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Abstract: Nowadays, individuals have very stressful lifestyles, affecting their nutritional habits. In 
the early stages of life, teenagers begin to exhibit bad habits and inadequate nutrition. Likewise, 
other people with dementia, Alzheimer’s disease, or other conditions may not take food or medicine 
regularly. Therefore, the ability to monitor could be beneficial for them and for the doctors that can 
analyze the patterns of eating habits and their correlation with overall health. Many sensors help 
accurately detect food intake episodes, including electrogastrography, cameras, microphones, and 
inertial sensors. Accurate detection may provide better control to enable healthy nutrition habits. 
This paper presents a systematic review of the use of technology for food intake detection, focusing 
on the different sensors and methodologies used. The search was performed with a Natural Lan-
guage Processing (NLP) framework that helps screen irrelevant studies while following the 
PRISMA methodology. It automatically searched and filtered the research studies in different data-
bases, including PubMed, Springer, ACM, IEEE Xplore, MDPI, and Elsevier. Then, the manual anal-
ysis selected 30 papers based on the results of the framework for further analysis, which support 
the interest in using sensors for food intake detection and nutrition assessment. The mainly used 
sensors are cameras, inertial, and acoustic sensors that handle the recognition of food intake epi-
sodes with artificial intelligence techniques. This research identifies the most used sensors and data 
processing methodologies to detect food intake. 
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1. Introduction 
The worldwide population has inadequate nutrition and physical activity habits, 

which are worst at a younger age [1,2]. It is causing different healthcare problems, includ-
ing obesity, hypertension, and other diseases, mainly related to the digestive system [3,4]. 
These diseases are primarily associated with dietary problems that can be reduced with 
health literacy [5,6]. The nutritionists recommend a balanced diet to reduce different nu-
tritional problems [7–9], which, with a busy lifestyle, can be challenging to obtain and 
difficult to monitor. It also helps to combat other problems in different countries related 
to malnutrition [10,11]. 
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Mobile devices, such as smartphones and smartwatches, and other sensors, including 
electrogastrography, cameras, microphones, and inertial sensors, may help control nutri-
tion habits with food intake detection and associated recommendations [12,13]. These sen-
sors are commonly non-invasive, allowing their use in different environments and by dif-
ferent people [14,15] in their daily activities. The automatic detection and classification of 
eating habits can be also used to control the number of calories and the type of meals the 
individual has consumed, allowing the characterization of different habits and promoting 
the creation of a personalized system [16]. This subject is included in the developments 
related to Ambient Assisted Living and Enhanced Living Environments [17,18]. 

This paper consists of a systematic review of sensors and machine learning ap-
proaches for detecting food intake episodes. This research includes the use of different 
scientific databases regarding this subject. The various methods can provide different ex-
citing results in the literature and pointers for further analysis. 

The introductory section ends with this paragraph, and the remaining sections are 
organized as follows: Section 2 presents the methodology used for this systematic review, 
presenting the results in Section 3. After that, the results are discussed in Section 4, and 
the main conclusions are presented in Section 5. 

2. Methodology 
2.1. Food Intake Detection 

Food intake is essential to survival, but more importantly, it is more an emotional act 
than one about survival. Eating is often related to emotions, and humans are reluctant to 
eat something that does not taste good to them [19]. As a result, the food industry has 
been trying to solve the equation of creating delicious food with the minimum cost possi-
ble. The answer was not the best one, with the advent of fast-food chains across the globe 
promising a meal that can be purchased, obtained, and consumed with very little time 
investment [20]. The busy lifestyle, with constant pressure to deliver more in less time, 
urges us to spend the shortest time possible on “non-productive” tasks. 

To detect an excellent and healthy diet (or a bad one), one must identify the moment 
the person is eating. Only after detecting eating episodes can one face the challenge of 
detecting what food is consumed and taking measures to improve someone’s diet. This 
stage demands the use of appropriate sensors with advanced algorithms. As a result, the 
main goal of this research is to survey the current approaches for food intake detection, 
the first step towards a fully automated personalized diet experience. 

2.2. Research Questions 
The main questions of this systematic review were as follows: (RQ1) What sensors 

can be used to access food intake moments effectively? (RQ2) What can be done to inte-
grate such sensors into daily lives seamlessly? (RQ3) What processing must be done to 
achieve good accuracy? 

2.3. Inclusion Criteria 
This paper studies different implementations of food intake detection using different 

sensors. The selection of different studies for this systematic review was performed with 
the following criteria: (1) research work that performs food intake detection; (2) research 
work that uses sensors to detect food with the help of sensors; (3) research work that pre-
sents some processing of food detection to propose diet; (4) research work that use wear-
able biosensors to detect food intake; (5) research work that use the methodology of deep 
learning, Support Vector Machines or Convolutional Neural Networks related to food in-
take; (6) research work that is not directly related to image processing techniques; (7) re-
search work that is original; (8) papers published between 2010 and 2021; and (9) papers 
written in English. 
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2.4. Search Strategy 
This research strategy follows a PRISMA (Preferred Items for Reporting Systematic 

Reviews and Meta-analyses) methodology [21] to identify and process the literature on 
food intake detection published between 2010 to 2021. Leveraging the NLP (Natural lan-
guage Processing) toolkit, the following electronic databases were explored automatically 
for article selection: PubMed, Springer, ACM, IEEE Xplore, MDPI, and Elsevier. 

The NLP framework input parameters use a collection of keywords to identify po-
tentially relevant papers and a set of properties that should be satisfied by the identified 
papers. The following research keywords were used: “food intake detection” and “sen-
sors” and “measurement”. Based on the DOI numbers, the program automatically elimi-
nated all duplicates. Relevant papers identification is based on the initial keyword search 
and the inclusion criteria. The benefit of the framework is that many irrelevant articles can 
be quickly discarded by using robust searching methodologies such as stemming, fuzzy-
matching, etc. As a result, the framework eliminates articles that are not original works 
(i.e., they are review articles, position papers, etc.) or are not relevant considering the re-
search question. As a result, a significantly smaller subset of articles was obtained to only 
focus on selecting the articles to use in the qualitative synthesis. For more detailed infor-
mation about the features of the NLP toolkit, more details are available in the study by 
Zdravevski et al. [22]. 

The authors independently evaluated every identified study, determining their suit-
ability for inclusion in this paper. The studies were analyzed to identify the various meth-
ods for using sensors to detect food intake. The research was performed on 1 November 
2021. 

2.5. Extraction of Study Characteristics 
Different data were extracted from the selected research papers. Table 1 presents 

other collected parameters in the following order: year of publication, the dataset used, 
purpose, sensors used, and study methodology. The source code and most datasets used 
in the analyzed papers are not publicly available. 
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Table 1. The study analysis. 

Paper 
Year of 

Publication 
Population/Dataset Purpose of Study Sensors Used Methodology 

Bahador et al. 
[23] 

2021 

Two scenarios: 1. data from three 
days of wristband device use form 
a single person, and 2. Open data 

set of 10 individuals performing 186 
activities (mobility, eating, personal 

hygiene, and housework) 

Develop a data fusion technique to 
achieve a more comprehensive 

insight of human activity dynamics. 
Authors considered statistical 

dependency of multisensory data 
and exploring intramodality 

correlation patters for different 
activities. 

Sensor array with temperature, 
interbeat intervals, dermal 

activity, 
photoplethysmography, heart 
rate (1st dataset). Wristband 9 

axis inertial measurement units 
(2nd dataset) 

Deep residual network. 

Doulah et al. 
[24] 

2021 
30 volunteers using the system for 

24 h in pseudo-free-living and 24 in 
a free-living environment 

Food intake detection, sensor fusion 
classifier (accelerometer and flex 

sensor). Image sensor was used to 
capture data every 15 s and validate 

sensor fusion decision. 

5mp camera glasses add-on, 
accelerometer and flex sensor in 
contact with temporalis muscle 

SVM model. 

Heydarian et al. 
[25] 

2021 

OREBA dataset [26], composed by 
OREBA-DIS with 100 participants 

consuming food in discrete portions 
and OREBA-SHA with 102 

participants while consuming a 
communal dish 

Data fusion for automatic food 
intake gesture detection 

Although no sensors were used, 
dataset was obtained through 
video and inertial sensors data 

Fusion of inertial and video data with 
several methods that use deep 

learning. 

Kyritsis et al. 
[27] 

2021 

FIC [28], FreeFIC [29], and FreeFIC 
held-out datasets containing triaxial 

acceleration and orientation 
velocity signals 

A complete Framework towards 
automated modeling of in-meal 
eating behavior and temporal 

localization of meals 

Data from smartwatch either 
worn on right or left wrist—
accelerometer and gyroscope 

CNN for feature extraction and LSTM 
network to model temporal evolution. 

Both parts are jointly trained by 
minimizing a single loss function. 

Lee [30] 2021 
8 participants in noisy 

environments 
Detect eating events and calculate 

calorie intake 

Ultrasonic doppler shifts to 
detect chewing events and a 
camera placed on user’s neck 

Markov hidden model recognizer to 
maximize swallow detection accuracy. 
Relation between chewing counts and 

amount of food through a linear 
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regression model. CNN to recognize 
food items. 

Mamud et al. 
[31] 

2021 
Not specified, students were used 
with emphasis on acoustic signal 

Develop a Body Area Network for 
automatic dietary monitoring system 

to detect food type and volume, 
nutritional benefit and eating 

behavior 

Camera on chest with system 
hub, phones with added 

microphone and dedicated 
hardware to capture chewing 

and swallowing sounds, wrist-
worn band with accelerometer 

and gyroscope 

Emphasis was given to the hardware 
system and the captured signals, but 

not on signal processing itself. 

Mirtchouk and 
Kleinberg [32] 

2021 
6 subjects for 6 h in a total of 59 h of 

data 

Gain insight on dietary activity, 
namely chews per minute and causes 

for food choices 

Custom earbud with 2 
microphones—one in-ear and 

one external 

SVDKL uses a deep neural network 
and multiple Gaussian Processes, one 

per feature, to do multiclass 
classification. 

Rouast and 
Adam [33] 

2021 
Two datasets of annotated intake 

gestures—OREBA [26] and 
Clemson University 

A single stage approach which 
directly decodes the probabilities 

learned from sensor data into sparse 
intake detection—eating and 

drinking 

Video and inertial data 

Deep neural network with weakly 
supervised training using 

Connectionist Temporal Classification 
loss and decoding using an extended 

prefix beam search decoding 
algorithm. 

Fuchs et al. [34] 2020 
10,035 labeled product image 

instances created by the authors 
Detection of diet related activities to 

support health food choices 
Mixed reality headset-mounted 

cameras 

Comparison of several neural networks 
were performed based on object 

detection and classification accuracy. 

Heremans et al. 
[35] 

2020 

16 subjects for training, and 37 
healthy control subjects and 73 

patients with functional dyspepsia 
for testing 

Automatic food intake detection 
through dynamic analysis of heart 

rate variability  
Electrocardiogram ANN with leave-one-out. 

Hossain et al. 
[36] 

2020 
15,343 images (2127 food images 

and 13,216 not food images) 
Target and classify images as 

food/not food 
Wearable egocentric camera 

CNN based image classifier in a Cortex 
M7 microcontroller. 

Rachakonda et 
al. [37] 

2020 
1000 images obtained from 

copyright-free sources—800 used 
for training and 200 for testing 

Focus on eating behavior of users, 
detect normal eating and stress 

eating, create awareness about its 
food intake behaviors 

Camera mounted on glasses 

Machine learning models to 
automatically classify the food from 
the plate, automatic object detection 

from plate, and automatic calorie 
quantification. 
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Sundarramurthi 
et al. [38] 

2020 
Food101 dataset [39] (101,000 

images with 101 food categories) 
Develop a GUI-based interactive tool  Mobile device camera 

Convolutional Neural Network for 
food image classification and detection. 

Ye et al. [40] 2020 COCO2017 dataset [41] 
A method for food smart recognition 
and automatic dietary assessment on 

a mobile device 
Mobile device camera Mask R-CNN. 

Farooq et al. 
[42] 

2019 40 participants 
Create an automatic ingestion 

monitor 

Automatic ingestion monitor—
hand gesture sensor used on the 

dominant hand, piezoelectric 
strain sensor, and a data 

collection module 

Neural network classifier. 

Johnson et al. 
[43] 

2019 
25 min of data divided into 30 s 
segments, while eating, shaving, 

and brushing teeth 

Development of a wearable sensor 
system for detection of food 

consumption 

Two wireless battery-powered 
sensor assemblies, each with 

sensors on the wrist and upper 
arm. Each unit has 9-axis 

inertial measurement units with 
accelerometer, magnetometer, 

and gyroscope 

Machine learning to reduce false 
positive eating detection after the use 
of a Kalman filter to detect position of 

hand relative to the mouth. 

Konstantinidis 
et al. [44] 

2019 
85 videos with people eating from a 

side view 
Detect food bite instances accurately, 

robustly, and automatically 
Cameras to capture body and 

face motion videos 

Deep network to extract human motion 
features from video sequences. A two-

steam deep network is proposed to 
process body and face motion, together 

with the data form the first deep 
network to take advantage of both 
types of features simultaneously. 

Kumari et al. 
[45] 

2019 
30 diabetic persons to confirm 

glucose levels with a glucometer 

Regulate glycemic index through 
calculation of food size, chewing 

style and swallow time 

Acoustic sensor in trachea using 
MEMS technology 

Deep belief network with Belief Net 
and Restricted Boltzmann Machine 

combined. 

Park et al. [46] 2019 
4000 food images by taking pictures 
of dishes in restaurants and Internet 

search 

Develop Korean food image 
detection and recognition model for 
use in mobile devices for accurate 

estimation of dietary intake 

Camera 

Training with TensorFlow machine 
learning framework with a batch size 

of 64. Authors present a deep 
convolutional neural network—K-

foodNet. 
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Qiu et al. [47] 2019 
360 videos and COCO dataset to 

train mask R-CNN 

Dietary intake on shared food 
scenarios—detection of subject’s 

face, hands and food 

Video camera (Samsung gear 
360) 

Mask R-CNN to detect food class, 
bounding box indicating the location 
and segmentation mask of each food 

item. Predicted food masks could 
presumably be used to calculate food 

volume. 

Raju et al. [48] 2019 
Two datasets (food and no food) 

with 1600 images each 

Minimization of number of images 
needed to be processed either by 

human or computer vision algorithm 
for food image analysis 

Automatic Ingestion Monitor 
2.0 with camera mounted on 

glasses frame 

Image processing techniques—lens 
barrel distortion, image sharpness 

analysis, and face detection and 
blurring. 

Turan et al. [49] 2018 
O participants, 4 male and 4 female, 

22–29 years old 
Detection of ingestion sounds, 

namely swallowing and chewing 
Throat microphone with IC 

recorder 

Captured sounds are transformed into 
spectrograms using short-time Fourier 

transforms and use Convolutional 
Neural network for food intake 

classification problem. 

Wan et al. [50] 2018 
300 types of Chinese food and 101 
kinds of western food from food-

101 

Identify the ingredients of the food 
to determine if diet is healthy 

Digital camera 
p-faster R-CNN based on Faster-CNN 

with Zeiler and Fergus model and 
Caffe network. 

Lee [51] 2017 10 participants with 6 types of food 
Food intake monitoring, estimating 

the processes of chewing and 
swallowing 

Acoustic Doppler sonar 

Analysis of the jaw and its vibration 
pattern depending on type of food, 
feature extraction and classification 
with an Artificial Neural Network. 

Nguyen et al. 
[52] 

2017 10 participants in a lab environment 
Calculate the number of swallows in 
food intake to calculate caloric values 

Wearable necklace with 
piezoelectric sensors, 

accelerometer, gyroscope and 
magnetometer 

A recurrent neural network 
framework, named SwallowNet, 

detects swallows on continuous data 
steam after being trained with raw data 

using automated feature learning 
methods. 

Papapanagiotou 
et al. [53] 

2017 60 h semi-free living dataset 
Design a convolutional neural 
network for chewing detection 

In-ear microphone 

1-dimensional convolutional neural 
network. Authors also present results 

from leave-one-subject-out with 
fusion+ (acoustic and inertial sensors) 
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Farooq et al. 
[54] 

2016 
120 meals, 4 visits of 30 

participants, from which 104 meals 
were analyzed 

Automatic measurement of chewing 
count and chewing rate 

Piezoelectric sensor to capture 
lower jaw motion 

ANN machine learning to classify 
epochs as chewing or not chewing. 

Epochs were derived from sensor data 
processing. 

Farooq et al. 
[55] 

2014 
30 subjects (5 were left out) in a 4-

visit experiment 
Automatic detection of food intake 

Electroglottograph, PS3Eye 
camera and miniature throat 

microphone 

Three-layer feed-forward neural 
network trained by the back 

propagation algorithm, neural network 
toolbox of Matlab. 

Dong et al. [56] 2013 
3 subjects, one female and two 

males 

Development of a system for 
wireless and wearable diet 

monitoring system to detect solid 
and liquid swallow events based on 

breathing cycles 

Piezoelectric respiratory belt 
Machine learning for feature extraction 

and selection. 

Pouladzadeh et 
al. [57] 

2013 
Over 200 images of food, 100 for 
training set and another 100 for 

testing set 

Measurement and record of food 
calorie intake  

Built-in camera of mobile device 

Image processing using color 
segmentation, k-means clustering and 
texture segmentation to separate food 

items. Food portion identification 
through SVM and calorific value of 

food using nutritional table. 
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3. Results 
As presented in Figure 1, 26,369 papers were identified from the selected scientific 

databases. As this search used an NLP framework, 4011 papers were excluded as dupli-
cated, 8229 were marked as ineligible, and 13,387 were removed by the automatic analysis 
of the metadata, resulting in 751 papers to be analyzed. After analyzing them by title and 
abstract, 133 papers were excluded by the study’s type and 18 by other keywords in the 
title and abstract. Next, the studies related to image/video processing were excluded, re-
sulting in the exclusion of 13 papers. Following the remaining studies, 2 studies not asso-
ciated with human analysis were also excluded, and 555 other studies were excluded after 
complete analysis because their purpose is not directly related to the main subject of this 
study. Finally, the remaining 30 research papers were synthesized and included in the 
qualitative and quantitative analysis. 

 
Figure 1. A flow diagram of the paper selection. 

Presentation of the Selected Studies 
Following the analysis of the 30 studies, the relevant data were extracted and pre-

sented in Table 1. The search performed for this systematic review consists of the finding 
of papers published between 2010, and 2021, where eight studies (27%) were published in 
2021, six studies (20%) in 2020, seven studies (27%) in 2019, two studies (7%) in 2018, three 
studies (10%) in 2017, one study (3%) in 2016, one study (3%) in 2014, and two studies 
(7%) in 2016. Regarding the sensors used, seventeen studies (57%) used/acquired im-
age/video data, eight studies (27%) used inertial sensors, eight studies (27%) used acoustic 
sensors, four studies (13%) used piezoelectric sensors, and other residual sensors were 
used, including electrocardiography sensors, electroglottography sensors, temperature, 
interbeat intervals, dermal activity, photoplethysmography, heart rate, and flex sensor. 
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Detecting chewing activities is challenging due to the daily movements of the head, 
mouth, and facial expressions. The studies analyzed in this paper differ in the sensors 
used, mainly falling into two categories: worn sensors and images captured of the room 
or the participant itself. In data processing, a pattern can be easily seen using neural net-
works in several forms, namely deep learning, for feature extraction. The dataset assumes 
particular importance in such scenarios, and some works provide too little information. 
This section presents an augmented approach to the information gathered. 

Authors of [56] employ a wearable system based on a piezo-respiratory belt that con-
verts changes in tension during breathing into a voltage signal. With this sensor, the au-
thors present a structure to detect food and liquid intake through a person’s swallowing 
events. Dataset is unspecified primarily in this work, with authors stating that several 
signal segments were used from different human subjects on an SVM (Support Vector 
Machine) using a two-stage approach. In the first stage, the authors achieved a true posi-
tive rate higher than 82.9% and a false-positive lower than 1.9%. In the second stage, the 
accuracy ranged from 88% to 73.33%. 

An SVM-based approach is also employed in [57], using a participant’s mobile de-
vice’s built-in camera to capture images fed to an SVM classifier using the RBF (Radial 
Basis Function) kernel. The participant uses the mobile device to photograph the plate 
before eating and at the end. The algorithm can extract features such as shape, color, size, 
and texture based on food image processing. The authors used a dataset of 200 images, 
half for training and half for testing, reaching an accuracy of around 92%. This accuracy 
is obtained using all image feature processing—color, texture, size, and shape. The au-
thors provide detailed results for 30 food items using different features combined. The 
average using all features results in 92.21% accuracy. 

A unique approach to food detection in terms of the sensor is presented in [55], using 
an electroglottograph (EGG) device, which detects the passage of food through electrical 
impedance variations on the larynx, helped by a PS3Eye camera to capture video of the 
participants. Another sensor was used in the form of a miniature throat microphone (MIC) 
placed over the laryngopharynx to capture swallow sounds. Data was collected through 
the participation of thirty individuals, with five left out. The experiment consisted of a 4-
visit scenario involving the consumption of meals with self-selected content. Artificial 
Neural Networks were trained with subject-independent classifiers to identify periods of 
food intake from the wavelet features. The processes of training, validation, and testing 
were performed using the Neural network toolbox from Matlab R2011b. In terms of re-
sults for food intake recognition, leave-one-out cross-validation results showed average 
accuracies of 90.1% with a standard deviation of 8.5% for EGG and 83.1% with a standard 
deviation of 10.8% for the MIC model. 

In what can be seen as the continuation of the previous work, in [54], a piezoelectric 
sensor system captures lower jaw motion and automatically measures chewing count and 
chewing rate. By placing a sensor under the participant’s ear, the vibration of the surface 
to which the sensor is attached creates strain within the piezo polymer material, generat-
ing a voltage. The dataset is very similar, with 30 participants with two different ap-
proaches in a total of 104 meals (16 were considered failed). Experiments were also cap-
tured on video with a Sony PS3Eye camera to validate time-synchronized sensor signals. 
Two approaches were used, a semi-automatic and a fully automatic method. In a semi-
automatic process, histogram-based peak detection was used to count the number of 
chews in manually annotated chewing segments, resulting in a mean absolute error of 
10.40% ± 7.03%. In the fully automatic approach, automatic food intake detection preceded 
the application of the chew counting algorithm. The sensor signal was divided into 5-s 
non-overlapping epochs. Chewing frequency was found to be in the range of 0.94 to 2 Hz, 
which with 5 s epochs can translate to multiple chewing and not chewing events inside a 
given epoch. Authors classify the epoch as chewing if at least half of the samples inside 
the epoch were considered as from chewing. However, this situation typically occurs only 
at the end of chewing sequences. Artificial neural network training was performed with a 
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backpropagation algorithm on the three layers’ feed-forwarding architecture. The layers 
were defined as 38 neurons on the input layer for each feature, 5 neurons on the hidden 
(second) layer, and finally, the output layer with a single output neuron to indicate the 
predictor output class as chewing or not-chewing. Not chewing can be multiple events, 
such as the absence of chewing, rest, speech, and motion artifacts. Leave-one-out cross-
validation was used to train an artificial neural network (ANN) to classify epochs as “food 
intake” or “no intake”, with an average F1-score of 91.09%. Chews were counted in epochs 
classified as food intake with a mean absolute error of 15.01% ± 11.06%. 

A Recurrent Neural Network named SwallowNet is presented in [52]. Through a 
wearable necklace that comprises two piezoelectric sensors vertically positioned around 
the neck and an inertial motion unit with an accelerometer, gyroscope, and magnetome-
ter, the authors calculate the number of swallows in food intake to detect the calorie intake 
of a person. Ten participants were used in this study that defined a recurrent neural net-
work to see swallows in a continuous data stream after being trained purely from raw 
data using automated feature learning methods. An f-score of 76.07% versus 66.6% in the 
leave-one-out subject out cross-validation (LOSOCV) and a root mean square error 
(RMSE) of 3.34 in swallow count. 

Authors of [51] present an approach using an acoustic doppler sonar for food intake 
monitoring, namely chewing and swallowing. The dataset comprised 10 participants with 
six different types of food, where the movement of the jaw and its vibration pattern differ 
depending on the type of food consumed. Using an artificial neural feature, extraction and 
classification are performed. The experimental results showed that the proposed method 
obtained maximum recognition rates of 91.4% and 78.4% for chewing and swallowing, 
respectively. 

In [53] authors used an in-ear microphone to enable eating behavior monitoring. Us-
ing a 1-dimension convolutional neural network and 60 h of the semi-free-living dataset, 
the authors present results with only acoustic signal and fusion of acoustic and inertial 
sensors, leaving one subject out approach (fusion+ LOSO), thus enabling comparison. Re-
sults show that the presented approach with a 5-s input window achieves 0.89 precision 
and 0.92 recall, with 0.95 weighted accuracy, which proves to be better than fusion+. 

To detect the ingestion sounds, namely swallowing and chewing, the authors of [49] 
used a throat microphone (iASUS NT3) using a Sony IC recorder at 44.1 KHz. The dataset 
comprised tracheal data recordings of 8 subjects (4 male and 4 female) between 22 and 29 
years old. Authors used Convolutional Neural Networks to learn time-frequency features 
for food intake classification problems, define event detection systems and define spec-
trograms for food intake events. Experiments with a 2-fold cross-validation protocol 
achieved 0.792 precision, 0.752 recall, and 0.771 accuracy, which is higher than leave-one-
subject-out. 

By using a camera to identify the kinds and ingredients of food to determine whether 
a given diet is healthy, the authors of [50] present an approach based on a p-Faster R-
CNN. They are using 300 types of Chinese food and 100 kinds of food in food-101 datasets, 
achieving an AP of over 0.7 in all considered food types. Authors compare results between 
faster R-CNN and p-Faster CNN in a tabular form, clearly proving the approach’s supe-
riority in the specified scenarios. 

The work presented in [42] aims the creation of an automatic ingestion monitor (AIM) 
using a neural network classifier. The AIM uses a hand gesture sensor on the dominant 
hand, a piezoelectric strain sensor, and a data collection module. The system captured 
data from 40 participants using a neural network classifier. Results presented in the paper 
state that, for activity annotation, the raters achieved an average kappa value of 0.74 with 
a standard deviation of 0.02 and for food intake annotation average kappa was 0.82 with a 
standard deviation of 0.04. Kappa was defined as Cohen’s kappa-based inter-rater reliabil-
ity testing as presented in Equation (1). 
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𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝𝑘𝑘 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎)−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑒𝑒)
1−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑒𝑒)

  (1) 

The Prob(a) and Prob(e) values represent the probability of observed and expected 
agreement, respectively. Kappa results in a value between −1 and 1, where zero or negative 
value denotes no agreement, a value between 0.6 and 0.8 satisfactory agreement, and over 
0.8 indicate perfect agreement. 

In [43], the authors present a prototype wearable food intake monitoring system con-
sisting of a wrist band and an upper arm band, with 9-axis inertial motion sensors through 
an accelerometer, magnetometer, and gyroscope. The dataset comprised 25 min of data 
divided into 30 s segments while eating, shaving, and brushing teeth. The authors used 
machine learning to reduce false-positive eating detection after using a Kalman filter to 
detect the position of the hand relative to the mouth. 

An approach based on video capture is presented in [44], where 85 videos with peo-
ple eating from a side-view perspective were used. Authors extract human motion fea-
tures from the recorded video sequences through a deep network. A two-stream deep 
network is proposed to process body and face motion, together with the first deep net-
work to take advantage of both features. Experimental results show an f-score of 0.9173, 
with a precision of 0.9175 and a recall of 0.9171. 

An approach for glycemic index regulation through the calculation of food size, swal-
lowing style, and consumption time can be found in [45]. The authors used a dataset from 
30 diabetic persons to confirm glucose levels with a glucometer. Using MEMS technology, 
an acoustic sensor is placed on the trachea, and data is fed to a deep belief network with 
Belief Net and Restricted Boltzmann Machine combined. The authors searched for masti-
cation level analysis, detecting chewing and swallowing, without chewing and drinking, 
and finally only saliva swallow, presenting signal graphs of each occurrence type. The 
authors presented various analyses of different signals collected while the subject is chew-
ing different kinds of food. Among other things, they provide the signal waveform of the 
acoustic signal produced while eating 10 g of solid food for 10 s. The authors proved that 
chewing and swallowing styles can affect glycemic index in participants with more than 
four years of the diabetic condition. 

In [46], an image-based approach for food image detection and recognition for Ko-
rean food is presented. The dataset comprised 4000 images obtained from restaurants and 
internet searches. The authors used a digital camera to capture images fed into a deep 
learning convolutional neural network—K-foodNet. The training process used Tensor-
Flow with a batch size of 64. Results of K-foodNet point to a 91.3% accuracy and a predic-
tion time of 0.42 ms, which, compared to other approaches, fares very favorably. The authors 
also present results for AlexaNet, GoogleNet, VGG-19, and ResNet-18 in a table. 

The authors of [47] presented a dietary intake on shared food scenarios, though de-
tection of the subject’s face, hands, and food based on images. A dataset of 360 videos and 
a COCO dataset to train a mask R-CNN. R-CNN detects food class, the bounding box 
indicating each food item’s location, and the segmentation mask. The authors argued that 
it can be possible to calculate food volume based on food masks. Results are presented for 
two scenarios—2 participants sharing a pizza and 3 participants sharing multiple food 
items. A table is presented with results, with the authors considering them satisfactory. 

The paper [48] presents an approach based on a camera mounted on a glasses frame 
named Automatic Ingestion Monitor 2.0. Two datasets of 1600 images each were used, 
one with the presence of food and another without any food. The system aims to minimize 
the number of analyzed images needed to be processed either by a human operator or a 
computer vision algorithm for food image analysis. Several image processing techniques 
were used: lens barrel distortion, image sharpness analysis, and face detection blurring. 

A mixed reality headset with cameras is used to detect diet-related activities and sup-
port healthy choices proposed in [34]. Using automatic vending machines, the authors 
used 10,035 labeled product image instances of their creation in a real-world environment. 
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A comparison of several approaches based on neural networks is presented with the as-
sociated results. The authors concluded that MR headsets can be effectively used in an 
Internet-of-People scenario that helps the user make healthier food choices more effec-
tively than a smartphone-based approach. 

In [35], the authors presented a different approach in terms of sensors to capture data 
by employing an Electrocardiogram (ECG) device to register heart rate variability. Two 
datasets were used, the first with 16 participants to train the artificial neural network with 
the leave-one-subject-out method, and the second with ECG recordings from 37 healthy 
control participants and 73 patients with functional dyspepsia. The authors experimented 
with two major cross-validation approaches—leave-one-subject-out and leave-one-sub-
ject-out leave-one-out (LOSO-LOO). For LOSO, the mean accuracy was 0.83, the mean 
sensitivity was 0.51, and the mean specificity was 0.89. With LOSO-LOO, the ANN 
reached maximal accuracy with 2-min epochs at 0.93 and 0.79 and a mean sensitivity of 
0.79. Also, the mean specificity increased to 0.97. 

Another image-based approach for food detection can be found in [36], using the 
AIM 2.0 monitor with the CNN-based image classifier implemented on the CortexM7 con-
troller instead of a computer. The dataset comprised 15,343 images (2127 food and 12,216 
not food). A detailed description of the implementation of the CNN-based image classifier 
in the CortexM7 is given in the paper. The proposed model achieves an accuracy of 75% and 
an F-score of 74% in testing, demonstrating great promise in real-time image classification. 

The main objective of [38] is to design and develop a GUI-based interactive tool ca-
pable of identifying the type of food with good efficiency. The authors achieved 96.81% 
accuracy using a CNN for image classification and detection. The dataset Food101 is used, 
with 101,000 images of 101 food categories. Images are captured by the user using a mobile 
phone camera and fed to the system for classification. 

In another approach of a glasses-mounted camera, the authors of [37] present a sys-
tem that can not only monitor but also create user awareness about how much food is too 
much. The iLog system provides information on a person’s emotional state and the clas-
sification of eating behaviors from everyday eating to stress-eating. The model was 
trained with 800 images and tested with 200. The iLog model has produced an overall 
accuracy of 98% with an average precision of 85.8%. The quantified foods are then com-
pared to the stored database of the user nutrition in Firebase, providing feedback using a 
mobile application interface. 

A mobile device camera is also used in [40], with a mask R-CNN for smart food 
recognition and automatic dietary assessment. The authors used the COCO2017 dataset 
with several food items. Results include classification error rates for ten types of food. 
Error rates range from 0.23 for a sandwich to 9.86 for broccoli. The authors also presented 
classification accuracy based on the plate contents—fast food, fruit, salad, and dessert, 
with an average value of 0.875. 

The work of [23] presents a multiple sensor array system with temperature, interbeat 
intervals, dermal activity, photoplethysmography, heart rate (on the first dataset), and a 
wristband 9-axis inertial motion measurement units (using the second dataset). The focus 
is on data fusion using a deep residual network to gain a more comprehensive insight into 
human activity dynamics. The authors considered the statistical dependency of multisen-
sory data and explored intramodality correlation patterns for different activities. In terms 
of the dataset, two scenarios were considered. The first shows data from three days of 
wristband device use by a single person. The second is an open dataset of 10 individuals 
performing 186 activities (mobility, eating, personal hygiene, and housework). A compre-
hensive table is presented with results of the deep learning classifier performance with an 
F1-score of 0.80335, an accuracy of 0.95083, and a precision of 0.80355. 

In [24], an array of sensors is mounted on a glasses frame—a camera, accelerometer, 
and flex sensor in contact with the temporalis muscle. The dataset comprises 30 volunteers 
using the system for 24 h in pseudo-free living and 24 h in a free-living environment. The 
authors used an SVM model to detect food intake through data fusion between the 
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accelerometer and flex sensor. The camera was used to capture data every 15 s and vali-
date sensor fusion decisions, thus was not used on the SVM model. The AIM-2 detected 
food intake over 10-s epochs with a (mean and standard deviation) F1-score of 81.8 ± 
10.1%. The accuracy of eating episode detection was 82.7%. 

In [25], the authors used data fusion for automatic food intake gesture detection, but 
without any sensors. The paper focuses on processing video and inertial data using deep 
learning, with a dataset of 100 participants consuming food in discrete portions (OREBA-
DIS) and 102 participants while consuming a communal dish (OREBA-SHA). The authors 
employed a fusion of inertial and video data with several deep learning techniques. On 
the OREBA-DIS dataset, the max score fusion approach obtained an F1 of 0.871, while 
individual video obtained an F1-Score of 0.855 and inertial even lower with an F1-Score 
of 0.806. However, with the OREBA-SHA dataset, the max score fusion approach only 
obtained an F1-Score of 0.873, while the individual inertial model obtained 0.895. Pairwise 
comparisons using bootstrapped samples confirm the statistical significance of these dif-
ferences in model performance were conducted with pairwise comparisons using boot-
strapped samples, resulting in p < 0.001. 

An approach based on inertial sensors present on some smartwatches—accelerome-
ter and gyroscope can be found in [27]. The authors employed CNN for feature extraction 
and an LSTM network to model temporal evolution. Both parts are jointly trained by min-
imizing a single loss function. The FIC, FreeFIC, and FreeFIC held-out datasets contain 
data related to triaxial acceleration and orientation velocity signals. The authors presented 
a complete framework for automated modeling of in-meal eating behavior and temporal 
localization of meals. Results are presented for both datasets, FIC and FreeFIC, in a tabular 
form with time in seconds for mean, standard deviation, median, total, and the total num-
ber of hours in terms of meal sessions and food intake cycles. 

Lee et al. [30] presented an approach based on ultrasonic doppler shifts to detect 
chewing events and a camera placed on the user’s neck to capture images. Eight partici-
pants were involved in noise environments, and a Markov hidden model recognizer was 
used to maximize swallow detection accuracy. A linear regression model was also used 
to find a relation between chewing counts and food intake. CNN was used for feature 
extraction to recognize food items based on the camera images. Results are presented 
based on the mean absolute percentage error metric, with signal-to-noise ratio infor-
mation on several scenarios in tabular form. 

A body area network of sensors is presented in [31], encompassing a camera on the 
user’s chest with a system hub, phones with an added microphone and dedicated hard-
ware to capture chewing and swallowing sounds, and a wrist-worn band with an accel-
erometer and gyroscope. Emphasis is given to the system hardware and data acquisition, 
not data processing. The system was provided to some students, and some pictures of 
them using the prototype are on the paper. 

In [32], the authors present a custom earbud with two microphones—one in-ear and 
the other external to gain insight on dietary activity, namely chews per minute and causes 
for food choices. A total of 6 participants used the system for 6 h in 59 h of collected data. 
The processing uses a deep neural network and multiple Gaussian processes per feature 
to perform multiclass classification. Regarding results, on laboratory data with ground 
truth, chewing detection recall was 84%, intake 78%, and drinking 88%. 

Finally, in [33], the authors used video and inertial sensor data with two datasets of 
annotated intake gestures—OREBA and Clemson. The work aims to present a single-stage 
approach that directly decodes the probabilities learned from sensor data into sparse in-
take detection for eating and drinking. A deep neural network with weakly supervised 
training using Connectionist Temporal Classification loss and decoding using an ex-
tended prefix beam search decoding algorithm. The single-stage models present improve-
ments of 3.3% and 17.7% over the author’s implementations of SOTA for inertial and video 
modalities, respectively. 
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4. Discussion 
4.1. Interpretation of the Results 

As seen from the literature analysis presented in Section 3, most studies use a two-
layer approach—a sensor array to capture data and a neural network-based processing 
scheme. Three major categories were identified in terms of sensors (Figure 2 presents the 
sensors used in the literature surveyed)—cameras, acoustic and inertial. Cameras detect 
food contents and food intake, acoustic sensors capture chewing sounds, and inertial sen-
sors capture positional data. Cameras are studied in two scenarios: user-worn and room 
surveillance. The latter can prove to be very intimidating and costly since it should be 
placed in every room where the user uses to eat. However, it can monitor several people’s 
eating without needing individual sensors, such as for several family members in a shared 
food scenario. Regarding placement, acoustic and inertial sensors are typically body-worn 
devices, whereas some workers used microphones on the participants’ necks to detect 
chewing sounds. Inertial sensors, such as those in a smartwatch, can provide meaningful 
information about the participant’s hand position and gesture recognition. Finally, some 
research works go even as far as fusing data from multiple categories. 

 
Figure 2. The relation between sensors and the number of studies. 

Focusing on the selected studies, Figure 2 presents the number of studies using dif-
ferent sensors. One can see the dominance of cameras, mainly because convolutional neu-
ral networks work very well with feature extraction over images, and cameras are easy to 
integrate and obtain, namely using a smartphone and asking the user to take a picture of 
the plate. However, in such a scenario, the system is still dependent on user input, which 
may lead to the user forgetting to take pictures of everything he eats. 

Regarding the methods explored (Figure 3), convolutional neural networks are the 
primary and most implemented method (ten studies). The second most used method is 
deep neural networks (seven studies), followed by support vector machines and artificial 
neural networks (four studies) and Markov hidden models (2 studies). 
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Figure 3. The relation between methodology and the number of studies. 

4.2. Comparison of the Different Studies Analyzed 
Table 2 shows the relationship between the sensors employed and the methodology 

used for the studies. This table was created by analyzing each article and identifying 
which sensors were explicitly mentioned in the study and which methods were applied. 
The heterogeneity of the approaches clearly states that this is still a research topic for 
which standard approaches do not exist. The coexistence of multiple sensor data streams 
can be beneficial by using data fusion, but only if the user is present with a seamless solu-
tion. As stated previously, in terms of sensors placed on the participant, comfort (and 
convenience) must prioritize to motivate its use. 

If there seems to be discord on sensors, in terms of methodologies, the span is not so 
great. Neural network-based approaches dominate, which is the current trend in many 
research areas. Deep learning, convolutional neural networks, and support vector ma-
chines are the most used methods. 
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Table 2. The relation between methodologies and the sensors used. 
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Bahador et al. [23]             X X X  X              
Doulah et al. [24] X     X      X      X             
Heydarian et al. 

[25] 
     X           X              

Kyritsis et al. [27] X X              X            X  X 
Lee [30]           X     X           X    

Mamud et al. [31] X X     X                        
Mirtchouk and 
Kleinberg [32] 

      X          X            X  

Rouast and Adam 
[33] 

     X           X              

Fuchs et al. [34]      X X                        
Heremans et al. 

[35]          X         X            

Hossain et al. [36]      X          X               
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Rachakonda et al. 
[37] 

     X                         

Sundarramurthi 
et al. [38]      X          X               

Ye et al. [40]      X          X               
Farooq et al. [42]   X      X        X              
Johnson et al. [43] X X  X              X             
Konstantinidis et 

al. [44]      X           X              

Kumari et al. [45]       X                  X X     
Park et al. [46]                X        X       
Qiu et al. [47]      X          X               
Raju et al. [48]      X                         

Turan et al. [49]       X         X       X        
Wan et al. [50]      X          X               

Lee [51]       X                        
Nguyen et al. [52] X X X X                  X         
Papapanagiotou 

et al. [53] 
     X X         X               

Farooq et al. [54]   X                X            
Farooq et al. [55]     X X           X  X        X    
Dong et al. [56]        X          X  X X          
Pouladzadeh et 

al. [57] 
     X            X             
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4.3. Answers to Identified Research Questions 
There are multiple advantages to using sensors for food intake detection. These days, 

people have increased their attention regarding nutritious and healthy living due to the 
recent pandemic crisis that forced increased time spent at home. Calories and other nutri-
ents can be tracked by logging the type and weight of food intake and further processing 
these data. However, sensors are essential in overcoming the error and intrusiveness of a 
food logging system in the user routine. 

The main findings from the 34 studies identified by this review are as follows. Con-
cerning RQ1, “What sensors can be used to access food intake moments effectively?” sen-
sors explored in the studies analyzed fall into the three categories: camera, inertial and 
acoustic type. Integrating data acquired from several sensors can improve the accuracy of 
individual sensors [23,25]. One can also equate using fixed cameras on a stationary sce-
nario in a room. However, the authors of this study believe that cameras are more useful 
for nutrient and meal size detection than food intake detection, which is a topic out of the 
scope of this article. A plate picture does not imply that the participant will ingest all that 
food and thus incur imprecisions. Inertial sensors can effectively detect if a person is eat-
ing by analyzing data from a wristband. Acoustic sensors present a challenge in place-
ment, which may be critical for performance, with works focusing on neck positioning to 
increase sensibility. 

Regarding RQ2, “What can be done in terms of seamless integration of such sensors 
in daily lives?”, a system must be devised that integrates such sensors in a manner that 
the user feels at ease with. Substituting a watch for a smartwatch can be an easy adaptation 
but placing sensors in the neck is not so much. Certain works further try adapting glasses 
frames to include sensors [24,37,48]. The authors of this study consider that comfort must 
be the main design criteria for the sensor array. A user may easily consider using a wrist-
band or a smartwatch to an entire sensor array with a central unit, camera, wristband and 
acoustic sensor tied to a necklace. 

Finally, related to RQ3, “What processing must be done to achieve a good accuracy?”, 
the data gathering process must be easy to reproduce. Regarding the smartwatch example 
and heart rate sensor, manufacturers present an ideal position of the watch to increase 
sensor effectiveness. Such a scenario can also be present in these works, namely when 
considering taking pictures and capturing sounds. Calibration can also be needed (factory 
or user-initiated). As a result, data capture itself presents a challenge. Considering the data 
is good enough, processing points to neural networks-based approaches, as shown previ-
ously. Most works rely on a personal computer or cloud-based computing for processing, 
but at least one is running the processing on a mobile phone [57]. Strangely enough, it is 
also one of the oldest works analyzed in this study, so a possibility for further processing, 
namely using TensorFlow Lite by Google for mobile and edge devices. 

4.4. Research Opportunities 
The works identified to focus on sensors and data processing but provide no insights 

into participant emotions. Many studies are done in a controlled environment in a lab or 
a room, where participants are invited to consume one or more meals while wearing de-
vices. One of the significant research opportunities can be the perceived acceptance of the 
participants in wearing such systems daily. Comfort must be the primary design criteria 
for these sensor systems, or they will fail. 

In terms of using cameras, how does the participant feel about being surveyed re-
garding their daily activities? Privacy is more of a concern in the digital world, so that 
studies could be done on user perception on these sensitive matters. 

Many works employ machine learning, deep learning, and neural networks. Alt-
hough the results are auspicious, no approach reaches 100% accuracy. What can be added 
to the current strategies to increase accuracy or automatically detect false positives and 
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negatives? Sensor fusion has already been explored, but even so, the 100% mark is 
unachievable. 

5. Conclusions 
This article has systematically reviewed sensors and automated approaches for de-

tecting food intake episodes. A total of 30 papers matched the inclusion criteria and were 
included in the quantitative and qualitative analysis. The existence of these exciting pa-
pers shows that the use of sensors for the detection of food intake episodes is an exciting 
field. However, this research is currently open, and new opportunities can be developed 
around it to help people to have good nutrition and physical activity habits. 

This review highlights the most used sensors and detection methodologies, including 
artificial intelligence techniques based on previous developments. In future work, the use 
of the sensors must be explored, and a mobile system for detecting food episodes may 
help individuals have rules to maintain a healthy nutrition lifestyle. 

Is the food detection topic closed? As the results show, the answer is complex, it is 
still a very ongoing subject, and no work attained 100% accuracy. However, the authors 
are going further to achieve a personalized nutrition experience. More than detecting food 
intake, they aim to detect what is effectively ingested and its influence on health. Many 
challenges arise from this primary goal, from data gathering to processing, storage and 
retrieval, nutritional model, and motivation. 
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