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Abstract: We proposed an automatic detection method of slope failure regions using a semantic
segmentation method called Mask R-CNN based on a deep learning algorithm to improve the
efficiency of damage assessment in the event of slope failure disaster. There is limited research on
detecting landslides by deep learning, and the lack of training data is an important issue to be resolved,
as aerial photographs are not taken with sufficient frequency during a disaster. This study attempts
to use CutMix-based augmentation to improve detection accuracy. We also compare the detection
results obtained by augmentation of multiple patterns. In the comparison of the not augmented data
case, the recall increased by 0.186 in the case using the augmented data with the shape of the slope
failure region maintained. When the image data was augmented while maintaining the shape of the
slope failure region, the recall score indicated the low oversights in the prediction result is 0.701. This
is an increase of 0.186 compared to the case where no augmentation was performed. In addition, the
F1 score was 0.740, this also increased by 0.139, and high values were obtained for other indicators.
Therefore, the method proposed in this study is greatly useful for grasping slope failure regions
because of the detection with high accuracy, as described above.

Keywords: image augmentation; Mask R-CNN; slope failure; image segmentation; deep learning

1. Introduction

As shown in landslide inventory maps [1,2], in recent years, sediment disasters such
as slope failures and debris flows caused by earthquakes and heavy rainfalls due to global
warming have been occurring in many parts of the world and causing extensive damage.
In August 2009, Typhoon Morakot hit Taiwan, causing massive slope failure, mudslides,
and flooding [3]. This caused many houses in the downstream villages to be buried
under soil, and 400 of the approximately 450 villagers were buried in a tragic situation.
Additionally, in Uttarakhand, India, heavy rains in June 2013 caused slope failures that
affected 1800 villages, killing 4120 people, collapsing 15 bridges, and causing other serious
damage [4]. In Hokkaido, Japan, a massive Mj 6.7 earthquake in 2018, which occurred the
day after Typhoon Jebi arrived in Hokkaido, caused more than 5600 slope failures [1]. As a
result, many homes were destroyed, and roads were blocked. The earthquake claimed
the lives of 41 people, and 36 people died from landslides [5]. In addition, during the
heavy rains in the northern part of Kyushu, located in the western part of Japan, record-
breaking rainfall within a small area caused multiple slope failures. It brought about severe
damage to both Fukuoka and Oita Prefectures in Japan. There were 34 fatalities in Fukuoka
prefecture, and a large number of these, a ratio of 56%, were caused by landslides [6].
In July of the following year, concentrated heavy rains also occurred in the western parts of
Japan, and large-scale debris flow and slope failures occurred from heavy rains. Especially
in Hiroshima prefecture, there were many landslides and 87 people, or approximately 80%
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of the, dead from these landslides [7]. As landslides, slope failures, debris flows caused
by earthquakes, and concentrated heavy rains occur in multiple areas simultaneously, it
is necessary to understand the situation over a broad area. Additionally, it is difficult
to assess the situation on-site immediately after a disaster strikes because roads may be
cut off by sediment. For these reasons, aerial photographs are often used to grasp the
disaster situation without visiting the damaged area. However, the interpretation of data
is conducted manually by engineers, which takes much time. Of the disasters reported
from 1988 to 2017, landslides and mass displacements affected approximately 5 million
people. The current rapid urbanization and population growth in landslide-prone areas
are causing large-scale human suffering [1]. Considering the urbanization in many areas
of the country in the future, it is necessary to discuss the creation of information for rapid
response during disaster recovery and relied on efforts.

There are many methods for detecting regions damaged by disasters, such as Afaq
et al. [8], who showed the algebra, artificial intelligence, and GIS-based techniques. In the
method of using AI, many studies have been conducted to grasp the damage situation
quickly at the time of the slope failures using a wide range of images and video, including
aerial photographs captured from a disaster relief helicopter, optical and synthetic aperture
radar (SAR) images captured from artificial satellites, and video captured using unmanned
aerial vehicles (UAV). Aimaiti et al. created a landslide map showing the places landslides
occur using the coherence, slope gradient, and SAR image intensity difference threshold,
which are calculated by SAR images captured in the descending and ascending orbits before
and after the disaster, Digital Elevation Model data [9]. In addition, Miura et al. estimated
the changing area after the earthquake (i.e., the slope damage region) by calculating and
comparing the Normalized Difference Vegetation Index (NDVI), based on optical images
captured before and after the disaster [10].

As described above, there is much research in which damage regions are estimated by
comparing images captured before and after the disaster. However, there are some concerns,
such as the fact that there may not necessarily exist images captured before the disaster;
even if the images exist, they may be unclear due to the weather conditions, and the
topography may be different before the disaster, and at the time the image was taken due
to changes in the use of the land. For these reasons, it is desirable to estimate slope failure
regions using machine learning/deep learning without using images before the disaster.
For instance, Amit et al. estimated semantic segmentation of the areas of damaged regions
such as slope failures and flooding from newly captured images containing the damaged
area to use the convolutional neural network (CNN) model, which trained the features of
the damaged area by the aerial photographs capturing the disaster regions in the past [11].
Furthermore, Kawamura et al. detected the sediment movement regions using a CNN
model, which was trained with grayscale aerial photographs of the regions where sediment
movement sections exist and do not exist [12]. Ghorbanzadeh et al. calculated NDVI values,
slope, and plan curvature. From optical satellite images and used them to detect landslide
locations using various methods [13]. In addition, Ghorbanzadeh et al. used a UAV to
photograph mountainous terrain regions that included slope failure regions and created a
trained model [14].

In recent years, high-resolution satellite images and aerial photographs have become
available within a short time after a disaster. An increasing number of studies have
been conducted to detect damaged areas using only post-disaster data [15]. There are
several concerns with the recently studied methods for assessing damage, such as the
large number of data required compared to using only post-disaster images, which may
require more time to prepare all the data, and the possibility that pre-disaster images may
not exist for the disaster location. Based on the above, in this study, we detected slope
failure regions through deep learning using aerial photographs taken during past disasters
instead of pre-disaster photographs of the disaster location to rapidly and automatically
grasp situations when slope failures occurred due to disasters, such as heavy rain and
earthquakes, among others. At this time, we performed slope failure detection using Mask
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R-CNN, which is generally known as an instance segmentation method, as a semantic
segmentation method. The goal is to create a detection model to estimate the size of
disasters and distribution in the future. An instance segmentation method that detects and
classifies candidate object regions at the pixel level is employed as this method can grasp
the number of slope failure regions and the distribution. In this study, we first attempted to
detect slope failure regions from small images cropped to a specific size to verify whether it
is possible to detect them with high accuracy. As a future task, we are also considering the
number and distribution of slope failure regions from images taken over a wide area, so it
is desirable to adopt this method, which can determine not only the area (i.e., number of
pixels) of the detection area, but also the number of detected objects and their distribution
(i.e., coordinates).

In addition, the images used to assess damage can only be taken at the time of a disas-
ter, making insufficient training data an issue in research on damage assessment using such
images. Ghorbanzadeh et al. used the freely available Sentinel-2 data and ALOS digital
elevation model, rather than high resolution satellite images to detect landslide regions
using the FCN algorithm and further evaluate the generalizability and transferability of
the constructed models [16]. In addition, they a performed deep learning model with rule-
based object-based image analysis (OBIA) for landslide areas with distinct features, rather
than a pixel-based deep learning approach [17]. In the case of limited training datasets,
for example, Oh et al. developed a patch-based convolutional neural network approach
with a relatively small number of trainable parameters to analyze the chest X-rays (CXR)
for the diagnosis of COVID-19, a globally prevalent disease [18]. In addition, Shahabi et al.
developed an unsupervised learning model by employing a convolutional auto-encoder
(CAE), taking into account the limited number of data available for training [19]. In order
to improve the loss of detection accuracy caused by this issue, we attempted to improve the
detection accuracy of the slope failure region using augmentation. When using deep learn-
ing to detect slope failure regions, the multiple sets of data that the Geospatial Information
Authority of Japan provides are used. Based on several previous studies [12,13,20], it is
estimated that thousands to tens of thousands of satellite images are required for accurate
detection. For this reason, augmentation is performed on the captured images in many
studies, including these. There are various methods of augmentation, such as Cutout [21],
Mixup [22], and CutMix [23].

This study aims to grasp the effect of the training data augmented by the CutMix
method that stitches together multiple images with image labels to create a new image
on the detection accuracy. Then, the slope failure region is detected by a learning model
trained on the image data augmented. In the infrastructure field, the authors’ group has
also applied machine learning, including deep learning, to detect concrete clacks and
grooves [24–26], asphalt clacks [27,28], corrosion of steel girders [29,30], and evaluation of
durability estimation of corroded steel [31,32], and description of bridge damage [33,34]
has been utilized and useful results have been obtained. However, it would be useful to
show the augmentation impact on disaster cases quantitatively. In this study, the multiple
training data augmentation method is considered to detect the slope failure regions with
high accuracy using such little data. Based on the above, this study aims to rapidly and au-
tomatically detect slope failure regions using Mask R-CNN, employing post-disaster aerial
photographs as training data created using the augmentation method. The topography
and land use are not mentioned, but rather the area where slope failures occur in various
locations, such as bare land and covered with forest vegetation, are detected, and the
characteristics of the areas where failure regions are difficult to detect are discussed.

2. Detection Model of Slope Failure Regions
2.1. Image Recognition Method
2.1.1. Slope Failure Monitoring

Image segmentation categorizes input images at the pixel level, and a common method
is a semantic segmentation. Semantic segmentation is a method used for performing class
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categorization concerning all pixels in the image. It is used for detecting cracks in concrete
bridges and road surfaces [35,36]. In addition, as a development of the same, it can
estimate candidate regions by an object and perform instance segmentation by classifying
the type of object at the pixel level. Panoptic Segmentation combines these techniques.
In contrast to semantic segmentation, which performs class categorization concerning all
pixels, instance segmentation performs detection and categorizing at the pixel level about
the object candidate region, making it a method that grasps the form of the target object
with greater accuracy. As mentioned above, in consideration of the future grasping the scale
of disaster such as the distribution and area size, Mask R-CNN, which is generally known
as an instance segmentation method is used for semantic segmentation to segmentation
slope failure regions in this study.

2.1.2. Mask R-CNN

As a successor to the object detection method R-CNN (Regions with CNN features) [37],
which was proposed in 2014, Mask R-CNN (Mask Region with convolution Neural Net-
work) [38] was proposed. Mask R-CNN adopts the instance segmentation described
above; it is a multi-task method that performs semantic segmentation in addition to object
detection, which is used in R-CNN. R-CNN is a two-stage type method that performs
class categorizing concerning the respective estimated candidate regions while performing
object region detection from the input image. This makes the processing complex, and there
is the issue that it requires much time. Following this, development is progressing on
Fast R-CNN [39] that can perform end-to-end training for tasks other than estimating the
candidate region, and Faster R-CNN [40] that can perform end-to-end training for all tasks.
Training speed and object detection accuracy are gradually improving. Then, Mask R-CNN
was released in 2017. Capturing feature values for each candidate region has improved
and added a new segmentation task.

Figure 1 shows a schematic diagram of the Mask R-CNN structure. Mask R-CNN
is comprised of three parts: Backbone that extracts features from the input image, RPN
(Region Proposal Network) that selects candidate regions within the image, and Head
that estimates and identifies feature values for each candidate region from the RoI pooled
feature map and performs estimation and semantic segmentation of the detailed position
of the object. In Faster R-CNN, the predecessor to Mask R-CNN, in the Head section, RoI
pooling was used when selecting features for each candidate region from the feature map.
RoI pooling is a simple type of pooling in which the spatial pyramid pooling [41] pyramid
structure is excluded, and the processing contains the candidate region within a fixed-size
feature vector. This method has the issue that it is impossible to accurately estimate the
mask by discretizing the feature values at a fixed resolution. Therefore, Mask R-CNN
adopts RoI Align, which estimates without losing the feature map information. With RoI
Align, sampling values are calculated from the surrounding four pixels of each cell in the
candidate region. Pooling the results creates a fixed-size RoI feature vector. In this way,
by considering sub-pixel-level information, it is possible to eliminate misalignments at RoI
pooling. In Mask R-CNN, as visualization is performed at the pixel level of the detected
region through semantic segmentation, it is important to accurately estimate the boundary
section of the candidate region, which has a significant impact on accuracy. For this reason,
the mask accuracy of the object region in Mask R-CNN greatly increases using RoI Align as
described above [38]. Mask R-CNN employs cross-entropy as the loss function, which is
the sum of three loss terms: a loss term from a class categorizing and regressing a bounding
box, and a term for estimating the semantic segmentation mask. This defined as a multitask
loss function as shown in Equation (1). The same weights are applied to all these loss
functions in this research to calculate the total loss. The first and second terms on the
right-hand side are defined by Equation (2).

Loss = LCLS + LREG + LMASK (1)
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LCLS + LREG =
1

Ncls
∑

i
Lcls(pi, p∗i ) + λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ) (2)

which is similar to that of the Faster R-CNN described above [40]. where, i, pi, ti, p∗i ,
Lcls, t∗i , and Lreg, are, respectively, the index of the anchor in the mini-batch, the predicted
probability that anchor i contains an object, the rectangular region indicating the predicted
object position by vector values, the binary label data, the loss on class categorizing in the
two classes, the rectangular region of the correct, and the regression loss on the prediction
of the rectangular region which is denoted by Lreg(ti, t∗i ) = R(ti − t∗i ) with robust loss
R. Furthermore, Ncls and Nreg are the size of the mini-batch and the number of anchors,
respectively. λ is a hyperparameter to keep balance the loss of class categorizing and
regression, and in this study, λ = 10 as the same value in [38]. The third term on the
right-hand side of Equation (1) is the average value of the binary cross-entropy for an
arbitrary number of class labels. The network can generate masks for all classes without
causing interference between classes by defining this term.

Figure 1. Mask R-CNN framework.

2.2. Datasets

The data for this study was compiled from slope failures that occurred in Fukuoka
and Oita Prefectures during Kyushu’s heavy rains in July 2017, slope failures that occurred
in Ehime and Hiroshima Prefectures due to heavy rains in July 2018, and slope failures
that occurred in Hokkaido in September 2018 as a result of the Hokkaido Eastern Iburi
earthquake. In this study, training images, including slope failure regions, were created
by capturing slope failure regions from aerial photographs [42] taken after the disaster,
published by the Geospatial Information Authority (GSI). An aerial camera took the images
used in this study. The aerial camera is equipped with a GNSS receiver called GNSS/IMU
device. IMU to measure the camera position and attitude during shooting can capture
high-precision images. These images can be viewed and downloaded from a web map site
called GSI Map provided by the Geographical Survey Institute (https://maps.gsi.go.jp/
(accessed on 26 July 2022)). As shown in Figure 2, for each image showing a slope failure
area, some images show only one slope failure, and some show multiple slope failures.
Many of the images were clearly identified as slope failures, but for those that were not,
we used images identified as slope failures by the Geospatial Information Authority of
Japan (GSI) or by us during disaster surveys. The size of all captured images is 1024 px
× 1024 px vertically and horizontally, and the resolution is 0.5 m/px for all images. For
training and validation data, 788 images were created from aerial photographs captured
during the 2018 west Japan heavy rain disaster and the Hokkaido Eastern Iburi Earthquake
in September 2018 (the green and purple areas in Figure 2a). The images created were then
divided at a ratio of 4:1, giving 591 images as training data and 197 images as validation
data. In addition, based on aerial photographs captured at the time of the heavy rains in
Northern Kyushu in July 2017, 145 images were created and used as test data (The blue
areas in Figure 2a). Test data’s size and shooting procedure are the same as training and
validation data. Then, all of the data used for verifying and testing each model was the
same. In order to develop a general algorithm for slope failure phenomena, this study does

https://maps.gsi.go.jp/
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not distinguish between slope failures caused by different factors, such as earthquakes and
heavy rainfall.

(a) Aerial photograph acquisition areas (The blue areas are the areas affected by the July and Septem-
ber 2017 heavy rains; aerial photographs of these areas were used as test data. The green and
purple areas are the areas affected by the July 2018 heavy rains and earthquake, respectively; aerial
photographs of these areas were used as training and validation data.).

(b) Original image used in Case 1.
(c) Image with one time CutMix processing used
in Case 2.

(d) Image with two times CutMix processing used
in Case 3.

(e) Image with rotation and warping applied to the
one time CutMix image used in Case 4.

(f) Image for validation case. (g) Image for test case.

Figure 2. Images used in each case (Left: Aerial photograph. Right: Ground truth.).

2.3. Image Augmentation

As mentioned above, few aerial photographs of slope failure areas are taken during
disasters. Most studies that use deep learning to detect slope failure areas improve the
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detection accuracy by augmentation. In this study, we created the four patterns of training
data shown in Table 1 and trained each model constructed using the various hyperparam-
eters and optimization methods shown below to grasp the effect of the method of each
augmentation method on the validation and testing results.

For Case 1, we used only the 591 training data images described in the previous section
(Figure 2b). We did not perform augmentation (referred on Case 1 in Table 1). Next, Cases
2, 3, and 4 are used 12,411 images for training. However, different augmentation methods
are used for each (referred on the training data of Cases 2, 3, and 4 in Table 1). For Case 2,
we took the images after performing CutMix once on the 591 original images and created
20 images for each original image. By creating 11,820 images augmented as shown in
Figure 2c, we trained using 12,411 images. CutMix is a method of augmentation in which
a section of multiple images is cut off and reconnected to make one image. With CutMix,
as the training data is connected with labels, this is a method of augmentation. It is possible
to prevent a decrease in training efficiency. This provides it a higher level of accuracy than
similar methods, such as Mixup and Cutout [23].

Table 1. Breakdown of images used.

Training Data
Validation Data Test Data

Images Augmentation

Case 1 591 images No

197 images 145 images
Case 2

12,411 images

One time cutmix
Case 3 Two times cutmix

Case 4 One time cutmix,
rotation, warping

For Case 3, CutMix performed in Case 2 is performed twice, and the images shown in
Figure 2f are created in the same number as for Case 2. For Case 4, rotation and warping
processing is performed at a fixed probability for the cut images after CutMix. The images
shown in Figure 2g are created in the same number as Case 2. Increasing the diversity of
training data and regularization effect are promised by stitching together multiple images
with labels to create a new mixed image, such as CutMix. It is difficult to distinguish the
bared area as slope failure regions by color because the colors of these areas are similar. We
use CutMix to focus on the shape features of slope failure regions as the detection target
is a certain regularity in the shape area, such as a slope failure region. It is believed to
differentiate between slope failure regions and bared areas.

2.4. Model Construction And Training
2.4.1. Construction of Semantic Segmentation Model

In the model used in this study, ResNet101 is used for the backbone, showing the
feature value section of the network. ResNet101 is used to perform training based on the
difference after subtracting the input from the output rather than looking for the optimal
output obtained from a specific layer to solve the issues such as the vanishing gradient
problem and degradation problem caused by the depth of the network. As described
above, the all-input image size is standardized at 1024 px × 1024 px. The learning rate,
optimization method, and weight decay are 0.001, SGD (Stochastic Gradient Descent),
and 0.0001, respectively. These parameters are determined following in He et al. [38].
In this study, Google Colaboratory is used, and then, the GPU is NVIDIA Tesla P-100 (about
16 GB). Therefore, considering the memory size used in this study, the batch size is set to 3,
considering the memory size used in this study. Additionally, the weight that has already
been trained using the MS COCO dataset as a pre-training weight is employed.
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2.4.2. Cnn Training and Validation

These detection models were trained using four sets of training data described above.
Figure 3 depicts the transition in the loss during training and validation for each case.
As described above, Mask R-CNN employs cross-entropy as the loss function, which is the
sum of three loss terms: a loss term from a class categorizing and regressing a bounding box,
and a term for estimating the semantic segmentation mask. According to Figure 3a, in Case
1, where no augmentation was performed, the loss during training gradually decreased,
and the smallest value occurred during the 190th training interval, at 0.374. On the other
hand, the loss gradually increased at validation. As the data used for training was smaller,
overtraining of the data occurred. In Cases 2, 3, and 4, the number of training data items
was increased. This stabilized for both training and validation and was seen to decrease
gradually. In addition, comparing Case 2 (Figure 3b), in which CutMix was performed
once, with Case 3 (Figure 3c), in which it was performed twice, it is found that there are
approximately the same values for both training and validation, so the number of times
CutMix is performed was not seen to have a significant impact on loss for each.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 3. Training and validation loss in each case.

Furthermore, although the learning loss in Case 4 is larger than in Cases 2 and 3,
the validation loss is not much different from Cases 2 and 3 (Figure 3d). In all three
cases except Case 1, the training loss always exceeds validation loss. That is to say, it
is possible that this model cannot learn the training data efficiently as the training data
becomes complex by augmentation such as CutMix. The unprocessed validation data has
continuity in the slope failure regions. However, the training data is augmented by CutMix,
but lacks continuity compared with the original and validation data. Therefore, the latter
loss is assumed to be higher than the former. In this study, among the training results for
each model, the test was performed using the weight with the smallest loss step when
performing the validation shown in Table 2.
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Table 2. Minimum validation loss.

Value/Number of Epoch

Case 1 1.621/ 32
Case 2 1.129/178
Case 3 1.200/132
Case 4 1.255/152

3. Results of Detection
3.1. Results of Slope Failure Detection

The regions of slope failures were detected using the trained model constructed in the
previous section. In all cases described above, 145 images are used for test data. However,
a few examples are shown in this paper due to space limitations. Examples of detection
results that were detected correctly for all cases are shown in Figure 4, examples in which
they were not detected correctly, in any case, are shown in Figure 5, and examples where
the regions that could be detected accurately decreased in the order of Cases 2, 3, 4, 1, are
shown in Figure 6. In each figure and the detection results, the original and correct images
are shown in the top section of the figure.

From Image A (Figure 4), the shapes of slope failure regions can be recognized in all
of the detection results in the situation the slope failure occurs over a wide area. Other than
Case 4, it is possible to capture complex shapes at the bottom of the image. Moreover, in the
case of Image B (Figure 4), even when the shape of the failure region is particularly detailed,
it can largely be detected in all cases. In addition, misdetection of the non-failure region did
not occur in any of the cases. Only the failure regions were appropriately detected, even
for images, including non-damaged areas, such as houses and roads, as shown in Image C
(Figure 4). Hence, it can be judged that regardless of the number of data items used in the
training and method of augmentation, if the collapse area is visible, slope failure regions
are detectable in all cases. As mentioned above, there are many cases where slope failure
regions could be detected in all cases. However, some cases could be difficult to detect.
However, there were no situations where slope failure regions within the image could not
be detected for all cases. More than half of the cases consisted of areas where they could be
at least partially detected. As shown in Image D (Figure 5), in cases involving damage over
a wide area, as seen at the top of the image, this could be effectively detected.

These areas cannot be detected in many cases if the failure region is surrounded by
trees or in a shadow, as shown at the bottom. Similarly, these are detected in many images,
such as Image B in Figure 4 in cases where the failure regions are extremely detailed, but not
in some images, such as Image E in Figure 5, they were only partially detected. For cases
like Image E in Figure 5, where the failure region is exceptionally detailed and is blocked
due to being surrounded by trees or shadows such that it cannot be detected, even using
human eyes, it may be difficult to judge whether these are non-failure regions, such as
rivers or roads, or failure regions including debris. As shown above, the surrounding
trees and the tree shadows make detecting the slope failure region difficult. Among the
slope failure regions that the detection model could not detect, there were cases where
even humans could not accurately detect whether the area was a slope failure region,
a road, or a river. As described above, there were cases where the collapse area was not
detected when it was very narrow or when trees or their shadows hid it. However, in Cases
2 and 3, the entire regions were detected correctly in most cases, as shown in Figure 4.
As shown in Figure 5, it is mostly Cases 1 and 4 that are not detected correctly. For example,
in Image F and G, as shown in Figure 6, the regions for which the failure region cannot be
detected correctly tend to decrease in the order of Cases 2, 3, 4, and 1. As shown in Image
F (Figure 6), in Cases 2 and 3, both edges of the failure region can be accurately detected.
On the contrary, in Case 1, neither side of the failure region, and in Case 4, the bottom of
the image one-third cannot be detected. As for Image G (Figure 6), only a part of the failure
region in the upper part of the image was not detected in Case 2, except the lower part of
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the failure region vertically in the image was not detected in Cases 3 and 4, and the entire
area was not detected in Case 1. Hence, although Case 2 is generally detected correctly in
many cases, the other cases, Cases 3, 4, and 1, have more detection omissions in that order.

Image A Image B Image C
Aerial photographs

Image A Image B Image C
Ground truth

Result of Case 1 Result of Case 2 Result of Case 3 Result of Case 4
Results of image A

Result of Case 1 Result of Case 2 Result of Case 3 Result of Case 4
Results of image B

Figure 4. Cont.
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Result of Case 1 Result of Case 2 Result of Case 3 Result of Case 4

Results of image C
Segmentation results

Figure 4. Segmentation results (Examples of detectable cases). The images in first and second lines
show the original aerial photographs and the ground truth, which indicates the area of slope failure
regions in red in the aerial photograph, respectively. The images in the third to fifth lines show the
results of detecting slope failure regions for images A, B, and C shown in the first line, respectively.
The detection results are shown in the order of Case 1, 2, 3, and 4 from the left to right. Even if the
slope failure region has a complex shape, the slope failure regions can be recognized in all detection results.

Image D Image E

Aerial photographs

Image D Image E
Ground truth

Result of Case 1 Result of Case 2 Result of Case 3 Result of Case 4
Results of image D

Figure 5. Cont.
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Result of Case 1 Result of Case 2 Result of Case 3 Result of Case 4
Results of image E

Segmentation results

Figure 5. Segmentation results (Examples of partially undetectable cases). The images in first and
second lines show the original aerial photographs, and the ground truth, which indicates the area
of slope failure regions in red in the aerial photograph, respectively. The images in third to fourth
line show the results of detecting slope failure regions for images D and E shown in the first line,
respectively. The detection results are shown in the order of Case 1, 2, 3, and 4 from the left to right.
Where the failure region is exceptionally detailed and is blocked due to being surrounded by trees or
shadows such that it cannot be detected, even using human eyes, it may be difficult to judge.

Image F Image G

Aerial photographs

Image F Image G

Ground truth

Result of Case 1 Result of Case 2 Result of Case 3 Result of Case 4
Results of image F

Figure 6. Cont.
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Result of Case 1 Result of Case 2 Result of Case 3 Result of Case 4
Results of image G

Segmentation results

Figure 6. Segmentation results (Examples of Cases 2, 3, 4, and 1 detected correctly in that order).
The images in the first and second lines show the original aerial photographs and the ground
truth, which indicates the area of slope failure regions in red in the aerial photograph, respectively.
The images in the third to fourth lines show the results of detecting slope failure regions for images F
and G shown in the first line, respectively. The detection results are shown in the order of Case 1, 2, 3,
and 4 from the left to right. Case 2 is generally detected correctly in most cases, while the other cases
have more detection omissions in the order of case 3, 4, and 1.

3.2. Accuracy Assessment

Based on all detection results, the accuracy of each model is evaluated. The accuracy of
each model can be evaluated based on the detection results from each section. In this study,
we perform the calculations following equations using TP, FP, FN, and TN as shown in the
confusion matrix (Table 3). Each model was evaluated regarding the accuracy, precision,
recall, specificity, and F1 score. Accuracy is the ratio at which failure regions and non-
failure regions are correctly detected in terms of the whole image; precision is the ratio that
failure regions were correctly detected as failure regions; recall is the ratio of the places
where failure regions are correctly detected as failure regions; specificity is the ratio that
non-failure regions were correctly detected as non-failure reasons, and the F1 score is the
harmonic mean of the precision and recall rates described above.

Accuracy =
TP + TN

TP + FN + FP + TN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

FP + TN
(5)

Specificity =
TN

FP + TN
(6)

F1score =
2(Precision × Recall)

Precision + Recall
=

TP
1 + FN+FP

TP
(7)

Table 3. Confusion matrix.

Prediction Class
True Class Slope Failure Regions Non-Slope Failure Regions

Slope failure regions TP FP
(True Positive) (False Positive)

Non-slope failure regions FN TN
(False Negative) (True Negative)

A confusion matrix created based on the detection results for each case is shown in
Table 4. Then, the sum of pixels in the detection area (i.e., red area in the result figures) in
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all test images is shown in Table 4. The confusion matrix is shown in Figure 7. The red
regions in the test images are TP and FP, indicated by circles in Figure 7. Each pixel is sorted
according to the confusion matrix (Table 3), respectively. In this study, the non-slope failure
region is everything except slope failure, as only the detection of the slope failure region is
conducted in Mask R-CNN. That is, subtracting the number of pixels in the slope failure
region from the total number of pixels in a single image yields the number of pixels in the
non-slope failure region. The detection accuracy calculated based on the confusion matrix
is shown in Table 5. Based on Table 4, pixels (TP, TN) where the failure regions/non-failure
regions were correctly detected as failure/non-failure regions are most common in Case 2.
On the contrary, pixels (FN) where the failure regions were most frequently erroneously
detected as non-failure regions were most common in Case 1, and pixels (FP) where non-
failure regions were most erroneously detected as failure regions were most common in
Case 3. From the calculation results (Table 5) for each detection accuracy calculated based
on these results, we can see that Case 2 had the highest values for the three indicators
of accuracy, recall, and the F1 score. There was no significant difference in indicators
other than recall or the F1 score between Cases 1 and 4, where limited training data and
overtraining occurred. The low recall was the cause of the low F1 score. The recall was the
lowest in all cases, implying that many actual failure regions were missed and misidentified
as non-failure regions. Comparing Cases 2 and 3, Case 3 had the lowest value for all five
indicators, even though the number of trained image data was the same as Case 2. It is
attributed to performing CutMix twice when augmenting the training data. As a result,
it is assumed that the training data became more complex, and information on the form
of the damaged region was lost. This means it had the highest ratio of correctly detecting
failure regions and correctly detecting non-failure regions as non-failure regions.

Figure 7. Confusion matrix overview.

Table 4. Breakdown of detection result in each case.

Prediction Class
True Class Slope Failure Regions Non-Slope Failure Regions

Case 1 6,527,912 2,518,387
Slope failure Case 2 8,891,079 2,447,233

regions Case 3 8,650,994 3,175,846
Case 4 6,865,760 1,603,504

Case 1 6,153,051 136,844,170
Non-slope failure Case 2 3,789,884 136,915,324

regions Case 3 4,029,969 136,186,711
Case 4 5,815,203 137,759,053
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Table 5. Accuracy of detection results.

Case 1 Case 2 Case 3 Case 4

Accuracy 0.943 0.959 0.953 0.951
Precision 0.722 0.784 0.731 0.811

Recall 0.515 0.701 0.682 0.541
Specificity 0.982 0.982 0.977 0.988
F1 score 0.601 0.740 0.706 0.649

Furthermore, when comparing the precision of Case 1 and Case 3, the difference was
only 0.009. When comparing the recall of Case 1 and Case 4, the difference was only 0.026.
As a result, it can be concluded that increasing the training data does not always improve
detection accuracy, as shown in Cases 3 and 4, even when the training data is increased,
based on the fact that even when training data is augmented, this is at approximately
the same accuracy as cases like Case 1, where there is less training data, and that when
compared with Cases 2 and 3, Case 2 has higher values for indicators, and to increase
the detection accuracy, it is considered preferable to not perform processing in a way that
greatly changes the form of the target region including the original image when augmenting
the training data. The previous section stated that the recall of each case decreased in the
order of Cases 2, 3, 4, and 1. Using the evaluation metrics, it is found that Case 2 has the
highest detection accuracy. As the training model created in this study is envisaged to
grasp the situation at the time of the disaster, it is expected that the number of oversights in
detecting disaster occurrence areas should be reduced as much as possible. For this reason,
recall, which shows the ratio of actual slope failures correctly detected as slope failure, is
considered the most important indicator. In addition, as it is also important to detect failure
regions accurately, it is better to consider the F1 score. For this reason, when looking at the
training models constructed in this study, the most useful for grasping the situation at the
time of the disaster were the two training models with the highest recall and F1 score.

Each model was evaluated in terms of accuracy, precision, recall, specificity, and the
F1 score. Accuracy is the ratio at which failure regions and non-failure regions are correctly
detected in terms of the whole image; precision is the ratio that failure regions were correctly
detected as failure regions; recall is the ratio of the places that were failure regions being
correctly detected as failure regions; specificity is the ratio that non-failure regions were
correctly detected as non-failure reasons; and the F1 score is the harmonic mean of the
precision and recall rates described above.

A confusion matrix created based on the detection results for each case is shown in
Table 4. Then, the sum of pixels in the detection area (red area in the result figures) in all
test images are shown in Table 4, and each pixel is sorted according to the confusion matrix
(Table 3), respectively. In this study, non-slope failure region is everything except slope
failure region since only the detection of slope failure region is conducted in Mask R-CNN.
The detection accuracy calculated based on the confusion matrix is shown in Table 5. Based
on Table 4, pixels (TP, TN) where the failure regions/non-failure regions were correctly
detected as failure/non-failure regions are most common in Case 2. On the contrary, pixels
(FN) where the failure regions were most frequently erroneously detected as non-failure
regions were most common in Case 1, and pixels (FP) where non-failure regions were most
erroneously detected as failure regions were most common in Case 3. From the calculation
results (Table 5) for each detection accuracy calculated based on these results, we can see
that Case 2 had the highest values for the three indicators of accuracy, recall, and the F1
score. There was no significant difference in indicators other than recall or the F1 score
between Cases 1 and 2, where training data was limited and overtraining occurred.

The low recall was the cause of the low F1 score. The recall was the lowest in all cases,
implying that a large proportion of actual failure regions were missed and misidentified
as non-failure regions. Comparing cases 2 and 3, Case 3 had the lowest value for all five
indicators, even though the number of trained image data was the same as Case 2. It is
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attributed to perform CutMix twice when augmenting the training data. As a result, it
is assumed that the training data become more complex and information on the form of
the damaged region was lost. This means it had the highest ratio of correctly detecting
failure regions and a high ratio of correctly detecting non-failure regions as non-failure
regions. Furthermore, when comparing the precision of Case 1 and Case 3, the difference
was only 0.009, and when comparing the recall of Case 1 and Case 4, the difference was
only 0.026. As a result, it can be concluded that increasing the training data does not
always improve detection accuracy. As shown in Cases 3 and 4, even when the training
data is increased, based on the fact that even when training data is augmented, this is at
approximately the same accuracy as cases like Case 1, where there is less training data,
and that when compared to Cases 2 and 3, Case 2 has higher values for indicators, and to
increase the detection accuracy, it is considered preferable to not perform processing in a
way that greatly changes the form of the target region including the original image when
augmenting the training data. In the previous section, it was stated that the recall of each
case decreased in the order of Cases 2, 3, 4, and 1. Using the evaluation metrics, it is found
that Case 2 have the highest accuracy in detection.

As the training model created in this study is envisaged to be used to grasp the
situation at the time of disaster, it is expected that it will reduce failures in detection areas
where disasters have occurred. For this reason, recall, which shows the ratio of actual slope
failures correctly detected as slope failure, is considered to be the most important indicator.
In addition, as it is also important to detect failure regions accurately, it is better to also
consider the F1 score. For this reason, when looking at the training models constructed
in this study, the most useful for grasping the situation at the time of the disaster was
considered to be the two training models with the highest recall and F1 score.

4. Discussion

In this study, automatic detection of slope failure regions by Mask R-CNN uses only
images of the damaged regions to create the information to expedite recovery activities
after the disaster. In some studies, slope failure images and pre-disaster information such as
geographical information and pre-disaster image of the target area have been used as input
data such as Ref. A and B [11,14]. In order to clarify the position of this study, in addition to
these studies, previous studies used only slope failure region images as input data, such as
Ref. C and D [12,43], which are also described, in comparison to our study. As this study’s
images and augmentation method differs from previous studies, only the comparison is
provided for reference purposes.

The detection accuracies of Case 1 without augmentation, Case 2 with the most
accurate in this study, and four previous studies are shown in Table 6. Then, if multiple cases
have been examined in previous studies, the case with the best accuracy is described for
Ref. A and B, not only slope failure images, but also other information such as geographical
information, the pre-disaster image of the target area, and an ortho-mosaic map generated
from slope failure images have been used as input data. For Ref. C and D, only the images
of past disasters are used as training data, and post-disaster images are used as validation
and test data. The authors conduct Ref. D, and the detection methods and parameters
are similar to this study. Table 6 shows that the case of using the combination of multiple
data in addition to post-disaster images such as Ref. A and B obtain higher accuracy
than using only slope failure regions images such as Ref. C and D. This depends on the
method adopted for the training model and the images. However, the most significant
factor is the variety of data used. Although the accuracy obtained using the proposed
method is worse than that of Ref. A and B, which use multiple data, the method of Case 2
obtained higher accuracy than the Ref. C and D used only images taken at the damaged
area. Case 1, in which no augmentation is performed, has the same accuracy as Ref. D
where augmentation is performed by rotating the training data. However, augmentation
with CutMix, etc., as shown in Case 2 resulted in higher recall and F1 score than Ref.
D. The method employed in this study enabled a significant reduction in the number of
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oversights. Detecting the damaged regions at disaster occurred by machine learning model
trained using only the post-image of disaster leads to provide information to disaster site
requiring urgent action quickly. On the other hand, it is better to use as in Ref. A and
B if multiple data are available, as the detailed and accurate information on the disaster
site is needed at some time after the occurring disaster. The difference between this study
and previous studies (Ref. A and B) is the variety of data. In addition, the differences
between this study and previous studies (Ref. C and D) that used post-disaster images for
training are that grayscale images are used as training data (Ref. C), the augmentation is
not performed (Ref. C), and that only rotation is used as the augmentation method (Ref. D).
Therefore, it can be said that the influence of the color of aerial photographs and the use of
arbitrary augmentation methods to training data contributed greatly to the improvement
of accuracy. We considered that it is important to have a large number and variety of data
since A and B, which employed multiple data as training data, were more accurate than this
study. Therefore, as a measure for improvement, it may be effective to employ new images
of narrow slope failure regions or areas darkened by tree shadows as training data, or to
construct a new detection model specifically for such regions, which were not detected in
this study.

Table 6. Comparison of detection accuracy.

Case 1 Case 2 Ref. A Ref. B Ref. C Ref. D
of This Study of This Study [11] [14] [12] [43]

Accuracy 0.943 0.959 - - - 0.949
Precision 0.722 0.784 0.93 0.89 0.214 0.741

Recall 0.515 0.701 0.94 0.82 0.784 0.578
Specificity 0.982 0.982 - - - 0.982
F1 score 0.601 0.740 0.93 0.85 0.336 0.650

5. Conclusions

In order to quickly and accurately assess the damaged situation when slope failures
occur due to disasters such as heavy rain or earthquakes, the slope failure region was
detected using Mask R-CNN. In this study, the effects of image augmentation on detection
accuracy were grasped. The results showed that augmentation with CutMix increased
recall by 0.186 and F1 score by 0.139. In addition, the accuracy of other indicators were
equal to or higher than that of the case where augmentation is not performed. The detection
model trained using augmentation data created by maintaining the shape of the failure
region was more accurate in detecting the failure region than trained using augmentation
data created with complex processing that would significantly degrade the shape of the
failure region shown in the original image. In addition, comparing cases of using training
data in which complex augmentation processing had been performed multiple times on
the original image and cases in which only the original image was used as training data
without performing augmentation, similar values were obtained for each evaluation matrix.
In other words, the effect of increasing the amount of data on accuracy is small when
complex processing is performed on training data. It is important to consider the purpose
for which it is to be used since the criterion for what constitutes high accuracy are vague.
For example, practitioners think that it is fast and accurate enough in terms of the disaster
assessment in the initial stage, which is assumed to be the unambiguous purpose. In this
study, only post-disaster images are used as training data for detecting slope failure regions.
In order to obtain higher accuracy with such as restriction on the type of training data,
it is necessary to use methods not investigated such as new augmentation focusing on
these undetected regions and adjusting the image’s brightness or contrast. This study
similarly treats slope failure regions caused by different factors such as earthquakes and
heavy rainfall. However, it is possible to capture the feature of the collapse point for each
factor, which may lead to improved accuracy.
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