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Abstract: Traditional grey wolf optimizers (GWOs) have difficulty balancing convergence and
diversity when used for multimodal optimization problems (MMOPs), resulting in low-quality
solutions and slow convergence. To address these drawbacks of GWOs, a fuzzy strategy grey wolf
optimizer (FSGWO) is proposed in this paper. Binary joint normal distribution is used as a fuzzy
method to realize the adaptive adjustment of the control parameters of the FSGWO. Next, the fuzzy
mutation operator and the fuzzy crossover operator are designed to generate new individuals based
on the fuzzy control parameters. Moreover, a noninferior selection strategy is employed to update
the grey wolf population, which makes the entire population available for estimating the location of
the optimal solution. Finally, the FSGWO is verified on 30 test functions of IEEE CEC2014 and five
engineering application problems. Comparing FSGWO with state-of-the-art competitive algorithms,
the results show that FSGWO is superior. Specifically, for the 50D test functions of CEC2014, the
average calculation accuracy of FSGWO is 33.63%, 46.45%, 62.94%, 64.99%, and 59.82% higher than
those of the equilibrium optimizer algorithm, modified particle swarm optimization, original GWO,
hybrid particle swarm optimization and GWO, and selective opposition-based GWO, respectively.
For the 30D and 50D test functions of CEC2014, the results of the Wilcoxon signed-rank test show
that FSGWO is better than the competitive algorithms.

Keywords: multimodal optimization problems; grey wolf optimizer; fuzzy search direction; fuzzy
crossover operator; binary joint normal distribution

1. Introduction

Many complex optimization problems in industrial applications have multiple global
optimal solutions or near-optimal solutions that provide decision-makers with different
decision preferences, and such problems are often referred to as multimodal optimization
problems (MMOPs) [1]. Air service network design is an example of a MMOP, which
requires all feasible routes to transport goods to the destination; if the current route cannot
be executed due to weather conditions, an alternative route with a similar cost can be
selected from the feasible routes to transport goods [2]. Other examples of MMOPs include
structural damage detection [3], image segmentation [4], flight control systems [5], job
shop scheduling [6], truss structure optimization [7], protein structure prediction [8], and
electromagnetic design [9]. Most MMOPs are nonconvex and nonlinear; classical numerical
optimization methods are sensitive to nonconvexity and nonlinearity, so they encounter
difficulties in solving MMOPs. In contrast, evolutionary algorithms are not sensitive to the
nonconvexity and nonlinearity of optimization problems and have been widely used to
solve MMOPs, such as genetic algorithms [10], evolutionary algorithms [11], particle swarm
optimization [12], ant colony optimization [13], cuckoo search algorithms [14], memetic al-
gorithms [15], niching chaos optimization [16], grey wolf optimization [17], harmony search
algorithms [18], fireworks algorithms [19], and gravitational search algorithms [20]. Among
these evolutionary algorithms for solving MMOPs, grey wolf optimizers (GWOs) have the
advantages of easy implementation and requiring few parameters [21]. Moreover, GWOs
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use three leading wolves to guide the search and more easily escape local optima, making
GWOs competitive for solving MMOPs [22–24]. Because the solution space of MMOPs is
very complex, GWOs have difficulty balancing convergence and diversity [25,26], so GWOs
cannot easily estimate the position of the optimal solution, and the obtained solutions are
relatively poor [27]. To address these drawbacks of GWOs, many improved variants of
GWOs have been developed, which can be divided into two categories. The first category
is to improve the control parameters of GWOs. GWOs have two control parameters, a and
C; the former is a linearly attenuated search step, and the latter is the neighborhood radius
coefficient, both of which can be used to control the diversity and convergence of GWOs.
In [28–31], methods such as nonlinear functions and chaotic sequences are proposed to
construct parameter a, which further enhances the diversity of individuals and improves
the ability of GWOs to bounce from local optima. In most GWOs, a and C are treated as
independent parameters, while the opinion presented in [32] is that they are related, and a
method to calculate C with a is proposed, which further enhances the diversity of GWOs.
The second category is to design new individual update strategies. Individual update
strategies, such as Levy flight [33,34], Cauchy operator [35], opposition-based learning [36],
refraction learning [37], and chaotic opposition-based approaches [38], can make some
individuals in the population change greatly, thereby increasing the diversity of GWOs. Up-
date strategies of other evolutionary algorithms, such as the whale optimization algorithm
(WOA) [39], covariance matrix adaptation-evolution strategy (CMA-ES) [40], minimum
conflict algorithm (MCA) [41], and grasshopper optimization algorithm (GOA) [42], are
applied to improve the individual update strategies of GWOs and can also effectively
improve the diversity and convergence of GWOs.

By using GWOs to solve MMOPs, the convergence speed and quality of solutions
must be further improved, and there are three main reasons for these defects. (i) The
absolute value operation in the search direction leads to the loss of negative signs in some
dimensions, resulting in an incorrect search and affecting the speed of convergence. (ii) The
new individuals of GWOs are mutated in all dimensions, which is a phenomenon of search
divergence and affects the convergence and quality of solutions. (iii) GWOs allow worse
new individuals to be updated into the population, resulting in the population being
unable to effectively estimate the region where the optimal solution is located and reducing
the convergence speed of the algorithm. To address these drawbacks of GWOs, a fuzzy
strategy grey wolf optimizer (FSGWO) for MMOPs is proposed in this paper. The role
of the fuzzy strategy is to automatically adjust the control parameters of the algorithm
to realize the adaptive balance of diversity and convergence. By using fuzzy control pa-
rameters, new evolutionary operations are designed to increase the algorithm’s abilities
to explore new regions and local search, and to improve the quality of the solutions to
MMOPs. The main contributions of this paper are as follows: (i) A new grey wolf individ-
ual update strategy is proposed. First, both global and local search information is added
to the fuzzy search direction, which is used to guide individual mutation and enhance
the individual’s ability to detect the optimal solution. Second, the fuzzy cross-operator
is applied to generate new individuals and avoid the mutation of new individuals in all
dimensions, which is a method to control the phenomenon of individual search divergence.
Finally, a noninferior selection strategy is employed to update the population, allowing
only better new individuals to be updated into the population, which improves the ability
of the grey wolf population to estimate the location of the optimal solution and helps
accelerate the convergence. (ii) Binary joint normal distribution is used as a fuzzy method
to realize the adaptive adjustment of the control parameters of FSGWO. The two control
parameters of the FSGWO are considered to have an intrinsic correlation, which is mod-
eled by a binary joint normal distribution. In the iterative process, the parameters of the
binary joint normal distribution method are adaptively updated with information about
the current optimal solutions to automatically control the convergence speed. (iii) The
FSGWO is verified on the 30 30D and 50D test functions of IEEE CEC2014 and five engi-
neering application problems and compared with state-of-the-art competitive algorithms.
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The results show that the proposed algorithm has advantages over competitive algorithms
in solving MMOPs, and the proposed improvement ideas are feasible for balancing the
diversity and convergence of traditional GWOs. Specifically, for the 50D test functions of
CEC2014, the average calculation accuracy of FSGWO is 33.63%, 46.45%, 62.94%, 64.99%,
and 59.82% higher than those of the equilibrium optimizer algorithm (EO), modified par-
ticle swarm optimization (MPSO), original GWO, hybrid particle swarm optimization
and grey wolf optimizer (HPSOGWO), and selective opposition-based GWO (SOGWO),
respectively, which indicates that the FSGWO can significantly improve the calculation
accuracy when solving high-dimensional MMOPs. For the 30D and 50D test functions of
CEC2014, the results of the Wilcoxon signed-rank test show that the proposed algorithm is
better than the competitive algorithms.

The remainder of this paper is arranged as follows: Section 2 introduces the principle
of the original GWO. Section 3 provides the key details and the flowchart of FSGWO.
Section 4 presents the experimental results, and Section 5 is the discussion. Finally, Section 6
summarizes the study.

2. Related Work
2.1. Algorithm Flow of the Original Grey Wolf Optimizer

The grey wolf population is denoted by X = {X1, X2, . . . , XM}, where M is the number
of grey wolves. Xp is an individual in X. In the original GWO [21], the three best solutions
appearing in the iterative process are called the three leading wolves and are denoted by
Xα, Xβ, and Xδ. The three leading wolves are used to guide grey wolf individuals to round
up prey, which is also known as updating individuals.

The search direction Dα from Xp to Xα is calculated as

Dα =
∣∣C1 � Xα − Xp

∣∣ (1)

where C1 is the neighborhood radius, which is a random vector between (0, 2). The operator
� represents the vector dot product operation. C1 � Xα is a neighborhood point of Xα. The
operator |·| is an absolute value operator.

A mutant individual of Xp generated by Xα is written as

X1 = Xα − A1 � Dα (2)

where A1 is the search step, which is a random vector between (−2, 2).
Similarly, a mutant individual of Xp generated by Xβ can be presented as

X2 = Xβ − A2 � Dβ (3)

where Dβ = |C2 � Xβ − Xp| is the search direction. C2 is a random vector between (0, 2),
and A2 is a random vector between (−2, 2).

In the same way, a mutant individual of Xp generated by Xδ is

X3 = Xδ − A3 � Dδ (4)

where Dδ = |C3 � Xδ − Xp| is the search direction. C3 is a random vector between (0, 2),
and A3 is a random vector between (−2, 2).

The new individual Xu, generated from the above three mutant individuals, can be
expressed as

Xu =
X1 + X2 + X3

3
(5)

Finally, Xp in X is replaced with Xu, completing the update of the individual Xp.
This update strategy of GWO has two drawbacks. (i) Compared with Xp, all di-

mensions of Xu are mutated, which leads to divergence when solving high-dimensional
MMOPs and reduces the quality of solutions. (ii) Moreover, GWO uses only three leading
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wolves as heuristic information to guide individuals to search for the optimal solution. The
distribution of the optimal solutions of MMOPs is more complex, and the three leading
wolves cannot quickly estimate the region of the optimal solution; thus, the algorithm
slowly converges.

The pseudocode of the original GWO algorithm is shown in Algorithm 1.

Algorithm 1. Pseudocode of the original GWO algorithm [21].

Initialize the grey wolf population Xi (i = 1, 2, . . . , M)
Initialize a, A, and C
Calculate the fitness of each search agent
Xα = the best search agent
Xβ = the second-best search agent
Xδ = the third-best search agent
while (t < Max number of iterations)

for each search agent
Update the position of Xi

end for
Update a, A, and C
Calculate the fitness of all search agents
Update Xα, Xβ, and Xδ

t = t + 1
end while
return Xα

2.2. Fuzzy Adaptive Control Parameters

For GWOs, the design of adaptive control parameters is a challenge. In [28–31],
nonlinear functions are used to design adaptive control parameters for GWOs, but such
adaptive parameters are not effective in solving MMOPs, and the quality of the obtained
solutions is not high. The main reason for this result is that the nonlinear function cannot
know the complexity of the solution space of MMOPs and cannot use the current iteration
information to estimate the position of the optimal solution.

In recent studies, fuzzy methods have been used to address the issues of adaptive
control parameters of evolutionary algorithms. To achieve an optimal balance of exploita-
tion and exploration in the chicken swarm optimization algorithm [43], the fuzzy system is
applied to adaptively adjust the number of chickens and random factors. In [44], the fuzzy
system is used for the design of the crossover rate control parameter of the differential
evolution algorithm, which improves the diversity of the population. In [45], the fuzzy
inference system is employed to automatically tune the control parameters of the whale
optimization algorithm, which improves the convergence of the algorithm. The common
feature of these fuzzy methods is updating the control parameters with the information of
the optimal solution in the current iteration.

Fuzzy methods provide new ideas for the design of adaptive control parameters for
GWOs. Inspired by this, in this study, bivariate joint normal distribution is used as a fuzzy
method to design adaptive control parameters of GWO and new evolutionary operators
are designed based on these fuzzy control parameters. Finally, the improved GWO is
employed to solve MMOPs.

3. The Proposed Algorithm

The flowchart of the FSGWO is shown in Figure 1. The algorithm parameters and
population are initialized first; the fitness of each individual in the initial population is
calculated, and the three individuals with the best fitness values are selected as the three
initial leading wolves. In the iterative part of the algorithm, new control parameters are
obtained by sampling the binary joint normal distribution, and then a new individual Xu
is generated through mutation and crossover operations. If Xu is better than Xp, Xp is
replaced with Xu; otherwise, it is not replaced. Finally, the parameters of the bivariate
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joint normal distribution are adaptively updated and the algorithm continues to the next
iteration. After the end of the iterations, the best leader wolf is taken as the optimal solution
and output.

Figure 1. Flowchart of FSGWO.

The key points of the FSGWO are described below.

3.1. Mutation Strategy with a Fuzzy Search Direction

The mutation of the grey wolf is realized by adding a fuzzy search direction to the
grey wolf. The term fuzzy search direction refers to the product of the fuzzy step ra and the
search direction Dc, and its calculation method is described as follows.

First, three leading wolves are used to estimate the current position Xc of the prey, and
Xc is given by

Xc =
Xα + Xβ + Xδ

3
(6)

The fuzzy search direction of Xp is defined as

Dc =
(
Xc − Xp

)
+
(
Xp1 − Xp2

)
(7)

where Xp1 and Xp2 are two individuals randomly selected in X, and Xp 6= Xp1 6= Xp2. The
expression Xc − Xp represents the search information from Xp to the prey, which belongs to
the global search information. The expression Xp1 − Xp2 represents the search information
between individuals and belongs to the local search information.
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There are three differences between Equation (7) and Equation (1). (i) Equation (7)
has no absolute value operator and retains the heuristic effect of negative signs on the
search. (ii) In the early stage of iterations, the positions of the three leading wolves are
generally scattered. Therefore, Equation (7) uses the average value of the three leading
wolves to estimate the position of the prey, which can reduce the adverse effects caused by
the dispersion of guiding positions and help accelerate the convergence. (iii) Grey wolves
have the habit of hunting collectively and surround the prey by exchanging information
on the location of their prey. Equation (7) uses Xp1 − Xp2 to realize the exchange of prey
location information between grey wolves, but there is no method for exchanging prey
location information between grey wolves in Equation (1).

The mutant individual Xν of Xp is generated by the fuzzy search direction, written as

Xν = Xp + ra � Dc (8)

where ra is the fuzzy step, which is a random vector between (0, 1). ra is a control parameter
of FSGWO, and its generation method is described later. The expression ra � Dc represents
the fuzzy search direction, which is the product of the fuzzy step ra and the search direction
Dc. The expression Xp + ra � Dc starts from Xp and searches for prey in the fuzzy search
direction of ra � Dc.

3.2. Fuzzy Crossover Operator

All dimensions of Xν are mutated. To make the search stable, selecting the values on
some dimensions from Xν and then copying them into the corresponding dimensions of
Xu is necessary. This is achieved by a fuzzy crossover operator. The term fuzzy crossover
operator refers to a crossover operator that uses the fuzzy crossover factor rb.

The term j is denoted as the jth dimension of Xp and Xν. The crossover operation on
the jth dimension can be expressed by

X j
u =

{
X j

v, if r ≥ rj
b

X j
p, else

(9)

where rb is the fuzzy crossover factor, which is a random vector between (0, 1). rj
b is the

value in the jth dimension of rb. r is a random number (scalar) that follows the standard
uniform distribution. The expression r ≥ rj

b indicates that the value of the jth dimension of
Xν is copied to the jth dimension of Xu using the roulette strategy.

After completing the operation of Equation (9), a dimension w is randomly specified,
and then the mutation operation Xω

u = Xω
y is performed to generate a new individual Xu.

The term fuzzy control parameter means that control parameters ra and rb are not
directly related in formulas, but they can affect the diversity and the convergence of
FSGWO, and there is an inherent fuzzy correlation between ra and rb. Therefore, these two
control parameters are related in this paper, and a bivariate joint normal distribution is
used to describe that fuzzy relationship. The expression rj

c = [rj
a, rj

b] is a binary variable,

where rj
a and rj

b are values on the jth dimension of ra and rb, respectively. rj
c follows a binary

joint normal distribution with a mean of µ and a covariance of ∑, denoted as

rj
c ∼ N(µ, Σ) (10)

where u = [ura, urb], ura and urb are both scalars. The covariance matrix ∑ is defined as

Σ =

[
s1 × s2 0

0 s1 × s3

]
(11)

where s1 is a random number (scalar) following the standard uniform distribution. The
terms s2 and s3 are random numbers (scalars) following the standard normal distribution.
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The values of s2 and s3 obtained by sampling the standard normal distribution may be
greater than 1, so the diagonal elements of ∑ have diversity, which makes rj

c also have
diversity.

By sampling Equation (10), a matrix rc with d rows and two columns can be obtained
as follows:

rc =


r1

c
r2

c
...

rd
c

 =
[

ra rb
]
=


r1

a r1
b

r2
a r2

b
...

...
rd

a rd
b

 (12)

where d is the dimensionality of the MMOPs. The terms ra and rb are fuzzily related by
Equation (10), so the crossover operation of Equation (9) is referred to as the fuzzy crossover
operation. The control parameters in rc can be used by a d-dimensional individual in a
complete mutation and crossover operation.

3.3. Updated Parameters of the Bivariate Joint Normal Distribution

To improve the diversity of ra and rb, it is necessary to update µ and ∑ before each
iteration of FSGWO.

3.3.1. Update of µ

Updating µ with a fuzzy perturbation is described as follows.
Xp before and after the update is denoted by Xold

p and Xnew
p , respectively. The fitness

values of Xold
p and Xnew

p are denoted by f (Xold
p ) and f (Xnew

p ), respectively. The absolute
value |f (Xold

p ) − f (Xnew
p )| represents the change rate of the fitness value before and after

the update of Xp. In population X, the individual with the largest |f (Xold
p ) − f (Xnew

p )| is
denoted by Xm, where m is the ID of Xm. Xm can be written as

Xm = argmax
Xp∈X

∣∣∣ f(Xold
p

)
− f

(
Xnew

p

)∣∣∣ (13)

The control parameters of Xm are stored in the mth row of rc, denoted by rm
c = [rm

a ,rm
b ].

rm
c can be regarded as heuristic information for updating µ, namely, fuzzy perturbation.

Updating µ with rm
c can be written as

µ = (1 − c) × µ + c × rm
c (14)

where c is a conversion factor, which is a constant between (0, 1). The expression c × rm
c

takes part of rm
c as heuristic information to update µ. To avoid excessive perturbation and

cause the algorithm to diverge, c is usually 0.1 or 0.2.

3.3.2. Update of ∑
The updated method of ∑ is relatively simple. First, s1 is obtained by sampling the

standard uniform distribution; s2 and s3 are sampled via the standard normal distribution.
Finally, a new ∑ can be obtained by substituting s1, s2, and s3 into Equation (11).

3.4. Steps of FSGWO

The steps of FSGWO are shown in Algorithm 2.
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Algorithm 2. Steps of the FSGWO algorithm.

Input: grey wolf population size M, maximum number of iterations T, dimension d of the
problem, upper bound ub and lower bound lb of variables.

Output: optimal solution Xα.

1: Initialize the wolf population X, parameters c, µ, and ∑.
2: Calculate the fitness value of f (Xp) for each grey wolf. The fitness of the entire population is

denoted by f (Xold). f (Xnew) = f (Xold).
3: Initialize the three leading wolves Xα, Xβ, and Xδ.
4: for t = 1 to T
4.1: Generate the control parameters matrix rc with Equation (12).
4.2: for p = 1 to M
4.2.1: Generate the new mutant individual Xν with Equation (8).
4.2.2: Generate Xu with Equation (9); then randomly specify a dimension ω, and perform a

crossover operation Xω
u = Xω

ν to produce a new individual Xu.
4.2.3: Calculate the fitness value f (Xu) of Xu.
4.2.4: If f (Xu) < f (Xp) Xp = Xu. In f (Xnew), f (Xp) = f (Xu). End if
4.2.5: End for
4.3: According to f (Xnew), update Xα, Xβ, and Xδ.
4.4: Calculate Xm with Equation (13) and then obtain rm

c from rc. Update µ and ∑ with Equation
(14) and Equation (11).

4.5: f (Xold) = f (Xnew).
4.6: End for
5: Output optimal solution Xα.

Some details of the algorithm steps in Algorithm 2 are described below.

(i) In step 1, the initial value of µ is [0.5, 0.5], and the initial value of ∑ is [0.1, 0; 0, 0.1]. The
value of c is 0.1 or 0.2, which means taking 10% or 20% of rm

c as a fuzzy perturbation.
(ii) In step 4.1, the values of the elements in rc, which are sampled from the binary joint

normal distribution N(µ, ∑), may be out of (0, 1); the element’s value is corrected to
0.999 if it crosses the upper bound or 0.001 if it crosses the lower bound.

(iii) In steps 4.2.1 and 4.2.2, the value of each element in Xν and Xu is between [lb, ub];
if the value of an element exceeds the upper bound, it is corrected to rand × ub, or
rand × lb if the value of an element exceeds the lower bound, where rand is a random
number following a standard uniform distribution.

(iv) In step 4.4, the value of the element in µ is between (0, 1); if the value of an element in
µ exceeds the upper bound, it is corrected to 0.99, or 0.01 if the value of an element
exceeds the lower bound.

(v) Comparing the FSGWO algorithm flow in Algorithm 2 with the original GWO algo-
rithm flow in Algorithm 1 shows that the operations lacking in Algorithm 1 mainly
include fuzzy control parameters in step 4.1, the fuzzy crossover operation in step 3,
noninferior selection in step 4.2.4, and fuzzy perturbation in step 4.4.

3.5. Analysis of Computational Complexity

M is the population size, d is the dimension of the problem, and T is the number
of iterations.

According to the algorithm steps shown in Algorithm 2, the computational cost
of FSGWO is concentrated in the iterative part. The computational cost of an itera-
tion mainly includes the population mutant of O(M × d), the population crossover of
O(M × d), the calculation of population fitness of O(M), an update of the leading wolfs
of O(M), and an update of parameters of O(1). The computational cost of T iterations is
O(T × (M × d + M × d + M + M + 1)). Therefore, the computational complexity of FSGWO
is O(T ×M × d).

According to the algorithm steps shown in Algorithm 1, the computational cost of
the original GWO is concentrated in the iterative part. The computational cost of an



Sensors 2022, 22, 6420 9 of 38

iteration mainly includes the population mutant guided by the three leading wolves of
O(M × d + M × d + M × d), the calculation of the population fitness of O(M), an update of
the leading wolfs of O(M), and an update of the parameters of O(1). The computational cost
of T iterations is O(T × (3 ×M × d + 2 ×M + 1)). Therefore, the computational complexity
of the original GWO is O(T ×M × d).

According to the above analysis, the computational complexity of FSGWO is the same
as that of GWO.

4. Results

In this section, the FSGWO algorithm is verified on 30 test functions of IEEE CEC2014 [46]
and 5 engineering application problems.

The compared algorithms include GWO [21], HPSOGWO [47], SOGWO [36], EO [48],
and MPSO [49]. GWO is the original GWO. HPSOGWO is an improved GWO with a
particle swarm individual update strategy. SOGWO uses selective opposition to enhance
the diversity of GWO, and the convergence speed is faster. EO is inspired by control volume
mass balance models used to estimate both dynamic and equilibrium states. MPSO is a
particle swarm optimization algorithm using chaotic nonlinear inertia weights and has a
good balance of diversity and convergence.

The key parameters of the competitive algorithms are shown in Table 1, and the
computer source codes of those algorithms were provided by the original papers. The
parameter values of the competition algorithm were taken from the original paper and the
default settings of the source codes. The setting method of the control parameter values of
FSGWO is described in Algorithm 2. In Table 1, N is the population size, which is uniformly
taken as 50 in this paper. In EO, a1 is a constant value that controls exploration ability and
a2 is a constant value used to manage exploitation ability; GP is a parameter used to balance
exploration and exploitation. In MPSO, c1 and c2 are referred to as the acceleration factors;
ω1 and ω2 are inertia weights used to balance exploration and exploitation. In GWO,
parameter a is the neighborhood radius. In HPSOGWO, rand is a random number between
(0, 1) and ω is an inertia weight. In SOGWO, parameter a is the neighborhood radius. In
FSGWO, c is a conversion factor between (0, 1); ra and rb are adaptive control parameters.

Table 1. Key parameters of the competitive algorithms.

Algorithm Parameters

EO N = 50, a1 = 2, a2 = 1, GP = 0.5
MPSO N = 50, w1 = 0.9, w2 = 0.4, c1 = 2, c2 = 2
GWO N = 50, a = 2

HPSOGWO N = 50, w = 0.5 + rand
SOGWO N = 50, a = 2
FSGWO N = 50, c = 0.2, rj

c= [rj
a, rj

b] ~ N(µ, ∑)

4.1. Results of the Test Functions of CEC2014

The IEEE Congress on Evolutionary Computation 2014 (CEC2014) test suite had
30 complex optimization functions [46], where F1–F3 were unimodal functions and F4–F30
were multimodal functions. In this paper, the proposed algorithm was verified on 30 complex
functions (F1–F30) of CEC2014. According to the requirements of the competition, the value
range of each dimension decision variable was [−100, 100], and the maximum number of
computations of the fitness function was d*104. The experiment was repeated 51 times. The
absolute value |f (x)− f (x*)| was the final result of a calculation, where f (x) was the optimal
value of the function obtained by the algorithm, and f (x*) was the theoretical optimal value
of the function. The smaller the value of |f (x) − f (x*)| was, the closer the optimal value
obtained by the algorithm was to the theoretical optimal value. If |f (x) − f (x*)| < 10−8, the
calculation result was 0.
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4.1.1. Results of 30-Dimensional Test Functions

Table 2 shows the calculation results of the related algorithms, in which the mean
(Mean) and standard deviation (STD) of the index were calculated using the results of
51 runs of each algorithm. In Table 2, the optimal mean and standard deviation for each
function are highlighted with a bold font and gray background.

Table 2. Results of the related algorithms for 30-dimensional test functions.

Function Index EO MPSO GWO HPSOGWO SOGWO FSGWO

F1
Mean 4.30e + 05 6.80e + 06 5.05e + 07 4.01e + 07 3.43e + 07 3.29e + 03
STD 2.80e + 05 7.50e + 06 4.11e + 07 6.88e + 07 2.36e + 07 3.46e + 03

F2
Mean 6.31e − 01 5.91e + 07 1.26e + 09 1.77e + 09 3.79e + 08 0.00e + 00
STD 7.96e − 01 1.72e + 08 1.07e + 09 5.18e + 09 5.15e + 08 0.00e + 00

F3
Mean 8.97e + 00 2.36e + 03 3.11e + 04 3.26e + 04 2.28e + 04 0.00e + 00
STD 9.08e + 00 3.23e + 03 9.49e + 03 3.33e + 04 9.80e + 03 0.00e + 00

F4
Mean 3.75e + 01 6.79e + 01 2.11e + 02 3.21e + 02 1.84e + 02 0.00e + 00
STD 4.27e + 01 3.08e + 01 5.54e + 01 5.24e + 02 4.45e + 01 0.00e + 00

F5
Mean 2.04e + 01 2.08e + 01 2.09e + 01 2.08e + 01 2.09e + 01 2.00e + 01
STD 1.25e − 01 9.25e − 02 5.86e − 02 2.94e − 01 5.46e − 02 3.28e − 03

F6
Mean 7.35e + 00 1.29e + 01 1.29e + 01 1.48e + 01 1.11e + 01 8.33e + 00
STD 2.58e + 00 2.76e + 00 2.79e + 00 7.42e + 00 3.16e + 00 3.57e + 00

F7
Mean 5.36e − 03 8.34e − 03 1.41e + 01 6.93e + 00 6.70e + 00 7.86e − 03
STD 8.73e − 03 1.43e − 02 1.20e + 01 1.30e + 01 4.77e + 00 1.21e − 02

F8
Mean 4.60e + 01 3.64e + 01 7.28e + 01 8.03e + 01 6.45e + 01 0.00e + 00
STD 1.04e + 01 1.15e + 01 1.62e + 01 3.57e + 01 1.69e + 01 0.00e + 00

F9
Mean 8.84e + 01 6.99e + 01 9.19e + 01 9.65e + 01 8.34e + 01 3.71e + 01
STD 2.74e + 01 1.83e + 01 2.37e + 01 6.92e + 01 1.57e + 01 8.27e + 00

F10
Mean 1.56e + 03 9.51e + 02 2.19e + 03 2.64e + 03 1.90e + 03 1.35e + 01
STD 5.46e + 02 4.86e + 02 6.26e + 02 1.25e + 03 5.31e + 02 3.73e + 00

F11
Mean 3.26e + 03 2.93e + 03 2.73e + 03 3.64e + 03 2.67e + 03 1.98e + 03
STD 7.43e + 02 6.43e + 02 6.29e + 02 1.67e + 03 7.22e + 02 3.09e + 02

F12
Mean 9.18e − 01 4.82e − 01 1.64e + 00 1.40e + 00 2.23e + 00 1.84e − 01
STD 3.90e − 01 2.51e − 01 1.08e + 00 1.17e + 00 7.53e − 01 3.67e − 02

F13
Mean 2.19e − 01 4.90e − 01 3.89e − 01 4.47e − 01 3.33e − 01 2.78e − 01
STD 6.95e − 02 1.10e − 01 1.87e − 01 2.79e − 01 6.63e − 02 6.68e − 02

F14
Mean 2.55e − 01 4.47e − 01 2.26e + 00 3.31e + 00 9.11e − 01 2.10e − 01
STD 1.10e − 01 1.96e − 01 4.25e + 00 8.81e + 00 2.24e + 00 4.68e − 02

F15
Mean 4.48e + 00 7.28e + 00 5.38e + 01 1.55e + 04 2.88e + 01 4.89e + 00
STD 1.27e + 00 3.12e + 00 1.07e + 02 9.43e + 04 5.52e + 01 1.31e + 00

F16
Mean 1.11e + 01 1.21e + 01 1.10e + 01 1.17e + 01 1.08e + 01 1.03e + 01
STD 8.75e − 01 5.60e − 01 7.16e − 01 1.07e + 00 7.09e − 01 3.73e − 01

F17
Mean 1.87e + 05 2.24e + 04 1.43e + 06 9.24e + 05 8.78e + 05 2.32e + 03
STD 1.27e + 05 2.40e + 04 1.81e + 06 9.99e + 05 8.59e + 05 4.37e + 03

F18
Mean 2.85e + 03 5.40e + 02 7.14e + 06 1.79e + 06 3.95e + 06 7.26e + 01
STD 4.01e + 03 5.91e + 02 1.95e + 07 7.19e + 06 1.45e + 07 3.08e + 01

F19
Mean 9.13e + 00 8.14e + 00 3.87e + 01 4.43e + 01 2.06e + 01 3.95e + 00
STD 1.16e + 01 8.81e + 00 2.53e + 01 5.07e + 01 1.39e + 01 1.13e + 00

F20
Mean 3.55e + 02 2.77e + 02 1.52e + 04 1.45e + 04 1.05e + 04 5.73e + 01
STD 1.19e + 02 1.97e + 02 1.06e + 04 2.03e + 04 5.75e + 03 3.14e + 01

F21
Mean 8.76e + 04 2.10e + 04 7.68e + 05 8.95e + 05 3.03e + 05 4.10e + 02
STD 8.12e + 04 4.71e + 04 1.46e + 06 1.74e + 06 3.25e + 05 2.49e + 02

F22
Mean 3.31e + 02 4.15e + 02 3.39e + 02 4.93e + 02 2.97e + 02 1.44e + 02
STD 1.53e + 02 1.76e + 02 1.47e + 02 2.60e + 02 1.12e + 02 7.41e + 01
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Table 2. Cont.

Function Index EO MPSO GWO HPSOGWO SOGWO FSGWO

F23
Mean 3.15e + 02 3.15e + 02 3.32e + 02 3.41e + 02 3.28e + 02 3.15e + 02
STD 1.50e − 12 1.71e − 12 8.54e + 00 4.23e + 01 7.58e + 00 5.05e − 13

F24
Mean 2.00e + 02 2.00e + 02 2.00e + 02 2.38e + 02 2.00e + 02 2.31e + 02
STD 6.37e − 04 1.58e − 04 8.09e − 04 5.42e + 01 7.42e − 04 5.73e + 00

F25
Mean 2.01e + 02 2.00e + 02 2.10e + 02 2.11e + 02 2.10e + 02 2.08e + 02
STD 2.55e + 00 0.00e + 00 4.03e + 00 7.30e + 00 3.62e + 00 3.42e + 00

F26
Mean 1.30e + 02 1.25e + 02 1.30e + 02 1.44e + 02 1.34e + 02 1.06e + 02
STD 4.59e + 01 4.22e + 01 4.58e + 01 4.96e + 01 4.74e + 01 2.37e + 01

F27
Mean 5.09e + 02 6.21e + 02 6.24e + 02 7.63e + 02 6.01e + 02 4.51e + 02
STD 6.92e + 01 1.74e + 02 1.20e + 02 2.23e + 02 8.60e + 01 7.28e + 01

F28
Mean 9.71e + 02 1.14e + 03 1.05e + 03 1.38e + 03 9.22e + 02 7.07e + 02
STD 1.43e + 02 2.69e + 02 2.46e + 02 6.95e + 02 1.08e + 02 1.05e + 02

F29
Mean 1.77e + 06 1.73e + 05 4.24e + 05 2.82e + 06 2.00e + 05 5.29e + 02
STD 3.62e + 06 1.22e + 06 1.94e + 06 5.32e + 06 1.25e + 06 1.62e + 02

F30
Mean 3.15e + 03 3.00e + 03 3.99e + 04 2.91e + 04 2.19e + 04 8.70e + 02
STD 9.36e + 02 1.13e + 03 2.88e + 04 4.56e + 04 1.27e + 04 2.32e + 02

From the mean results in Table 2, the calculated results of FSGWO on unimodal func-
tions F1–F3 were at least four orders of magnitude better than those of GWO, HPSOGWO,
and SOGWO. For the F1 function, the exponent of the result of FSGWO was e + 03, while
the exponents of the results of GWO, HPSOGWO, and SOGWO were all e + 07. For the F2
function, the exponent of the result of FSGWO was e + 00, while the exponents of the results
of GWO, HPSOGWO, and SOGWO were e + 09, e + 09, and e + 08. For the F3 function, the
exponent of the result of FSGWO was e + 00, while the exponents of the results of GWO,
HPSOGWO, and SOGWO were all e + 04. The results of the unimodal function show that
FSGWO had excellent local optimization ability.

From the mean in Table 2, it can be seen that the calculation results of the proposed
algorithm for 24 functions (F1–F5, F8–F12, F14, F16–F23, and F26–F30) were better than
those of the competitive algorithms, accounting for 80.0%, which indicates that FSGWO
could obtain high-quality solutions for MMOPs.

From the STD in Table 2, it can be seen that the results of the proposed algorithm for
23 functions (F1–F5, F8–F12, F14, F16–F23, F26, and F28–F30) were better than those of the
competitive algorithms, accounting for 76.7%, which indicates that the FSGWO algorithm
had good stability and convergence.

The mean results in Table 2 were analyzed by the Wilcoxon signed-rank test, and
the significance level was 0.05. The results of the Wilcoxon test are shown in Table 3. In
Table 3, all p values were less than 0.05, which meant that the mean values of FSGWO were
significantly different from those of the other algorithms. The results of Tables 2 and 3 show
that the quality of solutions obtained by FSGWO was better than that of the competitive
algorithms for the 30 30D test functions.

Table 3. Results of the Wilcoxon test for the mean values in Table 2.

FSGWO v.s. EO MPSO GWO HPSOGWO SOGWO

p value 8.3606e − 05 9.4199e − 06 2.7389e − 06 9.1269e − 07 3.3270e − 06

According to the data in Table 2, the percentage of improvement in calculation accuracy
between FSGWO and each competing algorithm can be calculated, and the results are
shown in Table 4. In Table 4, a negative number means that the calculation accuracy of
FSGWO for this test function was not as good as that of the competitive algorithm and
the term Average represents the average percentage of improvement in the calculation
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accuracy of FSGWO over the competitive algorithm for the 30 test functions. Table 4 shows
that for the 30 30D test functions, the average calculation accuracy of FSGWO was 46.98%,
54.35%, 64.84%, 69.02%, and 62.27% higher than those of EO, MPSO, GWO, HPSOGWO,
and SOGWO, respectively. The calculation accuracy of FSGWO was significantly higher
than those of the competitive algorithms.

Table 4. Comparison of the calculation accuracy of related algorithms for 30 30D test functions.

FSGWO v.s. EO MPSO GWO HPSOGWO SOGWO

F1 0.99233 0.99951 0.99993 0.99991 0.9999
F2 1 1 1 1 1
F3 1 1 1 1 1
F4 1 1 1 1 1
F5 0.01935 0.03823 0.04495 0.03886 0.04480
F6 −0.13328 0.35274 0.35262 0.43869 0.25254
F7 −0.46719 0.05726 0.99944 0.99886 0.99882
F8 1 1 1 1 1
F9 0.57994 0.46875 0.59616 0.61525 0.55491
F10 0.99135 0.98582 0.99384 0.99488 0.99289
F11 0.39112 0.32372 0.27480 0.45486 0.25834
F12 0.79911 0.61698 0.88735 0.86818 0.91712
F13 −0.26746 0.43291 0.28450 0.37861 0.16395
F14 0.17936 0.53175 0.90744 0.93668 0.77010
F15 −0.09313 0.32768 0.90905 0.99968 0.83011
F16 0.07097 0.14846 0.06430 0.12162 0.04669
F17 0.98757 0.89615 0.99838 0.99748 0.99735
F18 0.97451 0.86556 0.99998 0.99995 0.99998
F19 0.56795 0.51507 0.89798 0.91101 0.80831
F20 0.83864 0.79354 0.99622 0.99604 0.99456
F21 0.99531 0.98043 0.99946 0.99954 0.99864
F22 0.56651 0.65413 0.57670 0.70879 0.51583
F23 0 0 0.05049 0.07450 0.03775
F24 −0.15584 −0.15584 −0.15584 0.02768 −0.15584
F25 −0.03369 −0.03851 0.01218 0.01622 0.00905
F26 0.18118 0.14955 0.18180 0.26123 0.20560
F27 0.11363 0.27257 0.27601 0.40817 0.24936
F28 0.27247 0.38170 0.32701 0.48875 0.23333
F29 0.99970 0.99695 0.99875 0.99981 0.99735
F30 0.72346 0.70966 0.97818 0.97013 0.96032

Average 0.4698 0.5435 0.6484 0.6902 0.6227

Figure 2 shows box plots of the related algorithms for the 30 test functions which
were drawn with 51 calculation results of related algorithms. In Figure 2, the short red
line represents the median; the black box represents the upper quartile (Q3) and the lower
quartile (Q1); and the blue solid prism represents an outlier.

For 27 functions (F1–F5, F7–F23, and F26–F30), the box length of FSGWO was shorter
than those of the competitive algorithms or comparable to them, which meant that the
proposed algorithm had good convergence; therefore, the results of 51 runs were relatively
concentrated, and the box length was shorter.

For 28 functions (F1–F23 and F26–F30), the median of the proposed algorithm was
smaller than those of the competitive algorithms or comparable to them, which indicated
that the proposed algorithm had good diversity and local optimization ability and could
find high-quality solutions.

For 28 functions (F1–F25 and F28–F30), the number of outliers of FSGWO was less
than those of the compared algorithms, or the outliers were mainly distributed around the
median, which indicated that the calculation results of FSGWO were close to the normal dis-
tribution, and the robustness of FSGWO was better than those of the compared algorithms.
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Figure 2. Cont.
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Figure 2. The box plots of the related algorithms for the 30-dimensional functions.
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Figure 3 shows the convergence curves of the related algorithms for the 30 30D test
functions, where the abscissa t is the number of iterations, and the ordinate f (x) is the
average fitness of 51 independent experiments of each algorithm.

Figure 3. Cont.
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Figure 3. Convergence curves of the related algorithms for the 30-dimensional functions.
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From the perspective of the changing tendencies of the convergence curves in the early
stage of the iterations, the fitness values of the proposed algorithm decreased faster than
those of the competitive algorithms for 29 functions (F1–F5 and F7–F30), which indicated
that FSGWO had good diversity and convergence and could quickly locate the optimal
solution in the early stage of the iterations.

From the overall change tendencies of the curves and the final convergence positions,
for the 25 functions (F1–F5, F8–F12, F14–F23, and F26–F30), the convergence curves of
FSGWO were better than those of the competitive algorithms.

4.1.2. Results of 50-Dimensional Test Functions

The IEEE CEC2014 test functions were set to 50 dimensions. Table 5 shows the
calculation results of the related algorithms for the 50-dimensional functions. In Table 5,
the optimal mean and standard deviation for each function are highlighted with a bold font
and gray background. As the dimensions increased, so did the complexity of the MMOPs.
For 23 functions (F1–F5, F7–F12, F14, F16–F18, F20–F23, F26, and F28–F30), the mean values
of FSGWO were better than those of the competitive algorithms, accounting for 76.7%.

Table 5. Results of the related algorithms for 50-dimensional functions.

Function Index EO MPSO GWO HPSOGWO SOGWO FSGWO

F1
Mean 1.32e + 06 1.80e + 07 8.42e + 07 4.34e + 07 6.77e + 07 2.66e + 04
STD 5.23e + 05 1.58e + 07 5.08e + 07 5.51e + 07 3.84e + 07 1.75e + 04

F2
Mean 7.35e + 03 1.72e + 09 7.67e + 09 5.63e + 09 4.14e + 09 4.16e − 05
STD 8.57e + 03 1.68e + 09 3.29e + 09 1.12e + 10 3.21e + 09 1.56e − 04

F3
Mean 8.80e + 02 6.43e + 03 5.82e + 04 4.92e + 04 4.72e + 04 1.14e − 02
STD 6.76e + 02 5.41e + 03 1.08e + 04 3.19e + 04 1.06e + 04 3.64e − 02

F4
Mean 8.15e + 01 2.11e + 02 7.64e + 02 5.68e + 02 4.50e + 02 8.76e + 00
STD 3.63e + 01 2.67e + 02 3.33e + 02 8.90e + 02 2.02e + 02 1.80e + 01

F5
Mean 2.05e + 01 2.11e + 01 2.11e + 01 2.10e + 01 2.11e + 01 2.00e + 01
STD 1.19e − 01 5.14e − 02 4.44e − 02 2.90e − 01 4.43e − 02 8.68e − 03

F6
Mean 2.06e + 01 3.00e + 01 2.98e + 01 2.81e + 01 2.62e + 01 2.37e + 01
STD 3.65e + 00 4.68e + 00 3.98e + 00 1.04e + 01 3.62e + 00 4.21e + 00

F7
Mean 7.04e − 03 8.68e − 03 7.85e + 01 5.64e + 01 4.17e + 01 6.42e − 03
STD 1.01e − 02 1.13e − 02 3.44e + 01 1.37e + 02 3.30e + 01 7.64e − 03

F8
Mean 1.28e + 02 6.97e + 01 1.88e + 02 1.75e + 02 1.69e + 02 0.00e + 00
STD 2.51e + 01 1.66e + 01 3.04e + 01 7.77e + 01 2.30e + 01 0.00e + 00

F9
Mean 1.63e + 02 1.50e + 02 2.02e + 02 2.62e + 02 1.82e + 02 1.03e + 02
STD 3.64e + 01 3.13e + 01 3.13e + 01 1.54e + 02 4.81e + 01 1.75e + 01

F10
Mean 3.67e + 03 2.13e + 03 5.70e + 03 6.37e + 03 5.02e + 03 2.74e + 01
STD 9.87e + 02 6.28e + 02 8.02e + 02 2.35e + 03 7.68e + 02 6.31e + 00

F11
Mean 6.66e + 03 5.88e + 03 5.70e + 03 6.46e + 03 5.27e + 03 4.33e + 03
STD 8.95e + 02 9.05e + 02 1.37e + 03 2.68e + 03 1.32e + 03 4.57e + 02

F12
Mean 1.49e + 00 4.53e − 01 1.92e + 00 1.88e + 00 2.55e + 00 1.86e − 01
STD 3.89e − 01 1.98e − 01 1.66e + 00 1.56e + 00 1.43e + 00 3.26e − 02

F13
Mean 4.42e − 01 5.85e − 01 7.46e − 01 8.03e − 01 5.92e − 01 4.69e − 01
STD 8.05e − 02 2.92e − 01 5.09e − 01 8.17e − 01 7.78e − 02 8.04e − 02

F14
Mean 2.98e − 01 4.13e − 01 1.48e + 01 8.34e + 00 4.40e + 00 2.88e − 01
STD 1.16e − 01 1.69e − 01 1.33e + 01 2.49e + 01 7.24e + 00 7.33e − 02

F15
Mean 1.15e + 01 2.57e + 01 1.65e + 03 4.39e + 03 5.33e + 02 2.44e + 01
STD 3.81e + 00 8.01e + 00 2.36e + 03 2.31e + 04 9.96e + 02 6.05e + 00

F16
Mean 2.02e + 01 2.16e + 01 2.00e + 01 2.09e + 01 1.98e + 01 1.88e + 01
STD 9.71e − 01 5.97e − 01 8.13e − 01 1.11e + 00 1.06e + 00 5.18e − 01
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Table 5. Cont.

Function Index EO MPSO GWO HPSOGWO SOGWO FSGWO

F17
Mean 2.58e + 05 3.75e + 05 4.55e + 06 1.97e + 06 3.00e + 06 4.68e + 04
STD 1.40e + 05 8.94e + 05 5.24e + 06 2.10e + 06 1.83e + 06 4.13e + 04

F18
Mean 2.53e + 03 1.72e + 03 6.52e + 07 8.26e + 07 2.77e + 07 4.84e + 02
STD 1.32e + 03 2.13e + 03 1.27e + 08 3.36e + 08 6.07e + 07 5.70e + 02

F19
Mean 1.73e + 01 2.56e + 01 8.25e + 01 7.04e + 01 7.35e + 01 2.57e + 01
STD 9.38e + 00 1.47e + 01 2.84e + 01 4.70e + 01 2.36e + 01 2.05e + 01

F20
Mean 5.69e + 02 5.51e + 02 1.51e + 04 1.86e + 04 1.01e + 04 2.76e + 02
STD 1.43e + 02 2.18e + 02 7.77e + 03 3.12e + 04 6.06e + 03 3.02e + 02

F21
Mean 1.76e + 05 1.79e + 05 2.62e + 06 1.77e + 06 2.18e + 06 1.96e + 04
STD 1.10e + 05 2.00e + 05 2.76e + 06 3.37e + 06 1.85e + 06 3.94e + 04

F22
Mean 8.33e + 02 1.11e + 03 8.07e + 02 9.67e + 02 7.23e + 02 4.59e + 02
STD 3.12e + 02 3.19e + 02 2.80e + 02 5.13e + 02 3.05e + 02 1.68e + 02

F23
Mean 3.45e + 02 3.45e + 02 4.37e + 02 3.94e + 02 4.15e + 02 3.44e + 02
STD 1.01e − 03 1.09e − 12 4.22e + 01 6.97e + 01 3.00e + 01 8.44e − 13

F24
Mean 2.01e + 02 2.20e + 02 2.01e + 02 2.63e + 02 2.00e + 02 2.86e + 02
STD 5.47e − 04 3.13e + 01 6.47e − 04 8.22e + 01 4.88e − 04 5.50e + 00

F25
Mean 2.00e + 02 2.01e + 02 2.27e + 02 2.27e + 02 2.23e + 02 2.28e + 02
STD 2.90e − 13 4.06e + 00 9.21e + 00 1.61e + 01 6.45e + 00 7.02e + 00

F26
Mean 1.80e + 02 1.91e + 02 1.88e + 02 1.94e + 02 1.80e + 02 1.04e + 02
STD 4.00e + 01 2.94e + 01 4.43e + 01 8.37e + 01 4.98e + 01 1.95e + 01

F27
Mean 8.55e + 02 1.20e + 03 1.06e + 03 1.17e + 03 9.35e + 02 9.67e + 02
STD 9.36e + 01 1.51e + 02 1.11e + 02 3.21e + 02 1.10e + 02 8.51e + 01

F28
Mean 1.57e + 03 2.32e + 03 2.18e + 03 2.51e + 03 1.88e + 03 1.53e + 03
STD 3.56e + 02 7.20e + 02 5.22e + 02 1.71e + 03 4.86e + 02 2.05e + 02

F29
Mean 1.71e + 07 2.25e + 06 4.98e + 06 2.12e + 07 1.07e + 06 9.36e + 02
STD 2.08e + 07 1.17e + 07 7.89e + 06 3.84e + 07 2.45e + 06 1.17e + 02

F30
Mean 1.12e + 04 2.25e + 04 1.44e + 05 6.35e + 04 1.01e + 05 1.09e + 04
STD 1.89e + 03 1.44e + 04 9.16e + 04 8.40e + 04 4.86e + 04 1.06e + 03

The Wilcoxon signed-rank test was used to analyze the mean values in Table 5,
with a significance level of 0.05. The results of the test are shown in Table 6. Table 6
shows that all p values were less than 0.05, which meant that the calculation results of
FSGWO for the 50-dimensional functions were significantly different from those of the
competitive algorithms.

Table 6. Results of the Wilcoxon test for the mean values of Table 5.

FSGWO v.s. EO MPSO GWO HPSOGWO SOGWO

p value 6.2062e−04 1.3587e − 05 4.0348e − 06 2.7389e − 06 1.4875e − 05

According to the data in Table 5, the percentage of improvement in calculation accuracy
between FSGWO and each competing algorithm can be calculated, and the results are
shown in Table 7. In Table 7, a negative number means that the calculation accuracy of
FSGWO for this test function was not as good as that of the competitive algorithm and the
term Average represents the average percentage of improvement in the calculation accuracy
of FSGWO over the competitive algorithm for 30 test functions. Table 7 shows that for the
30 50-dimensional test functions, the average calculation accuracy of FSGWO was 33.63%,
46.45%, 62.94%, 64.99%, and 59.82% higher than those of EO, MPSO, GWO, HPSOGWO,
and SOGWO, respectively. The calculation accuracy of FSGWO was significantly higher
than those of the competitive algorithms for the 50D test functions.
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Table 7. Comparison of the calculation accuracy of related algorithms for 30 50-D test functions.

FSGWO v.s. EO MPSO GWO HPSOGWO SOGWO

F1 0.97980 0.99851 0.99968 0.99938 0.99960
F2 0.99999 0.99999 0.99999 0.99999 0.99999
F3 0.99998 0.99999 0.99999 0.99999 0.99999
F4 0.89254 0.95845 0.98853 0.98457 0.98052
F5 0.02433 0.04952 0.05230 0.04873 0.05284
F6 −0.15302 0.21058 0.20577 0.15643 0.09618
F7 0.08817 0.25980 0.99991 0.99988 0.99984
F8 1 1 1 1 1
F9 0.36540 0.31038 0.48843 0.60660 0.43276
F10 0.99251 0.98709 0.99518 0.99569 0.99453
F11 0.34982 0.26415 0.24015 0.32972 0.17841
F12 0.87485 0.58948 0.90300 0.90099 0.92698
F13 −0.06079 0.19856 0.37149 0.41602 0.20706
F14 0.03271 0.30191 0.98054 0.96542 0.93453
F15 −1.12418 0.05005 0.98515 0.99442 0.95411
F16 0.06779 0.12730 0.05831 0.09673 0.04623
F17 0.81835 0.87511 0.98971 0.97621 0.98438
F18 0.80887 0.71945 0.99999 0.99999 0.99998
F19 −0.48750 −0.00178 0.68877 0.63547 0.65086
F20 0.51465 0.49930 0.98170 0.98517 0.97274
F21 0.88885 0.89059 0.99250 0.98892 0.99102
F22 0.44841 0.58529 0.43070 0.525 0.36459
F23 0 0 0.21257 0.12794 0.17198
F24 −0.42928 −0.30017 −0.42928 −0.08550 −0.42928
F25 −0.14177 −0.13853 −0.00643 −0.00486 −0.02340
F26 0.42134 0.45188 0.44399 0.46109 0.41925
F27 −0.13037 0.19254 0.08732 0.17541 −0.03359
F28 0.02665 0.34062 0.29742 0.38918 0.18338
F29 0.99994 0.99958 0.99981 0.99995 0.99912
F30 0.02232 0.51392 0.92418 0.82759 0.89163

Average 0.3363 0.4645 0.6294 0.6499 0.5982

Figure 4 shows the convergence curves of the related algorithms for the 50-dimensional
functions, which were plotted with an average of 51 calculations of each algorithm. From
the changing tendencies of the convergence curves and the final convergence positions,
the convergence tendencies of the proposed algorithm for 25 test functions (F1–F5, F7–F14,
F16–F18, F20–F23, and F26–F30) were better than those of the competitive algorithms.
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Figure 4. Cont.
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Figure 4. Convergence curves of the related algorithms for 50-dimensional functions.
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4.1.3. Verification of the Validity of the Fuzzy Control Parameters

In this paper, the correlation between control parameters ra and rb is modeled by the
bivariate joint normal distribution N(µ, ∑). A comparative experiment was conducted
to verify the effectiveness of that modeling idea. The control parameters ra and rb were
assumed to be independent random variables. In addition, both parameters followed
the standard uniform distribution; the other parts of the FSGWO algorithm remained
unchanged, and the new FSGWO at this time was denoted as FSGWO1.

The 30-dimensional functions (F1–F30) were solved by FSGWO and FSGWO1, and
the calculation results are shown in Table 8. In Table 8, the optimal mean and standard
deviation for each function are highlighted with a bold font and gray background. For 24
complex multimodal functions (F1–F5, F7–F12, F14–F16, F18, F19, F21–F23, F25, F26, and
F28–F30), the mean values of FSGWO were better than those of FSGWO1, accounting for
80.0%. The Wilcoxon signed-rank test was used to analyze the mean values in Table 8, and
the significance level was 0.05. The results of the test are shown in Table 9. The p value
(2.7610e – 03) was less than the significance level, indicating that there was a substantial
difference in Mean between FSGWO and FSGWO1.

Figure 5 demonstrates the convergence curves of FSGWO and FSGWO1 for the
30 30D test functions, which were plotted with the averages of 51 runs of the 2 algorithms.
Figure 5 shows that the change tendencies and the final convergence positions of FSGWO
were better than or comparable to those of FSGWO1 for 29 functions (F1–F5 and F7–F30).

Table 8. Results of FSGWO and FSGWO1 for 30-dimensional functions.

Function Index FSGWO FSGWO1 Function Index FSGWO FSGWO1

F1 Mean 3.29e + 03 5.74e + 04 F16 Mean 1.03e + 01 1.07e + 01
STD 3.46e + 03 1.06e + 05 STD 3.73e − 01 3.98e − 01

F2 Mean 0.00e + 00 0.00e + 00 F17 Mean 2.32e + 03 1.97e + 03
STD 0.00e + 00 0.00e + 00 STD 4.37e + 03 1.10e + 03

F3 Mean 0.00e + 00 0.00e + 00 F18 Mean 7.26e + 01 8.39e + 01
STD 0.00e + 00 0.00e + 00 STD 3.08e + 01 2.74e + 01

F4 Mean 0.00e + 00 2.86e + 01 F19 Mean 3.95e + 00 8.36e + 00
STD 0.00e + 00 3.58e + 01 STD 1.13e + 00 8.44e + 00

F5 Mean 2.00e + 01 2.05e + 01 F20 Mean 5.73e + 01 4.86e + 01
STD 3.28e − 03 5.22e − 02 STD 3.14e + 01 2.26e + 01

F6 Mean 8.33e + 00 4.23e + 00 F21 Mean 4.10e + 02 6.00e + 02
STD 3.57e + 00 1.38e + 00 STD 2.49e + 02 5.80e + 02

F7 Mean 7.86e − 03 1.35e − 02 F22 Mean 1.44e + 02 1.78e + 02
STD 1.21e − 02 1.37e − 02 STD 7.41e + 01 6.66e + 01

F8 Mean 0.00e + 00 1.48e + 01 F23 Mean 3.15e + 02 3.15e + 02
STD 0.00e + 00 2.83e + 00 STD 5.05e − 13 5.94e − 13

F9 Mean 3.71e + 01 4.94e + 01 F24 Mean 2.31e + 02 2.29e + 02
STD 8.27e + 00 7.51e + 00 STD 5.73e + 00 5.55e + 00

F10 Mean 1.35e + 01 3.50e + 02 F25 Mean 2.08e + 02 2.09e + 02
STD 3.73e + 00 1.01e + 02 STD 3.42e + 00 2.83e + 00

F11 Mean 1.98e + 03 3.00e + 03 F26 Mean 1.06e + 02 1.24e + 02
STD 3.09e + 02 2.77e + 02 STD 2.37e + 01 4.27e + 01

F12 Mean 1.84e − 01 5.66e − 01 F27 Mean 4.51e + 02 4.28e + 02
STD 3.67e − 02 8.91e − 02 STD 7.28e + 01 5.05e + 01

F13 Mean 2.78e − 01 2.64e − 01 F28 Mean 7.07e + 02 8.76e + 02
STD 6.68e − 02 5.31e − 02 STD 1.05e + 02 4.81e + 01

F14 Mean 2.10e − 01 2.29e − 01 F29 Mean 5.29e + 02 7.69e + 02
STD 4.68e − 02 4.60e − 02 STD 1.62e + 02 1.39e + 02

F15 Mean 4.89e + 00 7.18e + 00 F30 Mean 8.70e + 02 1.99e + 03
STD 1.31e + 00 1.49e + 00 STD 2.32e + 02 6.60e + 02
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Table 9. Results of the Wilcoxon test for the mean values of Table 8.

FSGWO v.s. FSGWO1

p value 2.7610e − 03

Figure 5. Cont.
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Figure 5. Convergence curves of FSGWO and FSGWO1.

According to the results of Table ?? and Figure 5, the optimization ability of FSGWO
was better than that of FSGWO1. Therefore, it is valid that binary joint normal distribution
is used as a fuzzy method to realize the adaptive adjustment of the control parameters ra
and rb, and this fuzzy method helps improve the convergence speed of FSGWO and the
quality of the solution.
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4.1.4. Verification of the Effectiveness of the Fuzzy Perturbation Strategy

In Equation (14), the fuzzy perturbation rm
c is used to update the mean µ of the

bivariate joint normal distribution. A comparative experiment was used to verify that
rm

c was an effective design. rm
c was extracted from rc by m of Equation (13), and m was

randomly generated instead of using Equation (13); the other parts of FSGWO remained
unchanged, and the new FSGWO was denoted as FSGWO2.

The 30-dimensional functions were solved with FSGWO and FSGWO2, and the results
are shown in Table 10. In Table 10, the optimal mean and standard deviation for each
function are highlighted with a bold font and gray background. The mean values of FSGWO
were better than those of FSGWO2 for 24 functions (F1–F5, F7–F12, F14, F15, F17–F19, F21–
F24, F26, and F28–F30), accounting for 80.0%. Table 11 is the result of the Wilcoxon test for
the mean values of Table 10, and the significance level was 0.05. The p value was 2.9719e-03,
which was less than the significance level. The results of the Wilcoxon test indicated that
there was a significant difference in the mean between FSGWO and FSGWO2.

Table 10. Results of FSGWO and FSGWO2 for 30-dimensional functions.

Function Index FSGWO FSGWO2 Function Index FSGWO FSGWO2

F1
Mean 3.29e + 03 1.09e + 04

F16
Mean 1.03e + 01 1.02e + 01

STD 3.46e + 03 7.88e + 03 STD 3.73e − 01 3.38e − 01

F2
Mean 0.00e + 00 0.00e + 00

F17
Mean 2.32e + 03 5.21e + 03

STD 0.00e + 00 0.00e + 00 STD 4.37e + 03 8.12e + 03

F3
Mean 0.00e + 00 0.00e + 00

F18
Mean 7.26e + 01 7.55e + 01

STD 0.00e + 00 0.00e + 00 STD 3.08e + 01 2.73e + 01

F4
Mean 0.00e + 00 1.37e + 00

F19
Mean 3.95e + 00 8.66e + 00

STD 0.00e + 00 9.10e + 00 STD 1.13e + 00 1.18e + 01

F5
Mean 2.00e + 01 2.02e + 01

F20
Mean 5.73e + 01 4.03e + 01

STD 3.28e−03 3.82e − 02 STD 3.14e + 01 2.64e + 01

F6
Mean 8.33e + 00 3.28e + 00

F21
Mean 4.10e + 02 5.49e + 02

STD 3.57e + 00 2.56e + 00 STD 2.49e + 02 7.45e + 02

F7
Mean 7.86e − 03 1.08e − 02

F22
Mean 1.44e + 02 1.67e + 02

STD 1.21e − 02 1.41e − 02 STD 7.41e + 01 6.17e + 01

F8
Mean 0.00e + 00 7.08e − 02

F23
Mean 3.15e + 02 3.15e + 02

STD 0.00e + 00 5.05e − 01 STD 5.05e − 13 5.35e − 13

F9
Mean 3.71e + 01 4.48e + 01

F24
Mean 2.31e + 02 2.31e + 02

STD 8.27e + 00 7.67e + 00 STD 5.73e + 00 6.83e + 00

F10
Mean 1.35e + 01 9.25e + 01

F25
Mean 2.08e + 02 2.07e + 02

STD 3.73e + 00 3.84e + 01 STD 3.42e + 00 2.78e + 00

F11
Mean 1.98e + 03 2.63e + 03

F26
Mean 1.06e + 02 1.20e + 02

STD 3.09e + 02 2.28e + 02 STD 2.37e + 01 4.00e + 01

F12
Mean 1.84e − 01 3.75e − 01

F27
Mean 4.51e + 02 4.25e + 02

STD 3.67e − 02 5.87e − 02 STD 7.28e + 01 4.79e + 01

F13
Mean 2.78e − 01 2.46e − 01

F28
Mean 7.07e + 02 8.74e + 02

STD 6.68e − 02 5.89e − 02 STD 1.05e + 02 5.15e + 01

F14
Mean 2.10e − 01 2.13e − 01

F29
Mean 5.29e + 02 6.58e + 02

STD 4.68e − 02 5.06e − 02 STD 1.62e + 02 1.66e + 02

F15
Mean 4.89e + 00 6.04e + 00

F30
Mean 8.70e + 02 1.69e + 03

STD 1.31e + 00 1.26e + 00 STD 2.32e + 02 5.83e + 02

Table 11. Results of the Wilcoxon test for the mean values of Table 10.

FSGWO v.s. FSGWO1

p value 2.9719e − 03
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Figure 6 shows the convergence curves of FSGWO and FSGWO2, which were plotted
with the averages of 51 runs of the 2 algorithms. Figure 6 shows that FSGWO converged
faster than FSGWO2 or was comparable to FSGWO2 for 29 functions (F1–F5 and F7–F30),
accounting for 96.7%.

Figure 6. Cont.
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Figure 6. Convergence curves for FSGWO and FSGWO2.

The results in Tables 10 and 11 and Figure 6 show that the design idea of fuzzy
perturbation is effective.
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4.2. Results for Economic Load Dispatch Problems of Power Systems

Economic load dispatch (ELD) is a complex optimization problem with constraints in
power systems [50,51]. The task of ELD is to reasonably dispatch the load of the system to
each generator to minimize the fuel cost of the system and satisfy the relevant constraints.

4.2.1. The Basic Model of the ELD Problem

The economic load dispatch of thermal power units is discussed in this paper. The
fuel cost of an ELD can be approximately expressed as

min F =
NG

∑
i=1

Fi(Pi) =
NG

∑
i=1

(
aiP2

i + biPi + ci +
∣∣∣ei × sin

(
fi ×

(
Pmin

i − Pi

))∣∣∣) (15)

where i is the ID of a generator unit and NG is the total number of generators, which is the
dimension of the ELD. For the ith unit, Pmin

i is the output power, Pi is the minimum output
power, Fi(Pi) is the generation cost function, and ai, bi, ci, ei and fi are the power generation
cost coefficients. The absolute value operator |·| converts the negative domain of the sine
function into a positive domain to generate multimodality; thus, the ELD is a constrained
high-dimensional multimodal optimization problem.

The main constraints of ELDs are as follows.

(i) Power balance constraints.

NG

∑
i = 1

Pi = PD + PL (16)

These constraints require that the total power generation of each unit is equal to the
system load PD and the transmission loss PL.

(ii) Generating capacity constraints.

Pmin
i ≤ Pi ≤ Pmax

i (17)

where Pmin
i and Pmax

i are the lower and upper limits of the output power of the ith unit,
respectively. These constraints require that Pi is between [Pmin

i , Pmax
i ].

(iii) Ramp rate limits.

− ∆Pi ≤ Pt
i − Pt−1

i ≤ ∆Pi (18)

where Pt−1
i and Pt

i are the output power of the ith unit in the (t − 1)th period and the tth
period, respectively; ∆Pi is the maximum change rate of the output power of the ith unit in
the two adjacent periods. When multiperiod load dispatch is involved, |Pt−1

i − Pt
i | cannot

exceed ∆Pi.

i. (iv) Prohibited operating zones.

Pi ≤ Ppz
i and Pi ≥ Ppz

i (19)

where Ppz
i and Ppz

i are the lower and upper limits of the prohibited operation zones of
the ith unit, respectively. As there are physical limitations of generator components and
unstable factors such as steam valve or bearing vibration, the output power of the ith unit
is prohibited in some zones.

4.2.2. Results of ELD Cases

The data of static ELD cases were taken from the IEEE CEC2011 competition dataset [51];
the numbers of units were 40 and 140, respectively. According to the requirements of the
competition, the maximum number of calculations of the fitness function was 15,000. The
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best result (best), mean (mean), median (median), the worst result (worst), and standard
deviation (STD) were calculated with 25 independent running results of the algorithm.

In addition to the six algorithms shown in Table 1, the compared algorithms in-
cluded the island-based harmony search (iHS) [52], intellects-masses optimizer (IMO) [53],
modified intellects-masses optimizer (MIMO) [53], adaptive population-based simplex
(APS 9) [54], enhanced salp swarm algorithm (ESSA) [55], and the genetic algorithm with a
new multiparent crossover (GA-MPC) [56]. iHS is a multipopulation evolutionary algo-
rithm with an island-based harmony search. IMO is a dual-population culture algorithm,
and its parameters hardly need to be adjusted. MIMP is an IMO algorithm with a trust
domain reflection strategy and strong local search abilities. APS 9 is an improved adap-
tive population-based simplex method. ESSA is a multistrategy enhanced salp swarm
algorithm. GA-MPC is a genetic algorithm with three consecutive parents.

Table 12 shows the results of the related algorithms for the 40-unit case. The results
of the 1st–6th algorithms are calculated and presented in this paper, and the results of the
7th–12th algorithms were taken from the original papers. In Table 12, the best values of the
indicators are highlighted with bold font and a gray background; the symbol—indicates
that the data are not provided in the original paper.

Table 12. Results of the related algorithms for the 40-unit ELD case.

No. Algorithm Best Mean Median Worst STD
1 FSGWO 1.2260e + 05 1.2514e + 05 1.2519e + 05 1.2758e + 05 9.8099e + 02
2 GWO 1.2602e + 05 1.2762e + 05 1.2751e + 05 1.3002e + 05 9.4627e + 02
3 HPSOGWO 1.2474e + 05 1.2614e + 05 1.2606e + 05 1.2795e + 05 1.0180e + 03
4 SOGWO 1.2626e + 05 1.2804e + 05 1.2799e + 05 1.3113e + 05 1.3027e + 03
5 EO 1.2591e + 05 1.2725e + 05 1.2688e + 05 1.2930e + 05 1.0265e + 03
6 MPSO 1.2617e + 05 1.2741e + 05 1.2737e + 05 1.2920e + 05 7.4119e + 02
7 iHS [52] 1.2980e + 05 1.3375e + 05 1.3392e + 05 1.3701e + 05 1.6258e + 03
8 IMO [53] 1.3073e + 05 1.3465e + 05 1.3428e + 05 1.3846e + 05 2.2328e + 03
9 MIMO [53] 1.2960e + 05 1.3306e + 05 1.3297e + 05 1.3698e + 05 2.1161e + 03

10 APS 9 [54] 1.2390e + 05 1.2553e + 05 1.2544e + 05 1.2715e + 05 8.0868e + 02
11 ESSA [55] 1.2885e + 05 1.3061e + 05 — 1.3355e + 05 1.0434e + 03
12 GA-MPC [56] 1.2921e + 05 1.3323e + 05 1.3319e + 05 1.3606e + 05 1.8788e + 03

From the mean index in Table 12, the exponents of the results of related algorithms
were all e + 05, and the coefficients of the results were also very close, which meant that all
algorithms could approximate the optimal solution; the nuance of the results was mainly
caused by the different local optimization abilities of each algorithm. The Best, Mean, and
Median of the FSGWO were 1.2260e + 05, 1.2514e + 05, and 1.2519e + 05, respectively, which
were better than those of competitive algorithms, indicating that FSGWO had relatively
strong local optimization ability and stability.

Table 13 shows the results of the related algorithms for the 140-unit case. In Table 13,
the best values of the indicators are highlighted with a bold font and gray background.
The best, mean, and median of FSGWO were 1.7551e + 06, 1.8119e + 06, and 1.8107e + 06,
respectively, which were still better than those of the competitive algorithms, indicating
that the proposed algorithm still had excellent optimization performance for the high-
dimensional ELD problem. The simplex of ESSA and trust region of MIMO were both
classical numerical optimization strategies; Table 13 shows that the fuzzy search strategy of
FSGWO was competitive with those numerical optimization strategies when used to solve
high-dimensional ELD problems.
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Table 13. Results of the related algorithms for the 140-unit ELD case.

No. Algorithm Best Mean Median Worst STD
1 FSGWO 1.7551e + 06 1.8119e + 06 1.8107e + 06 1.8598e + 06 2.3481e + 04
2 GWO 1.8935e + 06 1.9313e + 06 1.9317e + 06 1.9582e + 06 1.6986e + 04
3 HPSOGWO 1.8611e + 06 1.9210e + 06 1.9234e + 06 1.9728e + 06 3.0071e + 04
4 SOGWO 1.8828e + 06 1.9303e + 06 1.9284e + 06 1.9660e + 06 2.0406e + 04
5 EO 1.8645e + 06 1.9187e + 06 1.9190e + 06 1.9639e + 06 2.3944e + 04
6 MPSO 1.8756e + 06 1.9173e + 06 1.9133e + 06 1.9746e + 06 2.4482e + 04
7 iHS [52] 1.9142e + 06 2.0538e + 06 1.9942e + 06 2.5494e + 06 1.5139e + 05
8 IMO [53] 1.9061e + 06 1.9338e + 06 1.9322e + 06 1.9639e + 06 1.6741e + 04
9 MIMO [53] 1.8957e + 06 1.9181e + 06 1.9184e + 06 1.9373e + 06 1.1350e + 04

10 APS 9 [54] 1.8540e + 06 2.0666e + 06 1.9268e + 06 2.9513e + 06 3.1309e + 05
11 ESSA [55] 1.9087e + 06 1.9350e + 06 — 1.9541e + 06 1.3123e + 04
12 GA-MPC [56] 1.9203e + 06 1.9533e + 06 1.9567e + 06 1.9707e + 06 1.4084e + 04

According to the results of Tables 12 and 13, when FSGWO was used to solve high-
dimensional ELD problems, its optimization ability was better than those of the competitive
algorithms, and higher-quality solutions could be obtained by FSGWO.

4.3. Design of Three-Bar Truss

In structural engineering, a truss is a triangulated system that provides an efficient
way to span long distances. Because members of a truss incur only axial force, the purpose
of a truss design is to use less material and maintain the effectiveness of the entire system.
A reduction in the amount of material used is usually expressed as a reduction in the
diameter of a member. A three-bar planar truss structure is shown in Figure 7 [57]. In this
problem, x1, x2, and x3 are the normalized diameters of the three members, and x3 has the
same diameter as x1. The aim of this study is to achieve the minimum volume of a three-bar
truss by minimizing the values of x1 and x2.

Figure 7. Three-bar truss design.

The problem shown in Figure 7 can be expressed as an optimization problem:

min f (x1, x2) = (2
√

2x1 + x2) × l

s.t.


√

2x1 + x2√
2x2

1 + 2x1x2
× r − ρ ≤ 0

x2√
2x2

1 + 2x1x2
× r − ρ ≤ 0

1
x1 +

√
2x2
× r − ρ ≤ 0

l = 100cm, r = 2KN/cm2, ρ = 2KN/cm2

(20)
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where x1 and x2 are between [0, 1].
FSGWO was applied to solve the optimization problem of Equation (20). The competi-

tive algorithms included the memory-based grey wolf optimizer (m-GWO) [58], modified
sine cosine algorithm (m-SCA) [59], moth-flame optimization (MFO) [60], and cuckoo
search (CS) [57]. Table 14 shows the results of related algorithms for the three-bar truss
design problem. In Table 14, the best object function value is highlighted with a bold font
and gray background. The data for the competitive algorithms are taken from the original
papers. From Table 14, the objective function value of FSGWO is 263.8958, which is better
than those of the competitive algorithms.

Table 14. Results of related algorithms for the three-bar truss design problem.

Algorithm x1 x2 f (x1,x2)
FSGWO 0.7886751 0.4082485 263.8958

m-GWO [58] 0.7885845 0.4085071 263.8961
m-SCA [59] 0.81915 0.36956 263.8972
MFO [60] 0.78824477 0.40946691 263.8960

CS [57] 0.78867 0.40902 263.9716

4.4. Design of Pressure Vessel

Figure 8 shows a cylindrical pressure vessel which has a hemispherical head at the end
and is designed according to the ASME boiler and pressure vessel code [57]. This problem
has four decision variables, which are the thickness of the shell (Ts), the thickness of the
head (Th), the inner radius (R), and the length of the cylindrical section without considering
the head (L). The goal of this problem is to minimize the cost of producing this capacity
and satisfy the relevant conditions.

Figure 8. Pressure vessel design.

Four decision variables of the pressure vessel are represented by x1, x2, x3, and x4. The
problem shown in Figure 8 can be expressed as an optimization problem:

min f (x1, x2, x3, x4) = 0.6224x1x2x4
+ 1.7781x2

1x3 + 3.1661x2
1x4 + 19.84x2

1x3

s.t.


− x1 + 0.0193x3 ≤ 0
− x2 + 0.00954x3 ≤ 0
− πx2

3x4 − 4
3 πx3

3 + 1296000 ≤ 0
x4 − 240 ≤ 0

(21)

where x1 and x2 are between [0, 99] and x3 and x4 are between [10, 200].
FSGWO was applied to solve the optimization problem of Equation (21). The competi-

tive algorithms included the grey wolf optimization method based on a beetle antenna strat-
egy (BGWO) [61], the improved grey wolf optimizer (I-GWO) [62], moth-flame optimization
with orthogonal learning and Broyden-Fletcher-Goldfarb-Shanno (BFGSOLMFO) [63] and
the slime mould algorithm (SMA) [64]. Table 15 shows the results of related algorithms for
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the pressure vessel problem. In Table 15, the best object function value is highlighted with
a bold font and gray background. The data for the competitive algorithms are taken from
the original papers. From Table 15, the objective function value of FSGWO is 5885.3328,
which is better than those of the competitive algorithms.

Table 15. Results of related algorithms for the pressure vessel design problem.

Algorithm x1 x2 x3 x4 f (x1,x2,x3,x4)
FSGWO 0.7782 0.3846 40.3196 200.0000 5885.3328

BGWO [61] 0.7783 0.3847 40.3197 200.0000 5886.4955
I-GWO [62] 0.779031 0.385501 40.36313 199.4017 5888.3400

BFGSOLMFO [63] 0.778675 0.385392 40.342876 199.754805 5889.7080
SMA [64] 0.7931 0.3932 40.6711 196.2178 5994.1857

4.5. Design of Gear Train

Figure 9 shows a gear train design problem, in which there are four gears A, B, C and
D [59]. The numbers of teeth of the four gears are represented by variables x1, x2, x3, and x4.
The number of teeth is an integer between [12,60]. The goal of this problem is to minimize
the gear ratio and keep it close to the optimal value of 1/6.931.

Figure 9. Gear train design.

The problem of Figure 9 can be expressed as an optimization problem:

min f (x1, x2, x3, x4) =
(

1
6.931 −

x1x3
x2x4

)2

s.t. 12 ≤ xi ≤ 60, and xi ∈ Z+ ∀i = 1, 2, 3, 4.
(22)

FSGWO was applied to solve the optimization problem of Equation (22). The competi-
tive algorithms included m-SCA [59], CS [57], the linear prediction evolution algorithm
(LPE) [65], and the hybrid grey wolf optimizer and sine cosine algorithm (GWOSCA) [66].
Table 16 shows the results of related algorithms for the gear train design problem. In
Table 16, the best object function values are highlighted with a bold font and gray back-
ground. The data for the competitive algorithms are taken from the original papers. From
Table 16, the objective function value of FSGWO is 2.7009e−12, which is as good as those
of m-SCA, CS, and LPE. Moreover, Table 16 shows that gear train design is a typical mul-
timodal optimization problem. For the objective function value of 2.7009e−12, there are
three different nearly optimal solutions that correspond to different gear train designs.
According to the cost, volume, weight, and reliability of the gear train, decision makers
find a design that meets their requirements among these different solutions.
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Table 16. Results of related algorithms for the gear train design problem.

Algorithm x1 x2 x3 x4 f (x1,x2,x3,x4)
FSGWO 19 43 16 49 2.7009e−12

m-SCA [59] 43 16 19 49 2.7009e−12
CS [57] 43 16 19 49 2.7009e−12

LPE [65] 19 49 16 43 2.7009e−12
GWOSCA [66] 26 51 15 53 2.3078e−11

4.6. Design of Cantilever Beam

Figure 10 shows a cantilever beam design problem in which there are five nodes [59].
A node in Figure 10 is regarded as a square hollow cross-section with constant thickness.
The first node is fixedly supported, and there is an external vertical force acting at the end
of the fifth node. The variable xi represents the width of the cross-section of the ith node
and its value is between [0.01, 100]. The goal of this problem is to minimize the weight of
the cantilever beam.

Figure 10. Cantilever beam design.

The problem of Figure 10 can be expressed as an optimization problem:

min f (x1, x2, x3, x4, x5) = 0.0624 ×
5
∑

i=1
xi

s.t. 61
x3

1
+ 37

x3
2
+ 19

x3
3
+ 7

x3
4
+ 1

x3
5
≤ 1

0.01 ≤ xi ≤ 100, i = 1, 2, 3, 4, 5

(23)

FSGWO was applied to solve the optimization problem of Equation (23). The competi-
tive algorithms included CS [57], BGWO [61], m-SCA [59], and MFO [60]. Table 17 shows
the results of related algorithms for the cantilever beam design problem. In Table 17, the
best object function values are highlighted with a bold font and gray background. The
data for the competitive algorithms are taken from the original papers. From Table 17, the
objective function value of FSGWO is 1.33996, which is as good as that of BGWO.

Table 17. Results of related algorithms for the cantilever beam design problem.

Algorithm x1 x2 x3 x4 x5 f (x1,x2,x3,x4,x5)
FSGWO 6.0160 5.3092 4.4943 3.5015 2.1527 1.33996
CS [57] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999

BGWO [61] 6.0130 5.3112 4.4953 3.5079 2.1461 1.33996
m-SCA [59] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999
MFO [60] 5.9849 5.3167 4.4973 3.5136 2.1616 1.33999
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5. Discussion

The convergence curves of Figures 3 and 4 show that the fitness values of the FSGWO
algorithm decreased faster than those of the competitive algorithms in the early stage of
iterations. This advantage is related to the improvement of FSGWO in population updates.
Step 4.2.4 in Algorithm 2 utilizes the noninferior selection strategy for population updating,
which allows only better new individuals to be updated into the population. As the entire
grey wolf population can be used to estimate the position of the optimal solution, the
probability of detecting the region where the optimal solution is located is also increased,
and FSGWO has a faster convergence speed in the early stage of iterations. In contrast,
the traditional GWO uses only three leading wolves to estimate the region of the optimal
solution, and the probability of finding the optimal solution is relatively low; thus, the
convergence curve slowly decreases.

The results in Tables 2–17 and Figure 2 show that the FSGWO algorithm can obtain
higher-quality solutions, which indicates that the proposed algorithm has strong opti-
mization ability and stability. These advantages of FSGWO come from the following
improvements. (i) The fuzzy direction Dc is added with both global and local search
information, which enhances the ability of FSGWO to approximate the optimal solution,
thereby producing a high-quality solution. (ii) The new individual Xu generated by the
fuzzy crossover operator does not mutate in all dimensions, which effectively controls the
divergence of the algorithm and improves the stability and robustness of FSGWO. (iii) The
binary joint normal distribution and fuzzy perturbation can adaptively adjust the control
parameters ra and rb of FSGWO, which not only reduces the blindness of the selection of
control parameters but also helps improve the local search ability and stability of FSGWO.

Other evolutionary algorithms also have control parameters, and the proposed mod-
eling idea of control parameters is also suitable for those evolutionary algorithms. For
example, an evolutionary algorithm has four control parameters, denoted as r1, r2, r3, and
r4. The internal relation of these four control parameters can be modeled by a quaternary
joint normal distribution N(µ, ∑), and µ is written as

µ = [µ1, µ2, µ3, µ4] (24)

where µ1, µ2, µ3, and µ4 are scalars between (0, 1), and their initial values are 0.5. The
covariance matrix ∑ can be expressed as

Σ =


s1 × s2 0 0 0

0 s1 × s3 0 0
0 0 s1 × s4 0
0 0 0 s1 × s5

 (25)

where s1 is a random number following the standard uniform distribution. The four terms
s2–s5 are random numbers following the standard normal distribution. The initial values of
s1–s5 are all 0.1. A set of control parameters (r1, r2, r3, r4) can be obtained by sampling the
quaternary joint normal distribution N(µ, ∑). In the iterative process, the updated methods
of µ and ∑ are the same as those in this study.

In summary, the experimental results show that the improvements of FSGWO in
balancing diversity and convergence are feasible and effective. The proposed algorithm
can produce high-quality solutions when used to solve high-dimensional complex MMOPs
and has good convergence and stability.

6. Conclusions

To address the issue that the traditional GWO solves high-dimensional MMOPs with
slow convergence speed and low quality solutions, a fuzzy strategy grey wolf optimizer
(FSGWO) is proposed in this paper, the key improvements of which are as follows. (i) A
new individual mutation strategy is proposed, which utilizes both global and local search
information in the fuzzy search direction of mutation and enhances the ability of grey wolf
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individuals to find the optimal solutions. (ii) A fuzzy crossover operator is used to prevent
new individuals from mutating in all dimensions and effectively improves the local search
ability of FSGWO and the quality of solutions. (iii) The noninferior selection strategy is
applied to update the population, and only better new individuals are allowed to update
in the population. Therefore, the entire grey wolf population can be used to estimate
the region where the optimal solution is located, which speeds up the convergence of
FSGWO. (iv) The two control parameters of FSGWO are modeled by a binary joint normal
distribution whose parameters are adaptively updated by a fuzzy perturbation, which
effectively reduces the blindness of control parameter selection and improves the stability
of the proposed algorithm. Finally, FSGWO is verified on 30 complex test functions of IEEE
CEC2014 and 5 engineering application problems; the results show that the convergence of
the proposed algorithm and quality of solutions are better than those of the competitive
algorithms, which means that the improvements of FSGWO are feasible and effective.

Recent studies have shown that multiple populations have advantages over a single
population in maintaining diversity and convergence [67,68]. For our future works, we
are interested in some novel topics on GWOs with multiple populations, such as the
exchange method of optimal solution information between different populations and the
design idea of individual search direction in multiple populations. In addition, state-of-
the-art evolutionary algorithms, such as self-adaptive quasi-oppositional stochastic fractal
search [69] and combined social engineering particle swarm optimization [70], have many
creative update strategies for populations and can be used for reference in the future
improvement of FSGWO.
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