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Abstract: Data reliability is of paramount importance for decision-making processes in the industry,
and for this, having quality links for wireless sensor networks plays a vital role. Process and machine
monitoring can be carried out through ANDON towers with wireless transmission and machine
learning algorithms that predict link quality (LQE) to save time, hence reducing expenses by early
failure detection and problem prevention. Indeed, alarm signals used in conjunction with LQE
classification models represent a novel paradigm for ANDON towers, allowing low-cost remote
sensing within industrial environments. In this research, we propose a deep learning model, suitable
for implementation in small workshops with limited computational resources. As part of our work,
we collected a novel dataset from a realistic experimental scenario with actual industrial machinery,
similar to that commonly found in industrial applications. Then, we carried out extensive data
analyses using a variety of machine learning models, each with a methodical search process to adjust
hyper-parameters, achieving results from common features such as payload, distance, power, and bit
error rate not previously reported in the state of the art. We achieved an accuracy of 99.3% on the test
dataset with very little use of computational resources.

Keywords: wireless sensor network; link quality estimation; deep learning; failure detection

1. Introduction

ANDON tower lamps have evolved from simple alarm systems with visual signals in
the traditional factory towards a wireless sensor network (WSN) at the heart of Industry 4.0
capable of remotely identifying machine status whilst getting information about the work-
shop productivity [1,2]. The alarm signals for ANDON tower lamps are established by the
international standard IEC 60073:2002 [3] in which the red code sends a fault or emergency
stop message, the amber code sends a warning signal for operation in an abnormal process
condition or machine setup, and the green code indicates a normal operation signal, whilst
the blue and white codes represent user-defined signals. These types of systems are readily
available on the market, such as NH-3FV2W from the company Patlite [4], TL70 from
Banner Engineering Corp. [5], and SmartMonitor by Werma Signaltechnik [6].

In the industry, the information generated by WSN such as wireless ANDON tower
systems is of paramount relevance because it allows for on-time error correction, applying
containment measures and preventing different problems not possible to anticipate in a
traditional industry. The reliability of such information is even more relevant in Industry
4.0 since it is used for different automation processes aided by the existence of intelligent,
autonomous, and collaborative machines that communicate with each other in real-time
to perform actions based on the environment data [7]. In this regard, machine learning
models such as deep neural networks (DNNs) have made remarkable progress that may
have a big impact in the industry with highly reliable analytical solutions [8].
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1.1. Application of Machine Learning in the Industry

Deep learning (DL) is a subset of ML methods that aim to model data with complex
architectures that combine different non-linear transformations. The fundamental compo-
nents of DL models are artificial neural networks (ANNs), which combine to form DNNs.
These techniques have enabled significant progress in the fields of image processing [9,10],
pattern recognition [11] including facial recognition [12], speech recognition [13], computer
vision [14], automated language processing [15], text classification [16], and recently, in the
link quality estimation for a WSN. The fundamental characteristic of a DNN is the inte-
gration of multiple sequential layers, each made of multiple artificial neurons that require
proper initialization and optimization algorithms for optimal performance. The right choice
of DNN architecture can lead to results with outstanding performance compared to other
methods [17]. In addition, the application of a multilayer ANN was shown to achieve better
performance in pattern recognition in complex and highly variable environments [18].
Within the industrial sector, the multilayer perceptron (MLP) architecture is the one with
the highest number of application cases partly due to its simplicity, which allows its im-
plementation in devices with limited computational resources, such as those commonly
found in the industry in developing countries [19]. The MLP has a basic architecture, where
each unit or neuron in one layer is linked to all units in the next layer (fully connected) but
has no link with neurons in the same layer. The number of hidden layers, the number of
neurons in each layer, and the activation function define the architecture of the MLP model.

The DL paradigm has been used successfully in classification problems; however,
neural networks with many layers are sensitive to weight initialization and premature
learning stoppage as the gradient values decrease towards small values, the phenomenon
which is known as the vanishing gradient problem [20]. To ameliorate this problem, we
may use the rectified linear unit (ReLU) activation function which has a maximum gradient
value of 1, without saturating, allowing the network to continue learning. For this reason, in
the present paper, the ReLU function was used as the activation function of the MLP model.

With the continuous increase in device connectivity and computing capabilities of
digital systems, some industries have succeeded in incorporating new methods based on
artificial intelligence (AI). Hence, data provided by a wide variety of sensors are used to
detect and prevent a possible failure or breakdown, especially via machine and process
supervision systems. Indeed, failure detection is critical in the industry because it allows
determining if it is necessary to stop a process and carry out maintenance actions [21].
Márquez-Vera et al. [22] use a DL model with long short-term memory (LSTM) in a fail-
ure detection case. They reported that the neural network was more sensitive to hyper-
parameters such as batch size or the learning rate regarding the number of layers, which
increased until no improvement was found.

1.2. Motivation

In today’s industry, the ANDON tower works as a sensor node in the WSN that sends
an alarm signal without information about data reliability. After a comprehensive literature
survey, we found that this alarm signal in conjunction with link quality classification has
not been used in applications for wireless ANDON towers in the industry. In this paper,
we propose a novel application for a deep neural network model based on a multilayer per-
ceptron (MLP) to predict the link quality estimation (LQE) and consequently, the reliability
of the information used for decision making in the workshop. In addition, the LQE can
also be used to improve WSN performance.

The packet reception rate (PRR) was used to define the LQE classes, and 10,000 data
points were gathered from a realistic experimental scenario using actual industrial machin-
ery. Using these data, we carried out comprehensive experimentation comparing different
machine learning (ML) models, including random forest (RF), support vector machines
(SVM), K-nearest neighbors (KNN), gradient boosting (GB), and MLP, which displayed
the best performance from all the models, achieving an accuracy >99% on the test dataset
after a thorough hyper-parameter tuning. In order to choose the most suitable learning rate,
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we carried out extensive random searches in the range of 3 × 10−8 ≤ LR ≤ 3 × 10−2 until
finding that an LR = 2.95 × 10−5 achieved the best performance in the training and valida-
tion sets. In spite of the model’s simplicity, MLP achieved high precision in classification
tasks, making it the ideal model for our industrial application due to its low computational
requirements both for training and inference.

The remainder of this paper is organized as follows. Section 2 presents a review of
previous work related to our research. Then, Section 3 refers to materials and methods
and describes the hardware, MLP model, and dataset, and Section 4 shows the results
and comparison to other machine learning models. Finally, Sections 5 and 6 present the
discussion and conclusions, respectively.

2. Related Work

Machine monitoring plays an important role in the industry due to its effects on
production quality and production cost. It can be divided into two types, machine condition
monitoring and machine process monitoring. The first one refers to the monitoring of
machine components, such as gears and bearings, and the second one refers to monitoring
workpieces and tools. The first step in machine monitoring is signal acquisition, for
example: vibration, temperature, cutting force, product labelling, and others. In this
context, WSNs are the key to achieving advanced automated systems by turning traditional
machines into modern machines. The synergy between WSN and machine learning allows
intelligent decision making and LQE estimation with efficient computational time and high
accuracy [23].

The propagation environment of radio frequency signals can change in space and time
and affect the quality of the link in WSN. Consequently, to achieve reliable and error-free
transmission, the transceiver’s parameters must be adjusted depending on the best LQE
estimate. Over the last few years, machine learning algorithms have been used to estimate
LQE due to their ability to process and learn from large amounts of data, which can be
gathered from various scenarios and technologies [24].

The link quality metrics for LQE algorithms fall mainly into three categories: software,
hardware, and scores [25]. The software LQE metrics such as packet reception rate (PRR),
required number of packet retransmissions (RNP), and expected transmission count (EXT)
are calculated using the transmission variables. The PRR measurement is the ratio of the
number of packets successfully received to the number of packets transmitted within a time
window, but PRR-based algorithms are not sensitive to rapid fluctuations in link quality [26].
The RNP measurement is the average number of packet transmissions and retransmissions
required before a successful reception; nonetheless, it is unstable and it cannot estimate
packet delivery for asymmetric links successfully [27]. The EXT measurement refers to the
number of transmissions required to send a complete packet; however, its implementation
often fails in congested networks [28].

The hardware LQE metrics such as received signal strength indicator (RSSI), link qual-
ity indicator (LQI), and signal to noise ratio (SNR) are acquired from the transceivers. The
RSSI is the measurement of the intensity of the signal present in the receiver that evaluates
the quality of the link via supervised learning algorithms, and it classifies the quality of
a link as high or low for a given routing protocol. However, the RSSI indicates only the
power of the received signal at the receiver, and it does not provide an accurate measure
that considers the affectation due to noise. The LQI measurement is a characterization
of the strength or quality of a received packet according to the IEEE 802.15.4 standard;
however, the algorithms based on LQI have three disadvantages:

1. The variance of the LQI increases significantly as the quality of the link degrades;
2. There is no consensus among transceiver manufacturers on how to calculate LQI;
3. It is only useful for transceivers that work with the IEEE 802.15.4 standard [29].

The SNR metric is the difference, in decibels, between the received signal strength and
the floor noise. Despite algorithms based on SNR measurement being easy to implement,
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these are not suitable for random SNR behaviors, and these are unable to provide an
accurate description of link quality [30].

The score algorithms to calculate the LQE metric use various input parameters; for
example, Luo et al. [31] used SNR, LQI, and RSSI of up and down links in a neural network
architecture of seven stacked layers to extract information from the asymmetric charac-
teristics of the input data. Then, the classification was made by an SVM algorithm. This
algorithm is focused for bidirectional communications and it is not suitable for unidirec-
tional communications, such as the application presented here.

The use of physics and software metrics such as SNR, RSSI or PRR allows calculating
the instantaneous LQE parameter without considering its historical trend. In a recent
research, He and Shu [32] proposed an LQE deep forest algorithm that estimates the PRR
from the input of the mean of LQI, RSSI, and SNR metrics and stability parameters CVLQI,
CVRSSI, and CVSNR that the authors calculated as the standard deviation divided by the
mean. Abdel-Nasser et al. [33] predicted the LQE using long short-term memory (LSTM)
and gated recurrent units (GRUs). However, the implementation of these algorithms has
the disadvantage of needing large amounts of historical data for networks that are already
in operation.

Contribution

The most widely used methods to predict the link quality of WSN use input metrics
acquired from the transceiver such as RSSI, LQI, and SNR or metrics calculated by software
such as PRR, RNP, and EXT. Other algorithms seek to improve prediction accuracy using
many metrics, historical data, and statistical trends. However, despite the reported success-
ful results, some of these metrics cannot be easily acquired from the transceiver or are not
readily available. In addition, the quality of a link can also be affected by other factors such
as the distance from the transmitter to the receiver, the transmission rate, the data payload,
the transmitter’s power, and the presence of noise and interference, as well as the random
presence of obstacles and objects that can attenuate, reflect, or scatter the radio frequency
signal, consequently increasing the bit error rate (BER).

For complex industrial environments, the application of a DNN classification algo-
rithm is a better choice to predict LQE than other traditional methods based on statistical
models and fuzzy logic [34,35]. Moreover, the MLP model proposed in this paper com-
pared to other machine learning models can help adjust the best WSN parameters, such
as distance, transmission rate, power, and data payload in the transceiver. In addition,
our work differs significantly from the current state of the art because, at the moment,
there is no industrial solution to predict the LQE and the associated information reliability
with alarm signals produced by modern wireless ANDON towers. The application of
this technology will further the digitalization and evolution from a traditional factory to a
smart factory within the Industry 4.0 model, particularly in developing countries, where
the incorporation of new technology is slow and difficult.

3. Materials and Methods

In a WSN with a star network topology, communications occur between two types of
devices, a coordinator node that manages those with the lower nodes, and the lower nodes
that transmit the signal from the sensors to the coordinator node, as shown in Figure 1.

To describe our industrial WSN setup, this section is divided into seven parts; the
first one describes the transceiver used in the ANDON tower that works as a sensor
node; the second one describes the characteristics of the computer equipment used for
the programming of the MLP model; the third one describes the experimental scenario
where data were collected; the fourth one addresses the neuronal network’s features, i.e.,
the model’s input variables; the fifth one is the LQE classification based on PRR, i.e., the
model’s output variables; the sixth describes the dataset structure; and the seventh one
explains the MLP model structure.



Sensors 2022, 22, 6383 5 of 16

Sensors 2022, 22, x FOR PEER REVIEW 5 of 16 
 

3. Materials and Methods 
In a WSN with a star network topology, communications occur between two types 

of devices, a coordinator node that manages those with the lower nodes, and the lower 
nodes that transmit the signal from the sensors to the coordinator node, as shown in 
Figure 1. 

To describe our industrial WSN setup, this section is divided into seven parts; the 
first one describes the transceiver used in the ANDON tower that works as a sensor node; 
the second one describes the characteristics of the computer equipment used for the 
programming of the MLP model; the third one describes the experimental scenario where 
data were collected; the fourth one addresses the neuronal network’s features, i.e., the 
model´s input variables; the fifth one is the LQE classification based on PRR, i.e., the 
model´s output variables; the sixth describes the dataset structure; and the seventh one 
explains the MLP model structure. 

 
Figure 1. Experimental scenario, workshop TecMM, Zapopan, México. 

3.1. Transceiver 
The ANDON tower uses the low-cost NRF24L01 [36] transceiver to send the 

experimental data from the sensor node to the coordinator node, with a computer 
connected to the coordinator node to store the data in a CSV file. The transceiver works in 
the 2.4 GHz free band and allows setting the transmission power at −18 dBm, −12 dBm, −6 
dBm, and 0 dBm. The transmission rate setting options are 250 kbps, 1 Mbps, and 2 Mbps. 
The transceiver uses the SPI protocol for communication with the ANDON tower 
microcontroller. Its maximum range is 30 m, which is sufficient for the maximum distance 
in our experimental scenario of 16 m. The communication tests were realized by sending 
a payload of 2, 4, 8, 16, and 32 bytes. 

3.2. Computer Hardware and Software 
The MLP classification model was developed using the PyTorch library [37] and ran 

on a GPU, whilst the other ML models were developed using the SkLearn library [38]. All 
the models were trained on a standard laptop equipped with INTEL core i7 CPU, 8GB of 
RAM, and an NVIDIA GEFORCE 940MX graphics card. PyTorch is a library developed 
by Meta (formerly Facebook) that facilitates the construction of deep learning projects 
through models coded in Python. For the scientific community, PyTorch has become an 
outstanding deep learning tool due to its accessibility, ease of use, and wide range of 
applications [37]. 

3.3. Experimental Scenario 
The main challenge to implement a wireless ANDON tower for industrial 

monitoring and control systems is satisfying reliability and performance requirements, 

Figure 1. Experimental scenario, workshop TecMM, Zapopan, México.

3.1. Transceiver

The ANDON tower uses the low-cost NRF24L01 [36] transceiver to send the experi-
mental data from the sensor node to the coordinator node, with a computer connected to
the coordinator node to store the data in a CSV file. The transceiver works in the 2.4 GHz
free band and allows setting the transmission power at −18 dBm, −12 dBm, −6 dBm,
and 0 dBm. The transmission rate setting options are 250 kbps, 1 Mbps, and 2 Mbps.
The transceiver uses the SPI protocol for communication with the ANDON tower micro-
controller. Its maximum range is 30 m, which is sufficient for the maximum distance in
our experimental scenario of 16 m. The communication tests were realized by sending a
payload of 2, 4, 8, 16, and 32 bytes.

3.2. Computer Hardware and Software

The MLP classification model was developed using the PyTorch library [37] and ran
on a GPU, whilst the other ML models were developed using the SkLearn library [38]. All
the models were trained on a standard laptop equipped with INTEL core i7 CPU, 8GB of
RAM, and an NVIDIA GEFORCE 940MX graphics card. PyTorch is a library developed by
Meta (formerly Facebook) that facilitates the construction of deep learning projects through
models coded in Python. For the scientific community, PyTorch has become an outstanding
deep learning tool due to its accessibility, ease of use, and wide range of applications [37].

3.3. Experimental Scenario

The main challenge to implement a wireless ANDON tower for industrial monitoring
and control systems is satisfying reliability and performance requirements, where some
accepted indicators for the reliability of the physical layer in each node are the quality of the
wireless link, based on PRR and BER [39]. Figure 1 shows the experimental scenario where
the communication tests of the ANDON towers were carried out and where experimental
data were acquired. The ANDON tower worked as the sensor node in the WSN, with its
transceiver programmed to send 100 test data packets to the receiver node that worked as
the coordinator node. The receiver node calculated the PRR from the correctly received
packets. Data were saved in a computer connected to the coordinator node. The receiver-
coordinator node was placed in a fixed position in the workshop, while the location of the
sensor-transmitter node was changed according to the distances selected for the experiment.
A star topology was used in the network.

3.4. Neuronal Network’s Features

Our classification model to predict the LQE was trained on an original dataset with
the following features: the transmission rate x1, the transmitter power x2, the distance
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from the transmitter to the receiver x3, the payload x4, and the bit error rate x5. Table 1
shows statistical information of the input data. The data rate, power, and payload were
collected from the transceiver configuration. Distance data were collected by locating the
sensor node at different positions in the experimental scenario and the bit error rate (BER)
was calculated with (1), where f = 8n is the length of the packet in bits, and n is the data
payload [40].

BER = 1 − PRR( f−1) (1)

Table 1. Statistical information of the input data.

Rate
x1

Power
x2

Distance
x3

Payload
x4

BER
x5

count 10 k 10 k 10 k 10 k 10 k
mean 1101.9 kbps 272.9 mW 8.9 m 13.9 bytes 0.0144
std 699.2 kbps 376.7 mW 4.4 m 11.4 bytes 0.0328
min 250 kbps 15.85 mW 1 m 2 bytes 0.0
max 2 Mbps 1000 mW 16 m 32 bytes 0.470

3.5. LQE Classification Based on PRR

The PRR measurement is used as a classification parameter in the LQE prediction
model [31–35]. In the experimental scenario presented in Figure 1, the transmitting node
periodically sent 100 test packets to the receiver node that calculated PRR. The LQE was
related to the rate of packets received successfully. Forecast categories were divided accord-
ing to (2). We considered that a PRR smaller than 0.89 is not acceptable for our industrial
application; 2500 random samples were collected for each of the four LQE categories.

y = f(PRR) = f (x) =


1, Best PRR = 1
2, Good 0.96 < PRR ≤ 0.99
3, Common 0.89 < PRR ≤ 0.96
4, Bad PRR ≤ 0.89

(2)

Figures 2–5 show the scatterplots of the experimental measurements for distance,
transmission rate, power, and data payload against BER. The LQE classification is denoted
by numbers in the scatterplots, where the best subset is denoted by number 1, good by
number 2, common by number 3, and bad by number 4, as explained in (2). The BER
observation range in the scatterplots was chosen to identify the four forecast categories,
and we can see that the BER mean value was low because experimental data were gathered
with low noise working conditions, i.e., from (1), we can see that BER = 0 when PRR = 1.
The scatterplot in Figure 2 shows that BER decreased with distance. In Figure 3, we did not
see a strong relationship between transmission rate and the BER variable; however, forecast
categories 1 and 2 had low BER values. On the other hand, increasing the transceiver’s
power improved the quality of transmission with better BER values, i.e., more data packets
without errors arrive at the receiver, whilst data from categories 1 and 2 tended to have
lower BER values, as shown in Figure 4. For the NRF24L01 transceiver, a high payload
increased the transmission quality, and finally, Figure 5 shows a clear division between
forecast categories. We selected values of rate, payload, and power based on the NRF24L01
transceiver characteristics.
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3.6. Dataset

From the experimental raw data, we selected 10,000 random data. In order to avoid the
problem of class imbalance [35], 2500 random samples were selected for each of the four LQE
categories. Then, 80% of the dataset was used for training, 10% for validation, and 10% for
testing. A mini-batch size of 2048 data points was chosen with a random shuffling method.

Figure 6 shows the dataset’s structure. The input variables data rate, power, and
payload depend on the transceiver’s setting options, in contrast to the distance and BER
that depend on experimental measurements.
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3.7. Estimation Model

The multilayer perceptron is one of the most established deep learning models for
non-linear classification and regression. These architectures are frequently used in the
industry to model systems and predict phenomena due to their ease of implementation with
relatively low computational requirements for training compared to other more complex
methods [41]. In addition, an MLP is a suitable option for small workshops in developing
countries such as Mexico, where computational resources are limited and commonly older
than 10 years. The MLP estimation model proposed in the present paper has three hidden
layers, as shown in Figure 7, with the ReLU as the activation function to avoid the vanishing
gradient problem. The inputs to our MLP model were the transmission rate, the transmitter
power, the distance from the transmitter to the receiver, the payload, and the bit error rate.
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In order to select the most suitable learning rate, we realized two random searches. The
first search was performed in a broad range of 3 × 10−8 ≤ LR ≤ 3 × 10−2 for 5000 epochs,
as shown in Figure 8, where we found the best LR = 1.65 × 10−5; then, we repeated the
process within a finer range of 1.55 × 10−5 ≤ LR ≤ 3 × 10−5; this time, the model was
trained for 10,000 epochs (Figure 9). In the first search, we used the confusion matrix to
evaluate the model (Figure 8), and in the second search, we used the metric of accuracy
against epochs (Figure 10). The accuracy metric was calculated by (3) where TP indicates
true positives and TN indicates true negatives.

Accuracy =
TP + TN

Total
(3)
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4. Results

In this section, we present the results of the tuning process of the MLP model (see Table 2)
and the comparison against other machine learning models such as SVM, RF, KNN, and
GB. Experiments on the proposed dataset demonstrated satisfactory results. In order to find
the best hyper-parameters, the performance of the model was evaluated by searching LR
values, i.e., (a) LR = 3 × 10−8, (b) LR = 1.65 × 10−7, (c) LR = 3 × 10−7, (d) LR = 1.65 × 10−6,
(e) LR = 3 × 10−6, and (f) LR = 1.65 × 10−5, as shown in Figure 9. We can see that the MLP
model showed strong performance for a value of LR = 1.65 × 10−5, achieving an accuracy
of 0.996 for the training dataset.
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Table 2. Search of learning rate and accuracy score for training data.

Search Epochs Learning Rate Training Accuracy

First Tuning

5000 3.00 × 10−8 0.465
5000 1.65 × 10−7 0.473
5000 3.00 × 10−7 0.564
5000 1.65 × 10−6 0.800
5000 3.00 × 10−6 0.920
5000 1.65 × 10−5 0.996

Second Tuning

10,000 1.55 × 10−5 0.993
10,000 1.75 × 10−5 0.994
10,000 1.85 × 10−5 0.996
10,000 2.05 × 10−5 0.997
10,000 2.80 × 10−5 0.999
10,000 2.95 × 10−5 1.000

Although the previous results were reasonable, we carried out a second search for a
finer learning rate tuning in the range of 1.55 × 10−5 ≤ LR ≤ 3 × 10−5. The MLP model
achieved an accuracy of 0.993 with LR = 1.55 × 10−5; nonetheless, increasing the learning
rate to LR = 2.95 × 10−5 led to an accuracy equal to 1 for the training data and 0.998 for
the validation set (Figure 11). Figure 12 shows that the MLP model with LR = 2.95 × 10−5

presented neither underfitting nor overfitting issues.
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Comparison with Other Machine Learning Models

In this section, we present comparative experimental results to demonstrate the valid-
ity and effectiveness of the proposed MLP model over other ML alternatives. The random
forest (RF) classifier was tuned with a depth of 3 and 100 estimators, keeping default values
for other parameters. From the experimentation, we noticed that although increasing the
maximum depth of the tree improved the model’s accuracy, it was still below than the
accuracy of other models. Then, we tried with a support vector machine (SVM) classifier
with a hinge loss function and trained for 2000 iterations; here, we noted that an increase
in the number of iterations did not lead to better accuracy. We also tested a K-nearest
neighbors (KNN) model, where we found that k = 3 led to the best results, since larger
values of k led to lower accuracies. The next model we tried was a gradient boosting
(GB) classifier, which built an additive model that led to very good results. To achieve
this, it was tuned with 100 estimators and a maximum depth of 3. The best accuracy was
achieved with a learning rate of 0.0125, with higher learning rates leading to underfitting.
Figures 13 and 15 show the comparison between the proposed model and the other machine
learning alternatives all coded using the SkLearn library [37]. From this experimentation,
we concluded the following:

1. The MLP model had the best performance for the training, validation, and test sets, as
shown in Figures 13 and 15.

2. Although the MLP achieved the best results, the GB model achieved an accuracy only
0.4% lower than that achieved by the MLP.

3. The MLP model required more time to complete the training stage than other simpler
models; nonetheless, once trained, the time it took to make the estimation with the
test data was very brief, approximately 0.02 s, as shown in Figure 14.

4. We demonstrated that the MLP model can be implemented with limited computa-
tional resources and with data gathered from a low-cost transceiver. Despite these
disadvantages, the MLP model was capable of making accurate estimations. In addi-
tion, for industries in developing countries, the application of these technologies can
help the transition into Industry 4.0.
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5. Discussion

The MLP model displayed better accuracies than other ML models; nonetheless, it
required more time to complete its training process. However, it should be noted that its
time performance was in the same order of that of the other models when doing inferences
as tested during our experimentation. This is important for a real application in the
industry because it is possible to adjust the transceiver’s parameters and location inside the
workshop with the aim to increase the reliability of the information sent by the ANDON
towers to the coordinator node. Additionally, reliable metrics of LQE could be used to
evaluate the configuration of a sensor node that works in a real environment. We considered
that a PRR less than 0.89 is not acceptable for this application, and we selected LQE classes
between 0.89 and 1. If LQE was equal to 1, then the alarm signal sent by the ANDON tower
reached higher reliability levels. We used a novel dataset comprised by different input
data types, collected from the transceiver setting option and experimental measurements.
However, some input features to MLP model were restricted to the parameters allowed
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by the transceiver and physical constraints of our setup. As a future work, we suggest
collecting more data from larger distances and payload measurements.

The alarm signal used in conjunction with LQE is a novel application for wireless
ANDON towers, with the potential to ameliorate problems faced by factories located in
developing countries through the incorporation of new technology during transition into
the Industry 4.0 paradigm.

6. Conclusions

In the industry, the information of alarm signal in conjunction with the LQE class is
relevant and represents a new approach to evaluate data’s reliability. In this paper, we
proposed a novel application of a deep learning MLP model for the estimation of the LQE
metric for a WSN integrated by ANDON towers that sends wireless information about
alarm signals or about the operational status of a workshop’s machinery.

The random dataset was gathered from a realistic experimental scenario and split into
80% for training, 10% for validation, and 10% for testing. In order to find the best learning
rate parameter, we realized a methodical tuning process for the MLP model and noted
that a learning rate of LR = 2.95 × 10−5 achieved an accuracy of 99.8% for validation data
without overfitting the training set.

The MLP model achieved an accuracy of 99.3% for test data and showed better
performance than other machine learning models such as SVM, RF, KNN, and GB. Despite
the MLP training time, its time to carry out estimations was in the order of ms, i.e., the
same order as that of the other models. From our research and experimentations, we could
see that despite its simplicity, the MLP is a suitable model for workshops in developing
countries with limited computational resources.
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