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Abstract: Target-barrier coverage is a newly proposed coverage problem in wireless sensor networks
(WSNs). The target-barrier is a closed barrier with a distance constraint from the target, which
can detect intrusions from outside. In some applications, detecting intrusions from outside and
monitoring the targets inside the barrier is necessary. However, due to the distance constraint, the
target-barrier fails to monitor and detect the target breaching from inside in a timely manner. In
this paper, we propose a convex hull attraction (CHA) algorithm to construct the target-barrier
and a UAV-enhanced coverage (QUEC) algorithm based on reinforcement learning to cover targets.
The CHA algorithm first divides the targets into clusters, then constructs the target-barrier for the
outermost targets of the clusters, and the redundant sensors replace the failed sensors. Finally, the
UAV’s path is planned based on QUEC. The UAV always covers the target, which is most likely to
breach. The simulation results show that, compared with the target-barrier construction algorithm
(TBC) and the virtual force algorithm (VFA), CHA can reduce the number of sensors required to
construct the target-barrier and extend the target-barrier lifetime. Compared with the traveling
salesman problem (TSP), QUEC can reduce the UAV’s coverage completion time, improve the energy
efficiency of UAV and the efficiency of detecting targets breaching from inside.

Keywords: wireless sensor networks (WSNs); target-barrier coverage; Unmanned Aerial Vehicle
(UAV); trajectory planning; reinforcement learning

1. Introduction

In recent years, UAVs have played a crucial role in sensor networks, and UAV-aided
wireless sensor networks can significantly improve coverage [1]. The rise of UAV-aided
wireless sensor networks has brought new opportunities for many applications, such as
agriculture [2], environmental monitoring [3], data collection [4,5], animal detection [6],
etc. Generally, coverage in WSNs can be classified into target coverage, area coverage,
and barrier coverage [7]. Selecting different coverage types for different applications can
significantly reduce the cost of WSNs. This paper mainly studies barrier coverage which
can detect intrusions. There have been many studies on barrier coverage, which can be
classified into the open and closed barrier. The open barrier is defined as constructing
a continuous barrier that extends from one side to the opposite side. It fails in forming
in an end-to-end fashion and can only detect intrusions from one side. Conversely, the
closed barrier connects the head to the end of the barrier and forms a ring that can detect
intrusions from any direction.

It is extremely critical to timely detect abnormal situations in some applications, such
as wildlife monitoring, epidemic area monitoring, oil leak monitoring, etc. For example,
in a wildlife monitoring scenario, it is necessary to detect intrusions from the outside to
prevent humans from entering by accident or intruding illegally. At the same time, it is
essential to monitor wild animals to detect the animals leaving their habitat or being in
an unusual situation in time. The applications mentioned above must deploy a closed
barrier with a distance constraint between the barrier and targets, and targets inside the
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closed barrier need to be monitored. Obviously, the open barrier and closed barrier cannot
meet these requirements. The open barrier fails to detect intrusions from any direction,
and the closed barrier without the distance constraint between the barrier and targets
cannot detect intrusions from outside in advance. The authors of [8] proposed a target-
barrier coverage type, which forms a continuous closed barrier around the target, and has
a distance constraint between the barrier and targets. In [9], a deterministic deployment
algorithm is proposed to study how to construct the target-barrier with the minimum
number of sensors. Based on [9], reference [10] applied the target-barrier to agriculture.
UAVs are used as mobile nodes and hover to form a closed barrier. When agricultural
pests approach the target-barrier, UAVs quickly land on the ground to kill them. All the
above-mentioned studies have achieved good results, which will be described in the next
section. Nevertheless, there are still some shortcomings, as follows:

• Many existing target-barrier coverage algorithms assume that the sensors are static.
A large number of sensors need to be deployed to guarantee the construction of the
target-barrier successfully, and the cost is high.

• Network lifetime is an essential parameter of WSNs. However, most studies do not
consider the target-barrier lifetime.

• Although the existing target-barrier coverage algorithms can detect intrusion from
outside in time, in most cases, the distance constraint is so large that the target-barrier
cannot detect targets breaching from the inside effectively.

In this paper, we propose a convex hull attraction algorithm (CHA) and a
reinforcement learning-based UAV enhanced coverage algorithm (QUEC). The target-
barrier is constructed with a smaller number of sensors, and the target-barrier lifetime can
be prolonged by moving the sensors appropriately. Simultaneously, the UAV flies to cover
the targets to detect them breaching from inside in time. The main contributions of this
paper are summarized as follows.

(1) We explicitly consider the cost of constructing the target-barrier and the target-barrier
lifetime, and the CHA algorithm is proposed. We divide the targets into clusters and
construct the target-barrier for each cluster’s outermost targets, making it unnecessary
to construct the target-barrier for each target. Then, the redundant sensors are moved
to replace the failed sensors in the target-barrier. Through the above-mentioned
methods, the number of sensors required to construct the target-barrier can be greatly
reduced, and the target-barrier lifetime can be prolonged.

(2) In this paper, we additionally consider the coverage of targets inside the target-barrier
and propose a QUEC algorithm. To the best of our knowledge, this is the first study to
detect target breaching from inside the target-barrier. The UAV’s path is optimized
based on reinforcement learning, and the reward and punishment mechanism of
reinforcement learning are applied to allow the UAV to autonomously choose the
targets to cover. The UAV always covers the target, which is likely to breach from the
inside, to detect targets breaching from inside in time.

The rest of this paper is organized as follows. Section 2 briefly introduces some related
works about barrier coverage, UAV, and reinforcement learning. Section 3 describes the
models and problem formulations. Section 4 presents the proposed CHA and QUEC for
forming target-barrier and planning the UAV’s path in detail. A performance evaluation of
the proposed algorithms is given in Section 5. Finally, Section 6 gives some conclusions.
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2. Related Works

Barrier coverage can be further classified into open barrier coverage, closed barrier
coverage, and target-barrier coverage. In this section, the related works on the barrier
coverage problem of deployment and the planning of the UAV’s path are presented.

Open barrier coverage [11–19]: The authors of [11] pointed out the limitations of
the barrier coverage algorithms based on global information and developed a barrier
coverage protocol based on local information (LBCP). LBCP can not only guarantee local
barrier coverage but also prolong the network lifetime. The authors of [12] investigated the
barrier coverage problem of a bi-static radar (BR) sensor network and proposed that the
optimal coverage can be achieved by adjusting the placement order and spacing of BRs.
In [13], a barrier coverage algorithm based on the environment pareto-dominated selection
strategy is proposed for the coverage problem of multi-constraint sensor networks, which
can improve the coverage ratio effectively. In [14], barrier coverage was applied to the
traffic count, and two coverage mechanisms, weighted-based working scheduling (WBWS)
and connectivity-based working scheduling (CBWS) were proposed. WBWS and CBWS
can significantly reduce the number of nodes required while guaranteeing user-defined
surveillance quality. Reference [15] proposed an efficient k-barrier coverage mechanism.
The number of nodes required to construct a k-barrier is reduced by developing the cover
adjacent net, and a barrier energy scheduling is proposed to achieve its energy balance.
Reference [16] considered the barrier coverage problem in rechargeable sensor networks
based on the probability sensing model and proposed a barrier coverage algorithm called
MCDP. The MCDP calculates the detection probability of each sensor to each space time
point and schedules sensors to stay in the sensing state and charging state in each time
slot. The authors of [17] proposed a coordinated sensor patrolling (CSP) algorithm, which
exploits the information about intruder arrivals in the past to guide each sensor’s movement.
An efficient distributed deployment algorithm was proposed to enhance barrier coverage
in [18]. The proposed algorithm can reduce the communication energy consumption and
the moving distance of sensors. Reference [19] pointed out that by deploying the sink
stations in a mobile sensor network, the number of sensors required to construct a barrier
can be known, and the moving distance of sensors can be optimized. The above-mentioned
barrier coverage algorithms form the open barrier which cannot detect intrusion from
any direction.

Closed barrier coverage [20–23]: Reference [20] proposed an algorithm based on
virtual force to form the closed barrier surrounding the region. This algorithm cannot
directly be applied to construct the target-barrier, because it determines the boundary by
sensing the targets and has no distance constraint between the barrier and targets. In [21],
it is assumed that each sensor can cover an angle, and the 360° coverage can be achieved
by finding multiple coverage sets. Reference [22] proposed a software-defined system
consisting of the cloud-based architecture and the barrier maintenance algorithm to control
the movement of each sensor in real-time to form the barrier surrounding a dynamic zone
adaptively. In [23], multiple multimedia sensors were deployed to form several cover sets,
and each cover set can form a closed barrier in the region of interest. The cover sets were
scheduled to be activated serially to prolong the network lifetime.

Target-barrier coverage [8–10,24]: Reference [8] proposed a target-barrier coverage
algorithm. Four sensors in four directions that are nearest to the targets and satisfy the
distance constraint were selected, and the remaining members were selected based on
the smallest angle with the start sensor and destination sensor. Then, the intersecting
barriers were merged into a barrier to reduce the number of sensors required. However, the
static sensors cannot move, and a large number of sensors are required to guarantee that
the target-barrier can be constructed successfully. Reference [9] proposed a deterministic
deployment algorithm to form the target-barrier and exploited the merging property to
reduce the number of sensors required. Although the algorithm can greatly reduce the
number of sensors required, it is not flexible. Based on [10], the author proposed replacing
static sensors with UAVs. The UAVs are served as mobile nodes and hover to form the
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target-barrier. Although the mobile nodes are applied, the role of the mobile nodes is
only for hovering and landing [10]. The directional sensors were deployed to construct
the target-barrier by rotating the orientation of the sensors [24]. However, this algorithm
cannot be used directly for omnidirectional sensors.

The above-mentioned algorithms can effectively detect intrusions from outside.
Nevertheless, covering the targets and detecting them breaching from inside is not
considered. Compared with mobile sensors, ground unmanned vehicles, and mobile robots,
UAVs that can fly at a higher altitude and have better flexibility are widely used [25,26].
UAVs are usually used for area coverage [27] and target coverage [28] to collect information.
On the other hand, UAVs are also frequently used to assist in task offloading [29], security
authentication [30], trust evaluation [31], etc. Reference [27] investigated the effects of
UAV mobility patterns on area coverage. Reference [28] proposed a weighted targets
sweep coverage (WTSC) algorithm. Although WTSC can improve the coverage quality and
shorten the UAV’s flight time, the trajectory cannot be adjusted in a timely manner when
the environment changes. In the Internet of Vehicles system under the 6G network, UAVs
are to provide a task offloading platform for devices to offload tasks [29]. The authors
of [30] pointed out that UAVs are a flexible solution to the infrastructure-less vehicular
networks for secure authentication and key management. In [31], the UAV is sent to collect
the code wait to be verified from bedrock devices to evaluate the trust of the mobile vehicles
(MVs) to prevent malicious MVs from disseminating the code to the sensing devices.

When the number of UAVs is fixed, it is the key to optimizing the flight trajectory to
improve the coverage quality and reduce energy consumption. There are many meta-
heuristic approaches for planning UAV’s paths, such as the ant colony optimization
algorithm [32], particle swarm optimization algorithm [33,34], genetic algorithm [35],
etc. Reinforcement learning is also applied to plan the path [36–39]. In [36], a UAV serves
as an aerial base station for ground users. The UAV can intelligently track ground users
without knowing the user-side information and channel parameters based on reinforcement
learning. Reference [37] proposed a UAV’s path planning algorithm based on reinforcement
learning, and the UAV can successfully avoid obstacles and provide coverage for targets.
The authors of [38] proposed to use the UAVs as the relay nodes for forwarding signals and
a source node for sending signals and proposed a multi-objective path optimization method
based on Q-learning to adapt to the dynamic changes of the network. In [39], the UAVs
were applied to offload tasks from the user equipment, and a trajectory planning algorithm
based on reinforcement learning was proposed to adapt to the changes in the environment.
In summary, the UAV can better adapt to the environment based on reinforcement learning.
Therefore, the UAV’s path was planned based on reinforcement learning in this paper, and
the UAV can learn the target breaching from inside and cover the target that is the most
likely to breach.

3. Models and Problem Formulations

In this section, the network environment and assumptions in UAV-assisted wireless
sensor networks are introduced first. Then, the models and problem formulations are given.

3.1. Wsn Model

N mobile sensors are randomly deployed in the area, we use the S set to represent
the sensors, S = {S1, S2, . . . , SN}, and the coordinates of the sensor Si are denoted by
(xi

S, yi
S) (i = 1, 2, . . . , N). It is assumed that there are M targets in the area. T represents

the set of targets, that is T = {T1, T2, . . . , TM}, the coordinates of target Tj are (xj
T , yj

T)
(j = 1, 2, . . . , M). The WSN consists of the working sensors and redundant sensors.
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All the sensors are relocated after being deployed randomly. After the initial relocation,
some sensors are used to form the target-barrier. They are marked as working sensors to
detect intrusions. The remaining sensors are marked as redundant and sleeping after the
initial relocation to reduce energy consumption. When the energy of the working sensors
is about to be exhausted, they will be replaced by redundant sensors. In addition, a single
UAV serves as an aerial node to cover the targets to detect if they breach from inside in
time. Assume that the transmission radius of the UAV is R, the flight altitude is H, and the
UAV ground coverage radius is RUAV =

√
R2 − H2. The UAV’s altitude cannot be too high

to ensure that the UAV can cover the ground targets, H < R . To maximize the coverage of
the UAV, the lower the UAV’s altitude, the better. However, the UAV’s altitude cannot be
too low for safety. Therefore, we fixed the UAV’s altitude at the minimum safe size. The
WSN model is shown in Figure 1.

Working 

sensor

Target

UAV

Merged target-barrier

Target-barrier

Distance constraint

dl

Sensing range of

 working sensor

UAV ś flight path 

UAV

Redundant 

sensor

Sensing range of

 redundant sensor

Figure 1. WSN model.

To simplify the problem analysis, our discussion is based on the following
assumptions:

(1) Each sensor knows its location through GPS or localization algorithm [8]. The position
of the targets and the distance constraint dl are stored in the memory of the sensors
before deployment.

(2) All sensors are homogeneous and have the same initial energy. The sensing radius is
RS, and the communication radius of the sensor is RC.

(3) The number of sensors required to form the target-barrier cannot be known in advance,
so it is assumed that the density of sensors is suitable, and the sensors are redundant.

Definition 1. (Target-barrier coverage [8]): A target-barrier is constructed in a closed barrier
around the target. There is a constraint between the target and target-barrier, which depends on
applications and needs.

Definition 2. (Target-barrier lifetime): The target-barrier lifetime is the period from when the
target-barrier starts to work until it cannot work. In this paper, the target-barrier lifetime is
measured by the number of rounds for which the sensors can make the target-barrier work normally.
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3.2. Target-Barrier Coverage Model

The CHA algorithm first divides the targets into clusters according to the locations
of targets and dl , then moves the sensors to form the target-barrier. Because there is a
distance constraint between the target barrier and the target, it can detect intrusion from
any direction in advance. In some extreme cases, if the targets’ locations change, they
would be informed to the sensors through the UAV. Additionally, the sensors would move
to form the new target-barrier.

3.3. Target Breaching Detection Model

The UAV always covers the target that most likely breaches from inside each time.
In this paper, each target is assigned a weight indicating its importance. The greater the
weight, the more likely the target is to breach from inside. Furthermore, the weight will
change as the environment changes. It is noted as W , W ∈ [0, Wth]. Note that the weight of
target m at the time slot t is Wm

t . If Wm
t < Wth, it means that the target is safe and it will not

breach from inside. Otherwise, the target will start breaching from inside. To simplify the
analysis, we assume the weight change ratio is Wave, and the time required to detect target
breaching from inside is denoted as t = (Wth −Wm

t )/Wave.

3.4. Energy Consumption Model
3.4.1. The Energy Consumption of Sensors

In this paper, the sensors move to form the target-barrier and perform the sensing task.
Therefore, we mainly consider the energy consumption of the sensors as moving energy
consumption and sensing energy consumption. A sensor’s moving energy consumption
is Emove = e ∗ dmove, where e is the energy consumption of the sensor as it moves 1 m, and
dmove is the distance that the sensor moves. The sensing energy consumption of a sensor to
perform the sensing task in a round is proportional to R2

S or R4
S [40]. The sensing energy

consumption in a round is ES, and the sensing energy consumption model adopted in this
paper is ES = β ∗ R2

S, where β is the coefficient.

3.4.2. The Energy Consumption of UAV

Assuming the UAV flies at a fixed altitude H and a constant speed Vu. Divide the total
working time of the UAV into T time slots, and the location of the UAV at the time slot t
is qt = (xt

UAV , yt
UAV , H). We consider only the energy consumed by the flight and hover

power and do not include the transmission power. This paper ignores the acceleration and
deceleration during flying, and the flight power is regarded as a constant. The flight power
is Pf , and the energy efficiency of traveling 1 m can be defined as e = Pf /Vu [41]. The
energy consumption of the UAV for the flight distance d f can be expressed as E f = e ∗ d f .
The hover power is Ph, the hovering time of the UAV above the target m is Th

m. Therefore,
the total energy consumption of the UAV is Et = E f + Ph ∗ Th

m.

3.5. Problem Formulations
3.5.1. Target-Barrier Coverage

When the energy of the working sensor reaches the energy threshold, the redundant
sensor would replace the working sensor to prolong the target-barrier lifetime. The fewer
sensors that construct the target-barrier, the more redundant sensors can replace the
working sensors, and the longer the target-barrier lifetime is. Therefore, the optimization
problem is transformed into the problem of how to form the target-barrier with fewer
sensors. The optimization problem is formulated as follows:
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min [
h

∑
i=1
|S(Bh)|] (1)

subject to

d(Si, Tj) ≥ dl , ∀Si ∈ S(Bh), Tj ∈ T(Bh), Bh ∈ B (2)

d(Si, Si+1) ≤ 2 ∗ RS, ∀Si ∈ S(Bh), Bh ∈ B (3)

h

∑
i=1

T(Bh) = M, ∀Bh ∈ B (4)

where B is the set of the target-barriers formed, B = {B1, B2, . . . , Bh}, S(Bh) is the set of
the sensors contained in the target-barrier Bh, T(Bh) is the set of targets surrounded by
the target-barrier Bh, dl is the distance constraint between the target-barrier and targets,
and d(Si, Tj) is the distance between the sensor contained in the target-barrier and target.
Constraint (2) imposes that the distance between the sensors contained in the target-barrier
and the targets is not less than dl . Constraint (3) guarantees that the sensing regions of
sensors overlap with each other in the target-barrier. Constraint (4) shows that all targets
should be surrounded by the target-barrier.

3.5.2. UAV-Assisted Target-Barrier Coverage

The UAV is applied to assist in covering and detecting. When planning the UAV’s path,
it is hoped that the UAV covers the target with the largest weight and completes the tasks
of coverage and detection with lower energy consumption. Therefore, the optimization
problem can be transformed into maximizing the ratio of weights to energy consumption.

max θ (5)

subject to

(xn
t − xn

t−1)
2 + (yn

t − yn
t−1)

2 ≤ V2
u , ∀t = 1, 2, . . . , T (6)

where θ = ∑t∈T ∑m∈M Wm
t /Et.

4. Algorithm Descriptions
4.1. Target-Barrier Coverage Algorithm

When the distance between two targets is not greater than 2dl , placing them on the
same target-barrier can reduce the number of sensors required to form the target-barrier [8].
The CHA algorithm firstly merges the targets that meet the requirement in the same cluster
and constructs target-barrier for only the outermost targets. Through [9,20], we know
that the shortest perimeter enclosing the region is its convex hull. When the target-barrier
constructed is a convex hull, it can significantly reduce the number of sensors required. It
is assumed that the convex hull is attractive. Under the attraction of the convex hull and
the attraction and repulsion between sensors, some sensors would move until they are
uniformly distributed on the convex hull of the region. The steps of CHA are shown in
Algorithm 1, as follows.
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Algorithm 1 Implementation of CHA Algorithm.

Input: T, dl , Sensor’s initial energy E0, round, RS, ES
Output: Target-barrier set with minimum sensors S(Bh) and round

1: Choose a target Tj from T, Bh = Th
⋃

Bh, T = T − Tj
2: While T 6= ∅
3: Find all the targets whose distance from Tj is not greater than 2dl , add to Bh, and

remove from T;
4: Select the target from Bh, repeat 2–3, until no targets can be found from T whose

distance to any target in Bh is not greater than 2dl . In this case, Bh is a cluster;
5: Repeat 1–4 until T = ∅ , and all clusters are obtained;
6: end while
7: Find the outermost targets of all clusters;
8: Some sensors are moved to the convex hull and marked as working sensors, the set

of working sensors is S(Bh). Besides, the remaining sensors are moved to surround the
convex hull, and they are marked as redundant sensors and in sleep;

9: Calculate the remaining energy after all sensors have moved;
10: While (1)
11: The energy consumed by the working sensor in a round is ES, update E0 = E0 − ES,

and round = round + 1;
12: if the number of working sensors with residual energy less than ES is greater than

the number of redundant sensors;
13: break
14: else
15: Find the redundant sensors with the shortest distance from the working sensors,

and the redundant sensors replace the working sensors;
16: end if
17: end while

4.2. Uav Trajectory Optimization

In this section, the UAV’s path is optimized to cover the target and detect it breaching
from inside in time. We hope the UAV can learn the target breaching and then automatically
choose the target to cover. The trajectory of the UAV can be regarded as a Markov decision
process (MDP), and the Q-learning deals with the trajectory of the UAV. We define state
by S, action by A, and reward by R. At each time slot, the agent observes the state s ∈ S
of the current environment and selects an action a ∈ A based on the current state and the
experience learned in the past. Then the agent receives a reward r and transitions to a new
state s′ ∈ S according to the transition probability P[St+1 = s′, Rt+1 = r|St = s, At = a].
The state, action, and reward defined in this section are as follows.

State: When dividing the monitoring area into multiple grids of equal size, the size of
the monitoring area and the distance between the targets need to be considered. The size
of the grid divided here is size = λ× bdminc, where λ = 1/2 is the proportion parameter,
and dmin is the minimum distance between the targets. The rows are rowsize = w/size,
where w is the width of the monitoring area. At the time slot t, the horizontal coordinates
of the UAV are (xt

UAV , yt
UAV), the corresponding coordinates of the grid are (g, h) =

(dxt
UAV/sizee, dyt

UAV/sizee), and the state of the UAV is state = (g− 1)× rowsize + h [42].
Action: The actions of the UAV are discrete into east, south, west, north, southeast,

southwest, northwest, northeast, and hover. To better represent the state of UAV, the
horizontal coordinate changes of UAV are size respectively.

Reward: The reward types of UAV are hovering and flying. (1) When the target is in the
coverage area of the UAV, and the weight of the target does not reach the weight threshold,
the UAV will be rewarded rh = 1 for hovering. Otherwise, the UAV will be punished
rnh = −1 for flying. (2) In each step, the inverse of the distance between the UAV and target
is used as the reward for guiding the UAV to fly to the target, r1 = −ξ(d(UAV, Tj)− RUAV),
where ξ = 0.01 is the gain of reward, d(UAV, Tj) is the distance between the UAV and target,
and RUAV is the coverage radius of the UAV. The closer the UAV is to the target after acting,
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the greater the reward will be obtained. Additionally, the reward is r2 = η(dold − dnew),
where η = 0.08 is the gain factor, dold is the distance between the UAV and target at the
previous time slot, and dnew is the distance between the UAV and target at the current time
slot. We define a reward r3 = 2 when the UAV successfully covers the target. Therefore, the
total reward for each step of the UAV is r = r1 + r2 + r3. The steps of QUEC are as follows
in Algorithm 2.

Algorithm 2 Implementation of QUEC Algorithm.
Initialize action space and state space; set learning rate α, discount factor γ, exploration

probability ε, and Q(s, a) ;
Maximum training episodes Ne; Maximum steps of each episode roundmax;
for episode = 1 : Ne

Initialize the state of the agent and the time step n1 ← 0; Calculate tm;
while (1)

Select the action a based on ε− greedy;
Perform a, observe reward r and the next state s′;
Update Q(s, a);
Q(s, a)← Q(s, a) + α[R + γ ∗maxa′Q(s′, a′)−Q(s, a)] ;
Update s′ ← s ;
Calculate and update tm ;
n← n + 1 ;
if n > roundmax or or the set of the targets is empty;

end while
end for

5. Simulations

The performance of the proposed CHA is evaluated in this section. Specifically, we
compare CHA with the target-barrier construction algorithm (TBC) [8] and the virtual
force algorithm (VFA) [20]. The TBC, which studies similar coverage problems to ours,
is the first algorithm proposed to solve the target-barrier coverage problem. The TBC is
to construct a target-barrier for each target and then merge the intersecting barriers into
a barrier. Furthermore, this paper considers that the sensors are movable after the initial
deployment. Additionally, the VFA, as a classical algorithm, can move the sensors to the
proper location. In [20], the VFA is used to construct the closed barrier on the boundary of
a single monitoring area based on the virtual force and then to adjust the positions of the
sensors so that the sensors are evenly distributed on the convex hull. It can automatically
form the closed barrier. For the convenience of comparison, we integrate the merging
mechanism into VFA. Since our proposed CHA includes merging the targets to form the
clusters and construction of the closed barrier with the distance constraint, we compare
TBC and VFA with CHA to prove the performance of CHA.

5.1. Simulation Environment

There are 10 targets randomly deployed in a 600 m × 600 m monitoring area. The
targets are divided into a cluster by CHA, with 7 targets at the outermost of the cluster. The
sensor’s sensing radius is 10 m, and the distance constraint dl is 80 m. Furthermore, the
other parameters used in the simulations are shown in Table 1.
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Table 1. Simulation parameters.

Parameters Value

Monitoring area 600 m× 600 m
Number of sensors N 200–500

Sensing radius Rs 10 m
Distance constraint dl 80 m
Number of targets M 10

The sensor’s initial energy E0 1 J
The unit energy consumption of the sensor e 5× 10−5 J/m

Proportion factor β 5× 10−6 (round.J/m)
The UAV’s altitude H 6 m

The initial position of the UAV [300, 300, H]
The coverage radius of the UAV RUAV 50 m

The flying speed of the UAV 10 m/s–20 m/s
The flying power of the UAV Pf 70 W

The hovering power of the UAV Ph 50 W
Learning rate α 0.01

Discount factor γ 0.9
The threshold of weight Wth 350

The weight change ratio Wave 2

5.2. Simulation Results

In the first experiment, we explore the number of targets that need to construct the
target-barrier under different target numbers, the number of sensors required to construct
the target-barrier with varied numbers of targets, and the target-barrier lifetime with varied
numbers of sensors when the number of targets is 10. As shown in Figure 2, when the
number of targets is large, the CHA algorithm only needs to construct the target-barrier for
some targets. The reason for this is that in the CHA algorithm, we first cluster the targets
and then find the outermost targets of the cluster. We only need to construct the target-
barrier for the outermost targets of the cluster to make all targets within the target-barrier.
Figure 3 compares the number of sensors required to form the target-barrier with varied
numbers of targets. As shown in this figure, the number of sensors required to form the
target-barrier increases with the increase of targets. When the number of targets increases,
the CHA algorithm needs fewer sensors to construct the target-barrier than the benchmark
algorithms. The reason for this is that the CHA algorithm constructs the target-barrier
only for the outermost targets. Additionally, the target-barrier is a convex hull, which can
significantly reduce the sensors required to construct the target-barrier. In contrast, the
benchmark algorithms construct the target-barrier for all targets.

As shown in Figure 4, when the number of targets is 10, the three algorithms’ target-
barrier lifetime increases with the number of sensors . However, the growth of the CHA
algorithm is more significant than that of the benchmark algorithms, and the target-barrier
lifetime of the CHA algorithm is much higher than that of the benchmark algorithms. The
reason for this is that the number of sensors required by the CHA algorithm to construct
the target-barrier is much less than that of the benchmark algorithms. In addition, the CHA
algorithm can replace the failed working sensors by moving redundant sensors.

In the second experiment, completing the coverage mission means that the UAV
detects all the targets breaching from inside, which is defined as a round. To compare the
performance of the UAV with and without learning, we compare QUEC with the classic
traveling salesman problem (TSP), which is solved based on the ant colony algorithm.
The ant colony algorithm is to find the shortest flight path of the UAV, which was first
introduced by Marco Dorigo in his Ph.D. thesis [43]. To test the performance of QUEC, we
compared the time required for the UAV to complete the coverage task, the time required
to detect the first target breaching from inside, the energy consumption of the UAV, and
the ratio of the weights to the energy consumption at varied flight speeds, as shown in
Figures 5–8.
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Figure 2. Number of targets that need to construct the target-barrier versus Number of targets.
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Figure 3. Numbers of sensors versus Number of targets.

Figure 9 shows the average reward of the UAV during training. We can see that
the proposed QUEC is convergent. Although the average reward received by the UAV
fluctuates, it increases with learning rounds in general and tends to stabilize around the
800th round.

Figure 5 shows the time required for the UAV to complete the coverage task. As can
be seen from the results, the time required for QUEC to complete the coverage task is
shorter than that of TSP. For QUEC, it always makes the UAV fly towards the target with
the largest weight and gives priority to covering the target that may breach from inside,
which significantly reduces the time for the UAV to provide continuous coverage for the
target. As shown in this figure, the time required to complete the coverage task decreases
as the speed increases. The higher the speed, the shorter the flight time of the UAV is.
This is a natural phenomenon. We can observe that QUEC takes less time to complete the
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coverage task at a speed of 10 m/s than TSP at a speed of 20 m/s, which further verifies the
advantages of our proposed algorithm. Figure 6 shows that QUEC takes less time to detect
the first target breaching from inside than TSP, and the time increases with the number of
rounds. The UAV flies to cover the target with the largest weight first, so it can quickly
detect the first target breaching. Furthermore, the time required for each coverage after
that will be shorter than that of the TSP. It is worth noting that the line of TSP at a speed of
20 m/s is still higher than the line of QUEC at a speed of 10 m/s. This again verifies the
advantage of QUEC.
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Figure 4. Target-barrier lifetime versus Number of sensors.
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Figure 5. Time required to complete the coverage task.
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Figure 6. Time required to detect the first target breaching.
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Figure 7. Energy consumption.

Figure 7 shows the energy consumption of QUEC and TSP. We can observe that
the proposed QUEC has less energy consumption than the benchmark algorithm. When
the speed of the UAV is 10 m/s, the proposed QUEC reduces energy consumption by 8%
compared to TSP. Moreover, when the speed of UAV is 20 m/s, the proposed QUEC reduces
energy consumption by 17% compared to TSP. It is not particularly obvious that QUEC
consumes less energy than TSP, especially when the speed of the UAV is 10 m/s. The reason
for this is that energy consumption is related to distance. The UAV sometimes chooses a far
away but most-weighted target to cover, and this will increase energy consumption to some
extent. Figure 8 shows the ratio of the weights of the targets to the energy consumption
of the UAV. As can be seen from Figure 8, the energy efficiency of the QUEC algorithm is



Sensors 2022, 22, 6381 14 of 16

higher than that of the TSP. This can verify the advantage of the proposed algorithm. The
UAV always covers the target with the largest weight.
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Figure 8. The weights and energy consumption ratio.
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6. Conclusions

In this paper, the CHA and QUEC algorithms are proposed. The CHA algorithm is
divided into three parts, clustering, constructing the target-barrier, and replacing the failed
working sensors with redundant sensors. Additionally, the QUEC optimizes the trajectory
of the UAV based on reinforcement learning to detect the target breaching from inside in
time. Simulation results indicate that the scheme proposed in this paper can reduce the
number of sensors required, prolong the lifetime of the target-barrier, and detect the targets
breaching from the inside in time. However, when obstacles in the monitored area prevent
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the sensors from moving, the target barrier may have coverage holes. Furthermore, the
coverage detection time for a single UAV may increase significantly in large-scale networks.
Therefore, in the future, we will adjust the network model such as cooperating UAVs with
ground sensors to construct the target-barrier, and focus on the cooperative coverage of
UAV swarms to adapt to more complex scenarios.
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