TMD, which
combines structural and spatial interaction features, and considers the weights of multiple sensors’
contributions, enabling the recognition of eight transportation modes with four similar transportation
modes and four holding places. First, raw data is segmented and transformed into a spectrum image
and then ResNet and Vision Transformers (Vit) are used to extract structural and spatial interaction
features, respectively. To consider the contribution of different sensors, the weights of each sensor are
recalibrated using an ECA module. Finally, Multi-Layer Perceptron (MLP) is introduced to fuse these
two different kinds of features. The performance of the proposed method is evaluated on the public
Sussex-Huawei Locomotion-Transportation (SHL) dataset, and is found to outperform the baselines
by at least 10%.

Keywords: transportation mode detection; spectrogram recognition; sensors recalibration; CNN;
vision transformer; lifelog

1. Introduction

Recent developments in human activity recognition (HCR) and TMD have been ap-
plied in several fields, including ITS [1], context-aware positioning [2], health monitoring [3],
and Lifelog [4].

Lifelog is a typical application of TMD; the users can check the record of Lifelog to
recall historical events and carry out self-planning. Developers can leverage the data to
personalize marketing or city development. Providing highly accurate and complicated
TMD can contribute to increasing the richness of Lifelog semantics. For basic application
scenarios, transportation modes are often simply divided into 5 groups: still, walking,
running, in-road-vehicle, and in-rail-train. The place where the sensor is held on the body
is usually not considered. In this study, we focus on realizing a higher level of TMD
performance for 8 groups: still, walking, running, cycling, car, bus, railway, and subway [5],
to provide higher-level semantic information for Lifelog, where ‘car and bus’ and ‘railway
and subway’ are two groups of similar transportation modes that are subdivided from the
two modes, in-road-vehicle and in-rail-train. At the same time, different holding modes of
sensors are considered; these make the TMD task more difficult.

For recognizing the complicated transportation modes with different holding modes,
we redefine the time sequence data-based TMD task as a spectrogram recognition task and
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propose a deep learning framework for TMD using features of time-frequency responses
obtained via smartphone built-in sensor data. Our proposed framework comprises three
key sub-modules including the structure feature extraction module, spatial interaction
feature extraction module, and sensors weights recalibration module. We combine the
recalibrated structure features and spatial interaction features to realize the recognition of
the transportation modes.

The structure of this paper is as follows: Section 2 reviews state-of-the-art related
works for transportation mode detection using smartphone built-in sensors based on
machine learning or deep learning methods. Section 3 introduces the methodology and
motivation of the proposed method. Section 4 describes the experimental setup and dataset,
and gives the analysis of evaluation results. Finally, Section 5 concludes with a summary
and future work.

2. Related Work

The mainstream methods of TMD include trajectory-based methods [6] and sensors-
based methods [7]. Among the two, the sensor-based method is characterized as low-cost
and real-time due to the limitations of GPS in urban areas.

2.1. Machine Learning-Based Methods

Over the last decades, many researchers have contributed to transportation mode
detection based on smartphone built-in sensors. Most of these works have adopted machine
learning frameworks including the Support Vector Machine (SVM) [8], Decision Tree (DT),
and Random Forest (RF) [9,10] to realize TMD. Ashqar et al. proposed a Hierarchical
Machine Learning Classifier (HMLC) method [11], which includes a two-layer hierarchy
framework which uses manually-extracted time-domain and frequency-domain features.
In other studies, Li Dailin et al. proposed a method based on the Hidden Markov Model
(HMM) and RF [12], the STD-Means of raw data is processed as an input, and Janko
et al. proposed a JSI-Classic method [13] which, combined with five machine learning sub-
modules, including RF, DT, gradient boosting (GB), SVM, and K-nearest neighbors (KNN),
used manually-extracted features as input and fusion the outputs of each sub-module by
ensemble learning. None of these methods recognize similar transportation modes and
multiple holding modes, but with the development of optimization methods, the deep
learning methods can be combined with the optimization methods [14], which will provide
a new solution to TMD.

2.2. Deep Learning-Based Methods

With the recent development of deep learning, many works have proposed TMD
methods based on the deep learning framework including CNN [15,16] and LSTM [17]. In
other advanced studies, Chen et al. proposed the ABLSTM [18] method combining BLSTM
and attention mechanisms. Saeed et al. proposed a self-supervised deep network, named
the Transformation Prediction Network (TPN) [19], to recognize transportation modes, and
is composed of several convolutional layers, using self-supervised pre-training to improve
the recognition performance. The above methods are only effective when recognizing
basic transportation modes and single holding modes. Some studies have tried to provide
solutions for similar transportation modes: Gjoresk et al. proposed an optimized JSI-
CLASSIC method [20] which firstly constructed some sub-learners including RF, gradient
boosting, SVM, AdaBoosting, KNN, naïve Bayes, DT, and Deep Neural Network (DNN),
and then coupled them to generate the transportation mode prediction. Ordóñez et al.
present a Deep-Conv LSTM framework [21] composed of convolutional layers and an
LSTM layer, this inputs the time domain data of multiple sensors into the convolutional
layer without pre-processing, and further processes the output of the convolutional layer
by the LSTM layer. C. Zhang et al. use CNN to learn features of Signal images, Gramian
Angular Field images, Markov Transition Field images, and Recurrence Plot images and
then combine the four kinds of features using SVM [22]. A. Sharma et al. use CNN
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and LSTM [23] to learn the time correlation, and a decision policy is defined on top of
the classifier to perform the transportation mode prediction for the incoming time series
by attaining an acceptable trade-off. Wang et al. proposed the MSRLSTM [24], which
introduced the residual CNN and attention module into Deep-Conv LSTM to further
improve the performance. These methods can recognize similar transportation modes but
are not effective for multiple holding modes.

Unlike the aforementioned methods, our work aims to address the challenges in recog-
nizing similar transportation modes and multiple holding modes. The main contributions
of this paper are summarized as follows: (1) we use the sliding window mechanism to
segment the raw data and transform it into time-frequency spectrograms using continuous
wavelet transforms (CWTs) to learn higher-level features. (2) For the spectrogram recogni-
tion task, we propose a framework composed of three sub-modules including ECAnet [25],
Resnet [26], and Vit [27] using accelerometer, gyroscope, and magnetometer data. (3) We
discuss the effect of the magnetometer for TMD and provide the motivation and evaluation
of each sub-module. We evaluate our algorithm on a large public SHL dataset [5], and com-
pare with baselines including LSTM [17], ABLSTM [18], TPN [19], Deep-Conv LSTM [21],
and MSRLSTM [24]. This demonstrates that our proposed method performs superior to
these baselines in the SHL dataset.

3. Motivation and Methodology

The overall framework of our proposed algorithm is given in Figure 1. The framework
accepts sensor time sequence data and pre-processes using sliding window and CWT
before extracting structure and interaction features. Features are calibrated with sensor
weights to predict the transportation mode. The motivation and technical details of each
sub-module are explained in the following sections.
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Figure 1. Overview of the proposed method.

We followed the transportation mode definitions in the SHL dataset [5], definitions
are provided in Table 1. ‘Still’ was defined as ‘still without vehicles’, if the ‘Walk’, ‘Run’,
and ‘Bike’ were stopped at the midway, the transportation modes were changed to ‘Still’. If
‘Car’, ‘Bus’, ‘Railway’, and ‘Subway’ were stopped at the midway, the transportation mode
remained unchanged, as passengers did not get off. To avoid ambiguity caused by terms
used in different regions, the ‘Railway’ was defined as a long-distance train which runs
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between and corresponds to ‘Train’ in the SHL dataset, and the ‘Subway’ was defined as a
short-distance metro which runs within a city.

Table 1. Transportation mode definition.

Transportation Mode Definition

Still Still in the open area
Walk Walking in the open area
Run Running in the open area
Bike Cycling in the open area
Car Still and waiting for traffic lights or running
Bus Still at the station or running

Railway Still at the station or running
Subway Still at the station or running

3.1. Data Input

We used the raw time sequence data of smartphone built-in sensors collected in the real
world as input. Although using more sensors can achieve higher accuracy [28], considering
the different hardware configurations of smartphones (some data such as linear acceleration
and barometer are not permanently available, the computational cost of the network, etc.)
we did not choose linear acceleration or barometer, and processed the raw triaxial data of
accelerometer, gyroscope, and magnetometer into modulus as input.

3.2. Data Pre-Processing

As shown in Figure 2, we firstly segmented the input data by using a short-term
sliding window with length of several seconds, and moved forward by a stride. After
segmentation, we transformed each segmented data into a time-frequency domain. This
process was applied to sequence data of the selected three sensors (accelerometer, gyroscope,
magnetometer) to obtain a three-channel spectrogram. Preprocessing steps are explained
in the following sections. The detail of input data and parameter of pre-processing are
explained in the Section 4.
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3.2.1. Motivation of Data Segmentation

We proposed using a sliding window mechanism to segment the sensor time sequence
data. For transportation mode, the information in short-term temporal dependencies
of sensor raw data was much larger than that in the long-term temporal dependencies.
The common transportation modes are periodic: walking and running are composed
of periodic leg-lift and leg-fall, and subways and railways periodically pass through



Sensors 2022, 22, 6453 5 of 15

the gaps on the rails. ‘Still’ is an action with an infinite period. We only needed to
capture more than one period (about 1 or 2 s) of information to detect the transportation
mode. Long-term temporal dependencies did not help our task, and rather had a negative
impact. When the time span is lengthened, the transportation mode in the k min had little
relation to the transportation modes in the k + 1 min, which depends entirely on the user’s
random decision.

3.2.2. Motivation of Time-Frequency Transformation

The noise of real-world dataset composition includes not only stationary noise such as
bias and measurement but also time-varying and non-stationary noise caused by different
holding modes of the sensor (such as bag, hips, and torso) and random shaking of the
human body (e.g., swinging arms). Due to the superposition of these noises, the trans-
portation mode dataset collected from the real world can be regarded as a time-varying
and nonstationary signal. Figure 3 shows example segments of different transportation
modes and holding positions from the SHL dataset. In the time domain, it is difficult to
distinguish transportation modes using the LSTM-based method due to the overlapping of
the above noises. This is proved by the experiment result of baselines given in Section 4.
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Figure 3. Raw acceleration data of eight transportation modes and four holding modes in SHL dataset
in a sliding window.

The CWT is commonly used in the time-varying and nonstationary signal processing
issues [29], it allows us to analyze the characteristics of time-sequential data in time-
frequency domains with high-resolution features. We adopted the CWT to process the
segmented data of real-world transportation detection. As shown in Figure 4, the trans-
formed data is 2D time spectrum images, where x-axis is time, y-axis is frequency, and the
value of each pixel is time-frequency response intensity. We used the shuffled spectrum
images for training, allowing the network to learn short-term temporal dependence and
avoid the impact of long-term temporal dependence.
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3.3. Multiple Sensors Integration and Recalibration

Multi-sensor combination will provide more information to the neural network and
the TMD accuracy will increase by increasing the number of sensors used [28]. In addition
to using inertial sensors including accelerometers and gyroscopes to measure human
movements directly, we also used magnetometer data as an additional input. We took into
consideration the fact that cars, buses, railways, and subways are all metal vehicles and so
the surrounding geomagnetic field will be distorted because of the metal. We leveraged the
distortion as extra information. In order to cater to a variety of smartphone built-in sensor
platforms, we considered the hardware configurations and did not use sensors such as
barometer, direction measurement, and linear accelerometer (no gravity). In order to reduce
the calculation, we processed the modulus of triaxial data of each sensor (accelerometer,
gyroscope, and magnetometer) into a spectrum image and considered each sensor as a
channel to construct a three-channel image sensor as an input to the network.

Different sensors contribute differently to different transportation modes, for example,
magnetometers should have a greater contribution to recognizing the modes related to
metal vehicles, but would have a smaller contribution when recognizing non-metal modes
such as running and walking. Figure 5 shows example segments from the SHL dataset
with magnetometer distortion. If a metal vehicle passes by a pedestrian, the data from the
accelerometer worn on the pedestrian remains stationary, but the magnetometer data is
seriously distorted. Such magnetic distortion is fault information for non-vehicle modes.

To better describe the contribution of each sensor, we inserted the ECA-net into each
convolutional layer. As shown in Figure 6, the ECA-net is a lightweight module, which uses
Global Average Pooling (GAP) to pool the information of each channel. The data X with
size height (h) * width (w) * channel (c) is input into ECA-net in the direction of the arrows.
ECA-net converts the multi-channel picture tensor with c channels into a vector with a
length of c, then traverses the vector with a 1D convolution kernel to learn the interactive
information of adjacent channels, through a sigmoid active layer σ then multiplies it as
a weight with the output of the previous layer to realize the weighting of multi-channel
information. Finally, the data X learning channel attention is output to the next layer.
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Figure 5. Geomagnetic distortion data segment with holding mode of ‘Hands’ in the SHL dataset.
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3.4. Feature Extraction and Fusion

To better express transformed data, we extracted the structure features of the spec-
trograms, and considered the spatial position interaction of frequency response in the
spectrograms at the same time.

In spectrogram recognition, the most basic feature is the intensity distribution of
time-frequency response in the time-domain and frequency domain, which is embodied in
the fine-grained structure feature on the spectrogram. We adopted Resnet to extract this
structure feature. As shown in Figure 7, Resnet is a classic CNN-based method, which uses
the residual block that connects the convolution layer and residual propagation in parallel.
It allows the convolution network to have deeper layers, so that higher-dimensional features
in the image can be extracted. The data X is input into the residual block in the direction of
the arrow and the X is output to the next layer. Where ×means multiplication operation of
channel attention and input data, + means the multilayer convoluted data is added with
the single convolutional layer convolution shortcutting data to realize a residual block.
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Vit flattens each patch into a sequence as the input of the network, leading to loss of
fine-grained structure information of the image, which is complementary to the structure
information learned by Resnet.

4. Experiments and Analysis

In this section, we evaluate the performance of the proposed methods on the 2020 Sussex-
Huawei Locomotion-Transportation (SHL) Dataset. We firstly introduce the detail of
the dataset and experimental setup and discuss the effect of each sub-module on the
performance of the proposed method. Lastly, we compare the performance with other
state-of-the-art baselines.

4.1. Dataset

The public SHL dataset contains eight transportation modes: Still (127 h), Walk (127 h),
Run (21 h), Bike (79 h), Car (88 h), Bus (107 h), Railway (115 h), and Subway (89 h). The
data were collected by four users with four smartphones (Model: HUAWEI Mate 9). These
smartphones were separately placed on four locations including Hands, Torso, Hips, and
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Bag. The dataset was collected in multiple rounds over 7 months, and the smartphone
was randomly placed in hip pocket (right or left) and arm (right or left) during each
collection. The sampling frequency of sensors is 100 Hz, and each sample includes triaxial
accelerometer, triaxial gyroscope, triaxial magnetometer, triaxial linear acceleration, and
scalar barometer.

4.2. Preprocessing

The data was processed into time-frequency spectrograms by using sliding window as
mentioned in the Data Segmentation section; the parameters of preprocessing are listed in
Table 2. In order to ensure the sample balance, we randomly selected 30,000 spectrograms
for each sensor holding place and each transportation mode for training and testing, about
267 h in total. In all experimental results, each transportation mode label contained samples
of all four holding modes. The preprocessed data were separated into two parts: training
part (80%) and testing part (20%).

Table 2. Parameter setting of preprocessing.

Parameter Name Parameter Setting

Sliding window length 3 s
Sliding stride length 1 s

Wavelet transform scale 64
Wavelet name Cmor3-3

4.3. Experimental Setup

The hardware and software environment are listed in Table 3.

Table 3. Environment of experiment.

Hardware and Software Environment

CPU AMD Ryzen 7 5800X 8-Core
Memory 16 GB

GPU GTX 3060Ti 8GB x1
Development Language Python 3.9

Framework Pytorch 1.9

All the experiments were conducted on the same platform. In this paper, we used the
label accuracy, F1-score, and total accuracy to evaluate the proposed method and baselines.
These metrics are defined as Equations (1)–(4):

Total Acuuracy =

K
∑

i=1
TPi

N
(1)

Label Accuracyi =
TPi

TPi + FPi
(2)

Recalli =
TPi

TPi + FNi
(3)

F1− scorei =
2 ∗ Recalli ∗ Label Accuracy
Recalli + Label Accuracyi

(4)

where the TPi is the number of correctly classified samples of transportation mode i,
FPi is the number of samples that incorrectly classified transportation mode i as other
modes, FNi is the number of samples that incorrectly classified other transportation modes
as mode i, K is the number of transportation modes and N is the total number of all
experimental samples.
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4.4. Recognition Performance of Sub-Module Integrations

In this section, we will illustrate the effect of each sub-module and magnetometer.
First, we analyzed the effect of each sub-module on the total accuracy separately. The
parameter detail is given in Table 4.

Table 4. Parameter setting of the proposed method.

Parameter Setting Resnet Vit ECA-Net MLP

Conv Layer 1 CNN(3), 144 / / /

Conv Layer 2

CNN(1), 144
CNN(3), 144
CNN(1), 256

× 3 / / /

Conv Layer 3

CNN(1), 128
CNN(3), 128
CNN(1), 512

× 4 / / /

Conv Layer 4

 CNN(1), 256
CNN(3), 256

CNN(1), 1024

× 6 / / /

Conv Layer 5

 CNN(1), 512
CNN(3), 512

CNN(1), 2048

× 3 / / /

Patch Size / (4 × 20) / /
Head Number / 12 / /

Encoder Layer Number / 8 / /
Embedding Dropout / 0.1 / /

Dropout / 0.1 / /

Kernel Size / / 2 /

Linear Layer Size / / /

FC(1024)
FC(2048)

FC(8)


Dropout / / / 0.2

Note: CNN (a),(b) are convolutional layers, where (a) is the size of convolutional kernel, (b) is the kernel number;
FC (d) is fully connected layer, where (d) is the size of FC layer.

The total accuracy of each integration of sub-modules is shown in Figure 9, which
shows that the proposed method achieved the best performance. The total accuracy of R50
(No CWT, No MAGN,), R50 (No MAGN), R50, R50 + ECA-net, Vit, and R50 + Vit + ECA-net
are 74.70%, 80.03%, 84.30%, 91.28%, 81.01%, and 93.03%, respectively. We observed that
the integration of more sub-modules can further improve the accuracy of transportation
mode recognition.
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We analyzed the effect of the magnetometer information and different sub-modules on
recognizing different transportation modes in detail. Firstly, we discuss the performance of
structure feature extraction under the framework, and prove the effect of adding CWT, mag-
netometer, and sensors weight. We compare the performance of using raw data as input and
using CWT. When using the same sensor and the same model, the recognition performance
after adding CWT was greatly improved. As shown in Table 5, compared to the original
‘R50 (No MAGN)’, the total accuracy of ‘CWT + R50 (No MAGN)’ was improved by more
than 5%, and the F1-score of each mode was improved, but the recognition performance of
‘Run’ was not improved, even decreasing by about 0.4%. This shows that ‘Run’ is a mode
that can be easily recognized in the time domain, and as the recognition performance using
time-domain data is already close to 100%, using time-frequency domain features is not
effective for recognizing ‘Run’. However, for other modes, using CWT was effective. We
will then discuss the effect of adding magnetometer and sensors weights. Under the same
weight of each sensor, as shown in ‘CWT + R50′ of Table 5, compared to ‘CWT + R50 (No
MAGN)’, it can be observed that the F1-score of transportation modes with metal vehicles
such as ‘Bus’, ‘Car’, ‘Railway’ and ‘Subway’ were improved after adding magnetometer
data, but the F1-score of ‘Walk’, ‘Run’ and ‘Bike’ decreased instead. As mentioned in
Section 3, this is due to the false information introduced from extra geomagnetic distortion
from the environment when the transportation mode was irrelevant to metal. Therefore,
we insert ECA-net module into R50, to recalibrate weights for each sensor. As shown in the
‘CWT + R50 + ECA-net’ of Table 5, the F1-score of each transportation mode is obviously
improved when the network learns the contributions of different sensors.

Table 5. Performance of different sub-module combinations.

Sub-Modules Metrics Still Walk Run Bike Car Bus Railway Subway

R50 (No MAGN)
Accuracy/% 62.93 90.88 98.57 79.50 78.56 70.94 59.76 53.26

Recall/% 66.34 90.45 98.40 85.46 83.13 65.86 59.02 48.00
F1-score/% 64.59 90.66 98.49 82.37 80.78 68.31 59.38 50.49

CWT + R50
(No MAGN)

Accuracy/% 56.90 92.85 99.16 93.47 89.49 82.16 68.56 63.60
Recall/% 80.14 90.28 97.79 93.04 91.35 73.33 58.45 55.35

F1-score/% 66.55 91.55 98.47 93.25 90.41 77.49 63.10 59.19

CWT + R50
Accuracy/% 78.01 95.89 99.58 91.34 96.99 81.52 73.49 65.26

Recall/% 88.85 86.77 75.07 94.26 90.42 92.66 79.71 66.52
F1-score/% 83.08 91.10 85.61 92.78 93.59 86.73 76.48 65.88

CWT + R50 + ECA-net
Accuracy/% 86.87 96.83 98.54 95.15 94.94 94.48 80.69 83.35

Recall/% 88.73 90.72 99.10 95.30 96.81 92.99 84.72 81.77
F1-score/% 87.79 93.67 98.82 95.22 95.87 93.73 82.66 82.55

CWT + Vit
Accuracy/% 70.28 86.53 97.73 90.38 88.90 82.34 71.28 63.23

Recall/% 89.88 86.61 97.79 86.13 85.60 78.34 55.60 67.81
F1-score/% 78.88 86.57 97.76 88.21 87.22 80.29 62.47 65.44

CWT + R50 + Vit + ECA-net
(Proposed Method)

Accuracy/% 88.10 95.34 99.24 96.62 96.49 95.13 88.80 84.72
Recall/% 91.30 93.68 98.96 95.91 97.34 94.41 85.10 87.42

F1-score/% 89.67 94.50 99.11 96.26 96.91 94.77 86.91 86.05

Secondly, we will discuss the performance of spatial interaction feature extraction. As
shown in Table 5, the performance of recognizing each transportation mode was lower
than using structural features. There are two reasons for this [30]:

1. Each patch would be flattened into a vector as input in Vit and the network will lose
its structure information because of the flattening operation;

2. Vit is eager for datasets. Due to the flattening operation mentioned above, it is difficult
for Vit to extract the local information of each patch when the dataset is insufficient. If
a Vit model is trained alone, the accuracy will exceed the CNN-based model when
the dataset is more than 100 M, but our dataset size is only about 1 M.
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Finally, we will discuss the performance of the completed proposed method. We
introduced MLP to combine the structure and spatial interaction feature which are extracted
by Resnet and Vit, respectively. It can be observed in Table 5 that compared with methods
using structure features or spatial features separately, the recognition performance of all the
eight transportation modes was improved in the SHL dataset. Even if the dataset is small,
Vit will keep the focus on the global spatial interaction information [30], which can be
combined with structure information to achieve higher accuracy. It can be observed that the
F1-score for Bus, Car, Railway, and Subway, two groups of similar transportation modes,
the recognition performance was higher than 85%, especially for Bus and Car, where the
recognition performances was higher than 94%.

4.5. Comparison with Baselines

We evaluated our method with the baselines mentioned in Section 2. All the baselines
were reimplemented using Pytorch platform according to the opensource code and the
input raw data in the time domain which includes the accelerometer, gyroscope, and
magnetometer. The parameter detail of each baseline is listed in Table 6.

Table 6. Parameter setting of the baseline methods.

Baselines Conv Layer LSTM Layer Attention Layer Output Layer

LSTM / [LSTM(128)]× 1 / [FC(128)]× 1

ABLSTM / [LSTM(128)]× 1
FC(128)× 1

tanh
SoftMax

[FC(128)]× 1

Deep-Conv LSTM [CNN(5), 64]× 4 [LSTM(128)]× 2 FC(128)× 2
Sigmoid [FC(128)]× 1

TPN

CNN(24), 32
CNN(16), 64
CNN(8), 96


Dropout = 0.1
Maxpool(8)

/ / [FC(96)]× 1

MSRLSTM

 CNN(3), 64
CNN(2), 128
CNN(2), 128


Res

Maxpool(2)

[LSTM(128)]× 2 FC(128)× 2
SoftMax

 FC(256)
FC(512)

FC(1024)


Note: CNN (a),(b) is convolutional layer, where a is the size of convolutional kernel, (b) is the kernel number;
LSTM (c) is LSTM layer, where c is the size of hidden layer; FC (d) is fully connected layer, where d is the size of
FC layer. Maxpool (e) is the max pooling layer, e is the size of pooling kernel; Res means a residual option after
the previous convolutional layer.

The total accuracy of the proposed method and baselines are illustrated in Figure 10,
and the label accuracy, recall, and F1-score are listed in Table 7. We can observe that the
proposed method significantly outperforms the baselines on the SHL dataset. The total
accuracy of LSTM, ABLSTM, Deep-ConvLSTM, TPN, and MSRLSTM are 53.21%, 58.42%,
81.30%, 77.72%, and 83.39%, respectively, and our proposed method achieved 93.03%,
outperforming baseline methods by at least 10%.

As Section 3 mentioned, due to the time-varying and non-stationary noise caused
by different holding modes of the sensor (such as bag, hips, and torso) and random
shaking of the human body, it is difficult to learn the time-domain feature of raw data
directly, and the recognition performance of LSTM was the lowest among all methods.
ABLSTM and Deep-Conv LSTM introduce the attention mechanism in the time domain,
and additional convolution operation basis on LSTM, respectively. These improved the
recognition performance. TPN leveraged the CNN in the time domain, which did not
obtain enough receptive fields with shallow layers; the performance was higher than the
LSTM-only method, but was lower than Deep-Conv LSTM, which combines CNN and
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LSTM. MSRLSTM combined the CNN, LSTM and attention in the time domain, achieving
the highest performance in the baseline methods, but it also only focused on the features of
the time domain. The experiments above prove that time domain convolution and attention
mechanisms have effects on time-varying and nonstationary overlapping noise to a certain
extent; the recognition performance of dissimilar transportation modes with four holding
modes was relatively high, but with four holding modes, the performance in distinguishing
similar transportation modes was not good enough. Compared with baseline methods, the
proposed method uses CWT, which fundamentally avoids the problems of time-varying
noise and time-domain overlapping. According to the characteristics of the time-frequency
spectrogram, the intensity and location distribution of frequency response are combined,
which makes the proposed method achieve higher recognition performance for all eight
transportation modes. In particular for ‘Car’ and ‘Bus’ and ‘Railway’ and ‘Subway’, the
two groups of similar transportation modes, the F1-score of recognition performance was
more than 8% (‘Car’), 14% (‘Bus’), and 18% (‘Railway’ and ‘Subway’), higher than all
the baselines.

Table 7. Performance of different baselines and the proposed method.

Baselines Metrics Still Walk Run Bike Car Bus Railway Subway

LSTM
Accuracy/% 56.95 59.98 79.88 50.40 52.18 49.34 35.18 38.22

Recall/% 60.50 56.86 83.14 56.33 55.18 43.63 28.12 41.60
F1-score/% 58.67 58.37 81.47 53.20 53.64 46.31 31.25 39.84

ABLSTM
Accuracy/% 50.30 86.43 96.74 62.75 52.90 43.77 41.58 37.52

Recall/% 77.01 73.06 96.04 60.37 52.34 29.47 33.43 45.13
F1-score/% 60.86 79.19 96.39 61.54 52.62 35.22 37.06 40.97

Deep-ConvLSTM
Accuracy/% 78.14 92.71 99.38 88.03 87.72 77.66 67.55 61.52

Recall/% 80.22 87.04 98.03 90.42 86.48 74.27 63.66 69.95
F1-score/% 79.17 89.79 98.70 89.21 87.10 75.93 65.55 65.46

TPN
Accuracy/% 81.43 99.06 98.59 86.87 67.79 76.08 71.74 56.90

Recall/% 74.34 61.26 97.35 84.58 95.83 78.16 59.65 70.39
F1-score/% 77.72 75.70 97.97 85.71 79.40 77.10 65.14 62.93

MSRLSTM
Accuracy/% 75.26 91.94 99.37 90.27 88.34 82.24 71.89 68.36

Recall/% 86.44 89.69 97.69 91.42 88.53 78.16 65.64 69.23
F1-score/% 80.47 90.80 98.52 90.84 88.44 80.15 68.57 68.80

Proposed Method
Accuracy/% 88.10 95.34 99.24 96.62 96.49 95.13 88.80 84.72

Recall/% 91.30 93.68 98.96 95.91 97.34 94.41 85.10 87.42
F1-score/% 89.67 94.50 99.11 96.26 96.91 94.77 86.91 86.05
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5. Conclusions

In this paper, a new deep learning framework for transportation mode detection is
proposed. The proposed method transforms the pattern recognition problem of sequence
data into a recognition problem of the spectrogram by transforming the basic smartphone
built-in sensor data into time-frequency domain for feature extraction. Differently from
traditional image recognition that uses only structural features, we consider the characteris-
tics of the spectrogram, the position (spatial interaction feature) and intensity (structure
feature) of frequency response. The framework is realized by combining structure and
spatial interaction features extracted using CNN and Vit, respectively. Furthermore, a chan-
nel attention module is introduced to recalibrate the sensor weights, as different sensors
contribute differently in recognizing different transportation modes. Compared with other
baselines, the proposed method achieves the highest performance with four holding modes,
especially for similar transportation modes (‘Bus’ and ‘Car’, ‘Railway’ and ‘Subway’). The
proposed method outperforms baselines by at least 10% in total accuracy, and about 8% in
‘Car’, 14% in ‘Bus’, and 16% in ‘Railway’ and ‘Subway’.

In this study, only data from four users was used for training; generalization for
multiple users is not considered. A further study could consider the multiple attributes of
different users based on advanced optimization, which could contribute to increasing the
generalization of TMD models.
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13. Janko, V.; Lustrek, M.; Reščič, N.; Mlakar, M. A new frontier for activity recognition: The Sussex-Huawei locomotion challenge.
In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous
Computing and Wearable Computers, Singapore, 8–12 October 2018.

14. Zhao, H.; Zhang, C. An online-learning-based evolutionary many-objective algorithm. Inf. Sci. 2020, 509, 1–21. [CrossRef]
15. Gong, Y.; Fang, Z.; Shaomeng, C.; Haiyong, L. A convolutional neural networks-based transportation mode identification

algorithm. In Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo,
Japan, 18–21 September 2017.

16. Liang, X.; Wang, G. A convolutional neural network for transportation mode detection based on smartphone platform.
In Proceedings of the 2017 IEEE 14th international conference on mobile Ad Hoc and sensor systems (MASS), Orlando, FL, USA,
22–25 October 2017.

17. Liu, H.; Lee, I. End-to-end trajectory transportation mode classification using Bi-LSTM recurrent neural network. In Proceed-
ings of the 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Nanjing, China,
24–26 November 2017.

18. Chen, Z.; Zhang, L.; Jiang, C.; Cao, Z.; Cui, W. WiFi CSI based passive human activity recognition using attention based BLSTM.
IEEE Trans. Mob. Comput. 2018, 18, 2714–2724. [CrossRef]

19. Saeed, A.; Ozcelebi, T.; Lukkien, J. Multi-task self-supervised learning for human activity detection. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 2019, 3, 1–30. [CrossRef]
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