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Abstract: This paper proposes a human gait tracking system using a dual foot-mounted IMU and
multiple 2D LiDARs. The combining system aims to overcome the disadvantages of each single
sensor system (the short tracking range of the single 2D LiDAR and the drift errors of the IMU
system). The LiDARs act as anchors to mitigate the errors of an inertial navigation algorithm. In
our system, two 2D LiDARs are used. LiDAR 1 is placed around the starting point, and LiDAR 2 is
placed at the ending point (in straight walking) or at the turning point (in rectangular path walking).
Using the LiDAR 1, we can estimate the initial headings and positions of each IMU without any
calibration process. We also propose a method to calibrate two LiDARs that are placed far apart.
Then, the measurement from two LiDARs can be combined in a Kalman filter and the smoother
algorithm to correct the two estimated feet trajectories. If straight walking is detected, we update the
current stride heading and the foot position using the previous stride headings. Then, it is used as
a measurement update in the Kalman filter. In the smoother algorithm, a step width constraint is
used as a measurement update. We evaluate the stride length estimation through a straight walking
experiment along a corridor. The root mean square errors compared with an optical tracking system
are less than 3 cm. The performance of proposed method is also verified with a rectangular path
walking experiment.

Keywords: human gait tracking; multiple 2D LiDARs; multiple LiDARs calibration; dual foot-
mounted IMU

1. Introduction

Human gait monitoring and analysis are important in clinical rehabilitation [1,2],
functional mobility diagnostics [3,4], and sports training [5–7]. With some technological
tools, the gait phase and human gait parameters can be determined through gait analysis.
The Vicon optical tracking system [8] and the GAITRite system [9] are the gold standards
of gait analysis since they provide accurate measurements. The optical system captures
the position of passive reflective markers attached on human body using multi-cameras,
while the GAITRite system measures gait parameters via an electronic force platform.
However, these standard systems are bulky, expensive, and require a long time for set up
and post-processing the data. It may be difficult to deploy these evaluation systems in
some rural areas or remote locations.

Wearable sensors, such as inertial sensors or inertial measurement units (IMUs),
are used as low-cost alternative instruments in gait analysis [10]. They are small and
lightweight, have low power consumption, and are integrated in most smart wearable
devices. They can be attached to various parts of the human body including the foot, waist,
chest, and head. The gait parameters are then estimated using the recorded movement
signal. For example, the walking step length can be estimated with a waist-mounted
IMU using a linear regression model [11]. This method requires a calibration process to
construct the step length model. A common method for foot-mounted IMU is the numerical
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integration of inertial data to estimate foot velocity and position. However, the drawback
of low-cost IMU is the sensor noises, which result in the accumulated integration errors. A
most widely used technique to reduce these errors is the zero-velocity update (ZVU) [12,13],
which assumes that the foot velocity is zero when it contacts the ground. Once the stance
phase is detected, a ZVU is used as a pseudo measurement of the Kalman filter to reset
the errors. However, as the position and heading are still unobservable, the heading drift
grows over time. Thus, the positioning accuracy is decreased.

Some researchers use a dual foot-mounted IMU system to reduce the symmetrical
heading errors [14,15]. There are two problems in the dual foot-mounted IMU system. The
first one is the initial heading and position of each IMU, which is usually solved using
a calibration process. The other one is the heading drift over time. Using the mapping
information, a heuristic drift elimination (HDE) algorithm is proposed to update the heading
with the dominant direction of building [16,17]. This method cannot apply to large space,
where the building direction is not available. Based on the relative position of two feet, some
distance constraints are proposed as the measurements in the Kalman filter frame work [18–22].
These methods update the stride heading and foot position if straight walking is detected or
use the maximum range of stride length or two feet step length to constrain the divergence
of the moving foot. However, the heading cannot be effectively corrected, especially in the
turning phase.

In human gait analysis, a 2D LiDAR is also used to track the lower limb. The LiDAR
does not require external markers and has simple installation. It can be mounted on
a moving platform such as a mobile robot [23,24] or a smart walker [25,26], or can be
fixed on the ground at a height of human shin [27–30]. Using the LiDAR with moving
platform requires more additional sensors as well as a control system. Thus, the system is
complicated and bulky. The system with the LiDAR is installed on the ground is simple.
It scans human leg and estimates the leg center point during walking. The LiDAR-based
human leg estimation is quite accurate and contains the walking direction with respect
to the local environment. However, the effective human leg tracking range of a single 2D
LiDAR is limited within a few meters. In [31], a fusion system of multiple 2D LiDARs has
been proposed to extend the human leg tracking range. However, the LiDARs cannot be
placed far apart to guarantee the continuity of leg scan data. Therefore, the tracking range
is still limited. For example, for 20 m of straight walking, three LiDARs need to be used.

The aim of this paper is to combine multiple 2D LiDARs with a dual foot-mounted
IMU system to overcome the disadvantage of each single system. The proposed system can
increase the human gait tracking range and reduce the heading drift of the inertial sensor
system. Two 2D LiDARs are used in this paper. The first one is placed around the starting
point. The other one is placed based on the walking route: at the ending point in straight
walking or at the turning point in rectangular path walking. The LiDAR-based human leg
center point estimation is then used as a measurement update of the inertial sensor system.
The main contributions of this paper are as follows:

• Multiple 2D LiDARs are combined in the dual foot-mounted IMU system for heading
and position correction;

• The initial heading and position of each IMU are automatically estimated using the
first LiDAR without any calibration process;

• A calibration algorithm of two 2D LiDARs (placed far apart) is used, and the calibration
parameters are then used to transform the human leg center point into the same
coordinate system;

• In contrast with the HDE algorithm, which uses the building heading information, we
propose a simple walking stride heading update algorithm when straight walking is
detected. The foot position estimation from the updated heading is then used as a
measurement update of the Kalman filter;

• The estimated errors of the Kalman filter are then compensated using a quadratic
optimization-based smoother algorithm [32]. A constraint of the step width is also
proposed in the smoother algorithm if the straight walking is detected.
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2. System Overview

The proposed system is configured, as shown in Figure 1. Two foot-mounted IMU
systems are synchronized and consist of a microSD card to store the initial data. Two 2D
LiDARs are horizontally placed on the ground to scan human leg. The data from IMUs and
LiDARs are then post-processed using Matlab.

IMU 1

IMU 2

Start End

LiDAR 1

1x
1y

1O

wx

wy
wz

LiDAR 22y

2x
2O

Figure 1. System overview: a dual foot-mounted IMU and multiple 2D LiDARs.

As we can see in Figure 1, there are four sensor coordinate systems: two IMUs and
two LiDARs. To track the human gait, we define the global coordinate system and two foot
body coordinate systems. The left/right foot body coordinate systems are set to coincide
with corresponding left/right IMU coordinate system. Subscripts L and R denote the left
and right side, respectively. The three axes of the global coordinate system are chosen
as follows: x and y axes coincide with the LiDAR 1 coordinate system, the z axis points
upwards, and the origin is the projection of LiDAR 1 origin to the horizontal plane of two
IMUs. The height of the global coordinate system is shifted so that the initial z−positions
of two feet are zero. For a given vector, we sometimes use subscript b (body) and w (global)
to emphasize that a vector is expressed in the particular coordinate.

The inertial sensor outputs are acceleration ya ∈ R3 and angular velocity yg ∈ R3, and
are modeled as follows:

ya = ab + Cb
w(t)g̃ + va(t),

yg = ωb(t) + vg(t), (1)

where ab ∈ R3 is the acceleration produced by forces other than the gravitational field;
g̃ =

[
0 0 9.8

]T is the gravitational vector in the global coordinate system; Cb
w ∈ R3×3 is

the rotation matrix from global coordinate system to the body coordinate system; ωb ∈ R3

is the body angular velocity; and va ∈ R3 and vg ∈ R3 are the accelerometer and gyroscope
measurement noises, respectively. We assume that va and vg are white Gaussian noises,
where their covariances are given by:

Ra = E{vavT
a }, Rg = E{vgvT

g }. (2)

The block diagram of our proposed system is shown in Figure 2. Firstly, the data from
sensors is preprocessed. The single LiDAR processing module estimates the human leg
trajectories using LiDAR scan data. The leg positions are expressed in each LiDAR coordi-
nate system. The first calibration algorithm calibrates two LiDARs coordinate systems to
transform the leg positions from LiDAR 2 into the LiDAR 1 coordinate system. The second
calibration algorithm uses the IMUs and LiDAR 1 data to output the initial rotation angles
and position of each IMU in the LiDAR 1 coordinate system. Then, the Kalman filter and
the smoother algorithm are used to estimate the two feet trajectories. In the Kalman filter,
the zero-velocity update (ZVU) and the LiDAR-based stance foot positions are used as a
measurement update. A simple straight walking detection algorithm is also proposed to
correct the heading estimation and the foot position. A smoother algorithm is then used to
reduce the estimation error and smooth the trajectories of the two feet. In this smoother
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algorithm, the straight-walking-based heading and position update is replaced by the step
width constraint measurement update.

Calibration 2: 

IMUs and 

LiDAR 1

IMUs 

data

LiDAR 1 

data

Calibration 1: 

LiDAR 1 and 

LiDAR 2

LiDAR 2 

data

Initial heading 

and positions of 

IMUs

Stance foot positions in 

LiDAR 1 coordinate

Kalman 

filter

Two feet 

trajectories

Smoother 

algorithm

ZVU

Straight 

walking-based 

heading and 

position update

Step width

Single 

LiDAR 

human leg 

estimation

Data Pre-processing

Proposed INS

Figure 2. Block diagram of proposed method.

3. Data Preprocessing

The aim of this part is to estimate the human leg center point from LiDAR and estimate
the initial heading and position of each IMU in the global system. In this paper, the symbols
|.| and ||.|| represent the absolute value and the Euclidean norm, respectively. We also
denote the estimated value, the true value, and the error of x as x̂, x̃, and xe, respectively,
where x̃ = x̂ + xe.

3.1. Single LiDAR-Based Human Leg Center Point Estimation

The LiDAR scan data are then used to estimate the human leg center point trajectories
using the algorithm in [27,31]. The outputs of this module are the human leg positions in
stance phases which are represented by diamond shapes in Figure 3.

-5 -4 -3 -2 -1 0

x (m)

-0.5

0

0.5

1

y
 (

m
)

LiDAR 1

Left leg trajectory

Right leg trajectory

Left stance foot

Right stance foot

-5 -4 -3 -2 -1 0

x (m)

-0.5

0

0.5

1

y
 (

m
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LiDAR 2

Left leg trajectory

Right leg trajectory

Left stance foot

Right stance foot

Figure 3. Estimation of the human leg trajectories from each LiDAR.

Let pLi
i,j,kj

denote the positions of left and right legs positions in the stance phase
expressed in the LiDAR i coordinate system, where Li represents LiDAR i, j = L, R is
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the left or right leg, and k j = 0, 1, 2, ... denotes the sequence of stance phases of j leg. For
example, kL = 0 means the left foot is in initial standing still period. Since these leg
positions are expressed in different LiDAR coordinate systems, the pose between two
LiDARs is computed in the next section.

3.2. Calibration 1: Two LiDARs Calibration

The calibration parameters of two LiDARs are the rotation angle and the translation
vector. In our previous research of human gait tracking using multiple LiDARs, the working
space is shared by the LiDARs; therefore, a cylinder is placed arbitrarily in the common
scanning space to calibrate the system. In this research, two LiDARs are placed far apart
and there is no common scan data. Therefore, in stead of arbitrary choice, we place the
cylinder at some fixed points which are already known their geometric relationship.

The calibration configuration is shown in Figure 4. The cylinder with measured radius
r̂c is placed at four points A1, B1 (in LiDAR 1 scanning range), A2, and B2 (in LiDAR
2 scanning range). These four points are manually calibrated to identify the following
parameters: the intersection O of A1B1 and A2B2, the angle α̂ between A1B1 and A2B2, and
the corresponding distance from O to each point d̂mi , where m = A, B and i = 1, 2. We also
denote the measurement errors of r̃c, α̃, and d̃mi by rc,e, αe, and de, respectively.

LiDAR 1

LiDAR 2



O

1O 1x

1y

2O
2x

2y

12 12{ , }T

1A
d

1Bd

2Ad

2Bd

1

1

L

A
c1

1

L

B
c

2

2

L

A
c

2

2

L

B
c

1A1B

2A

2B

Figure 4. The configuration of LiDARs calibration.

The coordinate systems of two LiDARs are represented by O1 − x1y1 and O2 − x2y2.
The calibration parameters are the translation vector T12 from O1 to O2 and the rotation
angle θ12 from the LiDAR 2 coordinate system to the LiDAR 1 coordinate system. To
account the uncertainties of the LiDAR data measurement and the measured configuration
parameters, we propose an iterative algorithm to compensate the calibration parameters
errors. The state vector xc consists of the calibration parameters and the cylinder’s estimated
center points at points A1 and B1:

xc =
[
θ12 TT

12 (cL1
A1
)T (cL1

B1
)T
]T
∈ R7. (3)

Let sLi
mi ,k

represent the cylinder sample scan data of LiDAR i at position mi. At each
position, the total number of scan data point is Nmi .

3.2.1. Initialization

We firstly initialize the cylinder’s center points using the least square fitting algorithm.
The initial cylinder’s center points ĉLi

mi ,0
are then used to estimate the initial calibration

parameters as follows:
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• The unit vector is estimated by: v̂Li =
ĉ

Li
Ai ,0−ĉ

Li
Bi ,0

‖ĉLi
Ai ,0−ĉ

Li
Bi ,0‖

, i = 1, 2;

• The initial rotation angle is estimated by: θ̂12,0 = ∠(v̂L1 ,−R(α̂)v̂L2);
• The initial translation vector is estimated by:

T̂12,0 = 1 ĉA1,0 + d̂A1 v̂L1 + d̂A2 R(α̂)v̂L1 − R(θ̂12,0)
2 ĉA2,0.

In the above equations, R(ϕ) is the rotation matrix of an angle ϕ with respect to the

z-axis: R(ϕ) =

[
cosϕ −sinϕ
sinϕ cosϕ

]
.

3.2.2. Iterative Algorithm

The errors state vector is defined as follows:

xc,e =
[
θ12,e TT

12,e (cL1
A1,e)

T (cL1
B1,e)

T
]T
∈ R7.

The measurement equations are then identified using the LiDAR scan data.
For LiDAR 1, the circle fitting equation is as follows:

r̃c = ‖s̃L1
m1,k − c̃L1

m1‖, m = A, B. (4)

By inserting the measurement errors, we can identify the measurement equation for
each scan data point of LiDAR 1 as follows:

zm1,k = r̂c − ‖sL1
m1,k − ĉL1

m1‖ = hm1,kcL1
m1,e +

[
hm1,k −1

][vsm1,k

rc,e

]
, (5)

with hm1,k =
−(sL1

m1,k−ĉ
L1
m1 )

T

‖sL1
m1,k−ĉ

L1
m1‖

and vsm1,k is the measurement errors of sample data sL1
m1,k.

For LiDAR 2, we fit the circle after transforming the scan data into the LiDAR 1
coordinate system:

r̃c = ‖R(θ̃12)s̃
L2
m2,k + T̃12 − c̃L1

m2‖, m = A, B, (6)

where c̃L1
m2 = c̃L1

A1
+ d̃A1 ṽL1 + d̃m2 R(α̃)ṽL1 . The small error of unit vector ṽL1 can be rep-

resented by a small angle βe as follows: ṽL1 = R(βe)v̂L1 ≈ v̂L1 + ûL1 βe, with ûL1 =[
0 −1
1 0

]
v̂L1 . The rotation matrix is approximated as follows: R(θ̃) = R(θ̂ + θe) ≈ R(θ̂) +

G(θ̂)θe, where G(θ̂) = R(θ̂)
[

0 −1
1 0

]
. By inserting the measurement errors,

(6) becomes:

r̂c + rc,e = ‖(R(θ̂12) + G(θ̂12)θe)(s
L2
m2,k − vsm2,k ) + T̂12 + T12,e − (ĉL1

A1
+ cL1

A1,e+

(d̂A1 + de)(v̂L1 + ûL1 βe) + (d̂m2 + de)(R(α̂) + G(α̂)αe)(v̂L1 + ûL1 βe))‖.

The measurement equation at point m2, m = A, B is as follows:

zm2,k = r̂c − ‖ fm2,k‖ = hm2,k(G(θ̂12)s
L2
m2,kθ12,e + T12,e − cL1

A1,e − R(θ̂12)vsm2,k

− (v̂L1 + R(α̂)v̂L1)de − (d̂A1 ûL1 + d̂m2 R(α̂)ûL1)βe − d̂m2 G(α̂)v̂L1 αe)− rc,e, (7)

where fm2,k = R(θ̂12)s
L2
m2,k + T̂12 − (ĉL1

A1
+ d̂A1 v̂L1 + d̂m2 R(α̂)v̂L1), and

hm2,k =
f T
m2,k
‖ fm2,k‖

.
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By combining (5) and (7), the measurement equation for all four positions of cylinder
is as follows:

zc = Hcxc,e + Bcwc, (8)

where zc =

[
r̂c − ‖sL1

m1,k − ĉL1
m1‖

r̂c − ‖ fm2,k‖

]
∈ RNa×1, wc =



vsm1,k

vsm2,k

rc,e
de
βe
αe


∈ R2Na+4, and Hc ∈ RNa×7 and

Bc ∈ RNa×2Na+4 can be identified using (5) and (7). Here, Na = ∑m=(A,B),i=(1,2) Nmi is
the total number of sample scan data at four positions of cylinder. We assume that the
measurement noises are zero mean white Gaussian noises, where covariances are given by:

Rrc = E{rT
c,erc,e} ∈ R, Rd = E{dT

e de} ∈ R,

Rβ = E{βT
e βe} ∈ R, Rα = E{αT

e αe} ∈ R. (9)

The covariance of LiDAR measurements can be found in [31]. Then, we can compute
the covariance matrix of measurement noises of (8) as follows:

Qc = BcE{wcwT
c }BT

c . (10)

The error-state vector is estimated as follows:

xc,e = (HT
c Q−1

c Hc)
−1HT

c Q−1
c zc. (11)

The state vector (3) is then updated using xc,e. Using the updated cylinder center
points at A1 and B1, the unit vector v̂L1 is calculated at each iteration. This process is
iterated until a stop condition is satisfied:

‖xc,e‖ < γ. (12)

Using the calibration parameters, we can transform the stance leg positions from
LiDAR 2 coordinate into LiDAR coordinate as follows:

pL1
2,j,kj

=
[
R(θ̂12) T̂12

]
pL2

2,j,kj
, j = L, R. (13)

Figure 5 shows an example of transformation result of 20 m straight walking. The
stance leg positions are transformed from LiDAR 2 into the LiDAR 1 coordinate system.

-20 -15 -10 -5 0

x (m)

-2

0

2

y
 (

m
)

LiDAR 1 LiDAR 2 

Left stance leg

Right stance leg

Figure 5. Two LiDARs calibration results in 20 m straight walking. The stance leg positions from
LiDAR 2 are transformed into the LiDAR 1 coordinate system.

3.3. Calibration 2: Initial Heading and Position of Each IMU Estimation

The initial rotation angle and position of each IMU in the LiDAR 1 coordinate system
are automatically estimated using the first walking stride data from IMUs and LiDAR 1. To
estimate the initial rotation angle, we use the TRIAD algorithm [33]. This algorithm requires
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two pairs of reference and corresponding observation unit vectors. Two reference vectors
in the LiDAR 1 coordinate system are gravitational vector g̃ and the first walking stride

direction
[
(SL1

1,j,1)
T 0

]T
which is estimated from LiDAR 1, where SL1

1,j,1 = p1,j,1 − p1,j,0, j =
L, R. Two corresponding observation vectors are the average accelerometer output of one
second standing still ȳa,j,0 and the first walking stride direction estimated from each IMU[
(S

Ij
j,1)

T 0
]T

. To estimate the IMU-based first walking stride direction, a simple inertial
navigation algorithm with ZVU is applied to the first walking stride data of each IMU. The
initial rotation matrix can be estimated using the following equations:

ȳa,j,0 = Cb
w,0 g̃,[

S
Ij
j,1
0

]
= Cb

w,0

[
SL1

1,j,1
0

]
, j = L, R. (14)

After that, we can estimate the initial rotation angles using Cb
w,0.

The initial positions of each IMU (rj,0 =
[
xj,0 yj,0 0

]T , j = L, R) are estimated using
the estimation of LiDAR-based human leg center points (Figure 6). We assume that the
human leg is vertically straight during the initial standing still phase, as well as the mid-
stance phase of walking. Therefore, the ankle joint Kj can be approximated as the projection

of leg center point on the x− y plane. By assuming that the coordinate of Kj in IMU j, r
Ij
Kj

, is
pre-calibrated, the initial position of each IMU in LiDAR 1 coordinate can be computed by:

rj,0 =

[
p1,j,0

0

]
+ (Cb

w,0)
Tr

Ij
Kj

, j = L, R. (15)

1, ,0Lp

1,0r

1K

LiDAR 1

1O

1x

1y

{G}

1I 1Kr

Figure 6. Initial position of IMU in LiDAR 1 coordinate estimation.

4. Proposed Algorithm

The proposed human gait tracking algorithm can be referred to as an inertial naviga-
tion system (INS).

4.1. Basic Inertial Navigation System Mechanization

The basic equations [34] for inertial navigation are given as follows:

q̇ =
1
2

Ω(ωb)q,

v̇ = CT(q)ab, (16)

ṙ = v,
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where q ∈ R4 is the quaternion which represents the attitude of foot, and v ∈ R3 and r ∈ R3

are the velocity and position of foot in global coordinate, respectively. The symbol Ω(ωb)
is defined by:

Ω(ωb) ,


0 −ωx −ωy −ωz

ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

.

The inertial navigation algorithm is used to estimate q̂, v̂ and r̂ by integrating (16).
Due to sensor noises in the low-cost inertial sensor, the errors increase quickly if there
is no reference measurement. To overcome this problem, a ZVU method is used to reset
the accumulated errors. The method assumes that the velocity of the foot is zero when it
touches the ground. Thus, once the stance phase is detected, the ZVU can be fused with
the INS algorithm by an error-state Kalman filter.

To detect the stance phase during walking, a simple zero-velocity detection algorithm
is used [35,36]. A discrete time k is determined to belong to the zero-velocity interval if the
following conditions are satisfied:

‖yg,i‖ ≤ Bg, k−
Ng

2
≤ i ≤ k +

Ng

2

‖ya,i − ya,i−1‖ ≤ Ba, k− Na

2
≤ i ≤ k +

Na

2
, (17)

where Bg and Ba are threshold values, and Ng and Na are even number integers.
The errors in the numerically integrated values of (16) are estimated using a Kalman

filter. Let qe ∈ R4, ve ∈ R3, and re ∈ R3 be the estimation errors in q̂, v̂, and r̂, which are
defined as follows:

qe = q̂∗ ⊗ q,

ve = v− v̂, (18)

re = r− r̂,

where ⊗ is the quaternion multiplication and q∗ denotes the complex quaternion conjugate
of q. It is assumed that the quaternion errors are small. Thus, qe can be approximated by:

qe =

[
1
q̄e

]
∈
[

R
R3

]
.

With this assumption, the attitude error is represented by the three-dimensional vector
q̄e. We define the error-state vector as follows:

xe =

q̄e
re
ve

 ∈ R9. (19)

The state transition equation is given by:

ẋe = Ax + w, (20)

where A =

 [−yg×] 03 03
03 03 I3

−2CT(q̂)[ya×] 03 03

 and w =

 −0.5vg
0

−CT(q̂)va

. For a vector p ∈ R3, [p×] is

defined by:

[p×] ,

 0 −p3 p2
p3 0 −p1
−p2 p1 0

.
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4.2. The Proposed Dual Foot-Mounted IMU Algorithm

The dual foot-mounted IMU errors state vector is defined by combining the left and
right foot error states:

Xe =
[
xT

e,L xT
e,R
]T ∈ R18. (21)

The dynamic equation is expressed as follows:

Ẋe = Fx + W, (22)

where F =

[
AL 09
09 AR

]
and W =

[
wL
wR

]
.

Let τ be the sampling period of the inertial sensor output. The system equation is
discretized as follows:

Xe,k+1 = ΦkXe,k + Wk, (23)

where Φk = eFτ ≈ I18 + Fτ + 0.5(Fτ)2 and Qk = E{WkWT
k }.

In the proposed system, the model and observation equations are linear except the
quaternion model, which is approximately linearized. The divergence can be the direct
consequence of modeling errors. In the previous initial heading estimation section, although
the initial heading of the INS system is unknown and has large uncertainty, it does not
affect our proposed system. Three measurement updates are used in this Kalman filter:
the zero-velocity update, the LiDAR-based stance foot position update, and the straight-
walking-based heading and foot position update.

4.2.1. Zero-Velocity Update

If the left/right foot is in the stance phase, the corresponding measurement equations
are given by:

zv,L = 03×1 − v̂L,k = Hv,LXe,k + nv,L,

zv,R = 03×1 − v̂R,k = Hv,RXe,k + nv,R, (24)

where Hv,L =
[
03 03 I3 03 03 03

]
, Hv,R =

[
03 03 03 03 03 I3

]
, nv,L and nv,R

are the white Gaussian measurement noises, and Rv = E{nv,jnT
v,j}.

4.2.2. Lidar-Based Stance Foot Position Update

This update is used in the stance phase of each foot if the stance leg position estimation
of LiDAR pi,j (i = 1, 2 and j = L, R) is available. Here, the LiDAR-based stance leg positions
are already transformed into the LiDAR 1 coordinate system, so that we ignore the right
superscript L1 in pi,j.

As we mention in the Section 3.3, we assume that the human leg is vertically straight
during the mid-stance phase; therefore, we can transform the LiDAR-based stance leg center
point position to the x− y coordinate of stance foot position fi,j using the following equation:[

fi,j
∗

]
=

[
pi,j
0

]
+ (C(q̂j))

Tr
Ij
Kj

, (25)

where q̂j is the currently estimated quaternion of IMU j, and r
Ij
Kj

is the pre-calibrated
coordinate of ankle joint in IMU j coordinate, as demonstrated in Section 3.3. Now, we can
update the x− y coordinate of the stance foot using the following measurement equations:

zlidar,L = fi,L −
[

r̂L,x
r̂L,y

]
= Hr,LXe,k + nlidar,L,

zlidar,R = fi,R −
[

r̂R,x
r̂R,y

]
= Hr,RXe,k + nlidar,R, (26)
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where Hr,L =

[
02×3

[
1 0 0
0 1 0

]
02×3 02×3 02×3 02×3

]
,

Hr,R =

[
02×3 02×3 02×3 02×3

[
1 0 0
0 1 0

]
02×3

]
, nlidar,L, and nlidar,R are the white

Gaussian measurement noises with covariance Rlidar.

4.2.3. Heading and Position Update during Straight Walking

Instead of using the pre-defined building heading, we update the current walking
stride heading using the previous stride headings if straight walking is detected. The new
position of current stance foot is then calculated based on this heading. Then, it is used as
the measurement update in the Kalman filter. Since we use the heading of previous strides,
the heading errors are still accumulated until the measurement data of LiDAR 2 is available.
These errors are compensated later in the smoother algorithm.

Figure 7 shows an example of the proposed algorithm for current stance left foot. Let
r̂L,s denote the current estimated left foot position, where s is the discrete index of the
current stance phase. The current walking stride on the right side and the adjacent walking
stride on the left side are used. Their stance foot positions are represented by (rR,s, rR,s−1),
and (rL,s−1, rL,s−2), respectively. The straight detection and heading correction procedures
are as follows:

• Condition 1: The current step length is calculated:

‖ŜLR‖ = ‖r̂L,s − rR,s‖.

Only the walking step with ‖ŜLR‖ > δs is considered. Here, the threshold is empiri-
cally chosen to check whether a normal walking step has indeed been taken.

• Condition 2: If the current walking step is normal, we compute the angles between
the current stride vector ŜL,c = r̂L,s − rL,s−1 and the previous left stride vector SL =
rL,s−1 − rL,s−2 and the right stride vector SR = rR,s − rR,s−1:

α1 = ∠(ŜL,c, SL), α2 = ∠(ŜL,c, SR).

If they are smaller than a threshold δα, straight walking is detected. Here, we use the
same threshold values used in [22], i.e., δs = 0.5 m and δα = 8o.

• The current stride vector is set as the average value of previous left and right stride
vectors ŜL,c,new = mean{sL, sR}. Then, we normalize the ŜL,c,new and update the new
position of the current left foot as follows:

r̂L,s,new = rL,s−1 + ‖ŜL,c‖
ŜL,c,new

‖ŜL,c,new‖
.

• Similarly, if the right straight walking step is detected, the new position of the current
right foot r̂R,s,new can be estimated.

, 1L sr  , 2L sr 

,L̂ sr

, ,L̂ s newr

,R sr , 1R sr 

ˆ
LS

ˆ
RS

,
ˆ
L cS

ˆ
LRS

, ,
ˆ
L c newS

Figure 7. Straight detection for current left foot.
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Using the new current left/right foot positions, the measurement equations are
given by:

zp,L = r̂L,s,new −
[

r̂L,x
r̂L,y

]
= Hr,LXe,k + np,L,

zp,R = r̂R,s,new −
[

r̂R,x
r̂R,y

]
= Hr,RXe,k + np,R, (27)

where Hr,L and Hr,R are given in (26), and np,L and np,R are the white Gaussian mea-
surement noises with covariance Rp. Note that we only update the x − y positions in
this part.

In the Kalman filter, Xe,k is estimated and used to compensate the errors in q̂, r̂, and v̂
using (18). After updating, the errors are set to zero.

4.3. Smoother Algorithm

Since we use the estimated previous heading to update the stride heading in straight
walking, the heading errors are still accumulated. To archive our proposed correction
performance, the errors of the Kalman filter estimated values (denoted by q̂KF,k, v̂KF,k,
and v̂KF,k) are compensated using the smoother algorithm [32]. For that, we define the
estimation error-state vector as follows:

XSM,k =



q̄L,k
r̄L,k
v̄L,k
q̄R,k
r̄R,k
v̄R,k

 =



[
03×1 I3

]
q̂∗KF,L,k ⊗ qL,k

rL,k − r̂KF,L,k
vL,k − v̂KF,L,k[

03×1 I3
]
q̂∗KF,R,k ⊗ qR,k

rR,k − r̂KF,R,k
vR,k − v̂KF,R,k


. (28)

The system equation for smoother estimation values is given by:

ζk + XSM,k+1 = ΦkXSM,k + Wk, (29)

where Φk is defined in (23) and

ζk =



q̃SM,L,k
r̂KF,L,k+1 − f2,k
v̂KF,L,k+1 − f3,k

q̃SM,R,k
r̂KF,R,k+1 − f5,k
v̂KF,R,k+1 − f6,k

, (30)



f1,k
f2,k
f3,k
f4,k
f5,k
f6,k

 = fk





q̂KF,L,k
r̂KF,L,k
v̂KF,L,k
q̂KF,R,k
r̂KF,R,k
v̂KF,R,k

,


vg,L,k
va,L,k
vg,R,k
va,R,k


, (31)

q̃SM,L,k =
[
03×1 I3

]
f ∗1,k ⊗ q̂KF,L,k+1,

q̃SM,R,k =
[
03×1 I3

]
f ∗4,k ⊗ q̂KF,R,k+1.

Function fk in (31) is the numerical integration of quaternion, position, and velocity
from kτ to (k+ 1)τ. Using (28), (30) and (31), we can expand the left side of (29) as the errors
of the numerical integration of the Kalman filter estimated values. Thus, (29) represents
how the estimation errors evolve after the integration of (31).
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The smoothing problem can be formulated as a quadratic optimization problem using
the method in [32]. Let the optimization variable X̃ be defined by:

X̃ =


XSM,1
XSM,2

...
XSM,N

 ∈ R18N×1. (32)

We can estimate X̃ by minimizing the cost function:

J(X̃) =
1
2

N−1

∑
k=1

(ζk + XSM,k+1 −ΦkXSM,k)
TQ−1

k (ζk + XSM,k+1 −ΦkXSM,k)

+
1
2
(XSM,1 − Xinit)

T P−1
init(XSM,1 − Xinit)

+ constraint terms in (36), (33)

where Pinit =

[
PL,init 09

09 PR,init

]
in which Pj,init =

Pqj,0 03 03

03 Prj,0 03

03 03 Pvj,0

, j = L, R. The initial

attitude error covariance Pqj,0 is given by the algorithm in [33]. The initial position and
velocity error covariance Prj,0 , Pvj,0 can be considered as design parameters.

In this smoother algorithm, we use three measurements: the zero-velocity update, the
LiDAR-based stance foot positions update, and the step width constraint update. The first
two measurements are explained in the previous section of the Kalman filter. The third
measurement is proposed using an assumption that the width of walking step is almost
constant during straight walking.

As an example, during a current stance phase of left foot, the step width is estimated
as follows:

• The walking step vector is computed: SLR = r̂KF,L,k − r̂KF,R,k;
• The orthogonal unit vector nL of the current walking direction vector ŜL,c,new that

points toward opposite foot side is computed, so that nT
L SLR > 0;

• The step width d is now calculated as follows:

d = nT
L SLR = nT

L(r̂KF,L,k + r̄L,k − r̂KF,R,k − r̄R,k).

The step width measurement equation for the left stance foot is given as follows:

zd,L,k = Hd,LXSM,k + nd,L, (34)

where zd,L,k = d− nT
L(r̂KF,L,k − r̂KF,R,k) and

Hd,L =
[
01×3

[
nT

L 0
]

01×3 01×3
[
−nT

L 0
]

01×3
]
.

Similarly, the step width measurement equation for the right stance foot is given
as follows:

zd,R,k = Hd,RXSM,k + nd,R, (35)

where zd,R,k = d− nT
R(r̂KF,R,k − r̂KF,L,k) and

Hd,R =
[
01×3

[
−nT

R 0
]

01×3 01×3
[
nT

R 0
]

01×3
]
. In (34) and (35), nd,L and nd,R

are the white Gaussian measurement noises with covariance Rd.
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Consequently, the “constraint terms” in (33) are detected as follows:

constraint terms =
1
2 ∑

i=L,R

( ∑
k∈Zv,i

(zv,i,k − Hv,i,kXSM,i,k)
T R−1

v (zv,i,k − Hv,i,kXSM,i,k)+

∑
k∈Zr,i

(zr,i,k − Hr,i,kXSM,i,k)
T R−1

lidar(zr,i,k − Hr,i,kXSM,i,k)+

∑
k∈Zd,i

(zd,i,k − Hd,i,kXSM,i,k)
T R−1

d (zd,i,k − Hd,i,kXSM,i,k)), (36)

where Zv,i, Zr,i, and Zd,i denote the sets of all discrete time indices belonging to zero-
velocity intervals, LiDAR-based stance foot position measurement intervals, and step
width measurement intervals, respectively. The cost function (33) can be rewritten as a
quadratic function of X̃ as follows:

J(X̃) =
1
2

X̃T M1X̃ + M2X̃ + M3, (37)

where M3 is irrelevant in the optimization, and M1 and M2 can be easily computed us-
ing (33) and (36). The details can be found in [32]. This is the main advantage of the
quadratic-based optimization smoother algorithm, where the measurement constraints can
be easily included in the optimization problem. The minimizing solution of (37) can be
computed by solving the following equation:

M1X̃∗ + M2 = 0, (38)

where X̃∗ is the minimizing solution. Once X̃∗ is computed, the smoother estimation values
q̂SM,L,k, r̂SM,L,k, v̂SM,L,k, q̂SM,R,k, r̂SM,R,k, and v̂SM,R,k can be found using (28).

5. Experimental Results
5.1. Hardware Description

A Xsens MTi-1 IMU module with a micro SD card is installed in each foot. The
sampling rate of two IMUs is 100 Hz. Two LiDARs (RPLIDAR A3) have a scan rate of 10
Hz. The total cost of the system is around USD 1500 (USD 150 for an IMU and USD 600 for
a LiDAR). The sensors specifications are shown in Table 1. An OptiTrack optical motion
capture system, which is composed of six Flex 13 cameras with a resolution of 1280× 1024
at 120 Hz, is used to provide the ground truth of the walking step length estimation.

The parameters used in this paper are given in Table 2.

5.2. Stride Length Estimation Evaluation

To evaluate the stride length estimation, we perform a straight walking experiment
with the optical camera system. Two male healthy volunteers, which have no problems
with gait, balance, and coordination, are recruited. Their information is given in Table 3.
They are asked to walk along the corridor with the travel distances of 20 m and 50 m. Each
person repeats the walk 10 and 5 times in 20 m and 50 m experiments, respectively.



Sensors 2022, 22, 6368 15 of 22

Table 1. Sensor specifications.

Specification
Xsens MTi-1

Accelerometer Gyroscope

Full range ±16g ±2000◦/s
Noise density 120 µg/

√
Hz 0.007◦/s/

√
Hz

Bandwidth 324 Hz (z: 262 Hz) 255 Hz
Sampling rate 100 Hz 100 Hz

Specification RPLIDAR A3

Distance range 10–25 m
Minimum operating ranging 0.2 m

Angular resolution 0.225◦

Accuracy
1% of range ≤3 m
2% of range 3–5 m

2.5% of range 5–25 m
Scan rate 10 Hz

Table 2. Parameters used in this paper.

Parameters Related Equations

Ra = 0.01I3, Rg = 0.001I3 (2)

Rrc = 0.01, Rβ = 0.01, Rα = 0.01 (9)

γ = 0.001 (12)

Bg = 1.2, Ba = 1.5, Ng = 16, Na = 16 (17)

Prj,0 = 0.000001I3, Pvj,0 = 0.000001I3 (33)

Rd = 0.01 (9) and (36)

Rv = 0.01I3 (24)

Rlidar = 0.01I2 (26)

Rp = 0.01I2 (27)

Table 3. Subjects information.

Subject Age Height (cm) Weight (kg)

1 33 168 63

2 30 160 52

The configuration of the experiment is given in Figure 8. The optical system cannot
cover all the walking path; thus, it is placed so that a walking path outside two LiDARs
range can be captured. The walking path outside the LiDARs range has the least measure-
ment update; therefore, the walking stride length errors may be largest. With this setup,
our OptiTrack system can capture a walking range of 8–13 m measured from LiDAR 2
origin. By comparing the walking stride lengths captured in this path, the performance of
our proposed system is evaluated. The LiDAR 2 and OptiTrack system positions are fixed
during both experiments. The LiDAR 1 position is changed with the walking distance.

The subject may have difficulties in following the straight path during walking. We
model a simple case of abnormal gait by removing the availability of straight walking
in 5 s (20 m walking) and 10 s (50 m walking). The straight-walking-based foot position
update is therefore not applied in this interval. The step width constraint is still used with
larger uncertainty. The modeled measurement update is then fed to the proposed method.
An example of measurement availability of two feet is given in Figure 9. The top plot is
the normal availability, while the bottom one is the modeled availability of measurement
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update. The non-zero values represent the presence of measurements. We can see the
periodicity of zero-velocity measurements during walking. The LiDAR 1-based stance foot
position measurements are available for the first three and four stance phases of the left and
right foot, respectively. LiDAR 2 provides the stance foot position update for the last four
and three stance phases of the left and right foot, respectively. In the stance phases where
the LiDAR data are not available, the straight-walking-based heading and position update
(in the Kalman filter) or the step width constraint update (in the smoother algorithm) is
integrated. As in the bottom plot, the straight-walking-based measurement update is not
available during the interval from 15 to 25 s.

End

LiDAR 2
LiDAR 1

Start

OptiTrack optical 

motion tracker

IMU 1IMU 2
OptiTrack 

viewpoint space

 OptiTrack and LiDAR 2: fixed

 LiDAR 1: location changes 

according to walking distance

~13m
~8m

Figure 8. The configuration of the 20 m and 50 m walking distance experiment.

Figure 9. An example of measurement availability of two feet in 50 m walking. The straight-walking-
based measurement updates are available for all walking steps outside the LiDAR range in the normal
update (top plot) and are removed by 10 s in the modeled update (bottom plot).

The two estimated feet trajectories of all 20 m and 50 m walking experiments using the
normal and modeled update are given in Figures 10 and 11. Figure 12 shows an example of
a single 50 m walking estimation result for clearer vision. The LiDAR-based stance foot
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position estimation is denoted by a circle. We can see that the Kalman filter with the initial
heading estimated from Section 3.3 and the foot position update during straight walking
reduces the heading errors significantly. However, the heading errors can still be observed
as the estimated trajectories do not match with the foot position update from LiDAR 2.
This error is compensated using the smoother algorithm, where the step width constraint
is used instead of using the heading and foot position update. If the heading and foot
position update is used, the Kalman-filer-based heading estimation will be maintained in
the smoother algorithm. Therefore, the heading errors are not compensated. Based on the
heading estimation from the Kalman filter, the advantage of dual foot-mounted IMU is
expressed in the step width constraint. From the all estimated walking trajectories results,
we can see a small bulge in the middle of the walk. The further walking distance is, the
bigger bulge is. This is because there is no actual heading observation outside the LiDARs’
range. However, with the measurement update from LiDAR 2, the heading estimation
errors can be corrected. In 20 m and 50 m walking estimation, the results using the normal
and modeled update are almost similar. This shows the robustness of the proposed method.

Figure 10. The total estimated 20 m walking trajectories of two subjects from the smoother algorithm
in the normal and modeled update.
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Figure 11. The total estimated 50 m walking trajectories of two subjects from the smoother algorithm
in the normal and modeled update.

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0

x (m)

-4

-2

0

2

4

y
 (

m
)

Kalman filter results

Start
End

Left Right

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0

x (m)

-4

-2

0

2

4

y
 (

m
)

Smoother results

Start
End

Left Right

Figure 12. An example of an estimation of 50 m walking trajectories from the Kalman filter and the
smoother algorithm. The circles represent the estimated LiDAR-based foot positions in the stance
phase.

The walking stride length estimation is then evaluated. For each walking, the optical
OptiTrack system can capture three to four walking strides for each foot. The total counts of
captured walking strides are 98 and 101 for the left and right foot, respectively. We compare
the estimated walking stride length from the proposed smoother algorithm (SLIMU) with
the optical estimation (SLoptical) by computing the errors:

e = SLoptical − SLIMU .
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Figure 13 shows the histogram of the stride length estimation errors. Table 4 shows
the mean estimation of the stride length and variance of each subject with a normal
measurement update. The estimation errors compared to the optical system estimation
are also given. For all subjects, the mean and root mean square errors (RMSE) of stride
length estimation are less than 3 cm, while the maximum errors are less than 8 cm. The
performances of the stride length estimation of the normal measurement update and the
modeled measurement update are almost identical.

Figure 13. The histogram of all walking stride length estimation errors of the proposed method.

Table 4. The stride length estimation results compared with the optical OptiTrack system.

Subject Mean Stride
Length (m)

Estimation Errors

Leg (Strides) Max (cm) Mean (cm) RMSE (cm)

1
1.503 ± 0.054 Left (45) 7.5 2.3 2.8

1.489 ± 0.047 Right (56) 6.2 2.1 2.5

2
1.416 ± 0.032 Left (53) 7.6 2.7 3.2

1.377 ± 0.056 Right (45) 6.4 2.5 3.1

All

Normal update
Left (98) 7.6 2.5 3.0

Right(101) 6.4 2.3 2.8

Modeled update
Left (98) 7.6 2.5 3.1

Right(101) 6.4 2.3 2.8

5.3. Evaluation of Rectangular Path Walking Estimation

To verify the effectiveness of the proposed method in heading correction, a rectangular
path walking experiment is carried out. In this experiment, a person starts from the starting
point, walks counter-clockwise twice along a rectangular path, and stops at the ending
point as in Figure 14. The total of walking distance is around 124 m, with six turning phases.
The LiDARs are placed to be able to capture the human leg data during turning phases.

30 mLiDAR 2 LiDAR 1

Start

End

1.2 m 2 m 2 m

Figure 14. The configuration of rectangular path walk experiment.
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Figure 15 shows the left and right foot estimated trajectories results of the proposed
algorithm. We plot the corridor wall scan data as a reference of the walking direction
as well as the results of calibrating the two LiDARs. The shading circle area represents
the human leg tracking range of each LiDAR. As we can see, the proposed method can
correct the heading during turning phases using the LiDAR measurements. There is no
intersection between two feet trajectories. For comparison, we also plot the result of the
dual foot-mounted IMU algorithm, which is proposed in [22], as in Figure 16. The algorithm
using only dual foot-mounted IMU with a foot position update during straight walking
based on the maximum range of the one-side foot stride length and the both-sides feet step
length. Since there is no measurement of the heading, the errors can be seen clearly after
the second round.

Figure 15. The estimated trajectory of proposed method in the rectangular path walking experiment.
The shading circle area indicates the human leg tracking range of each LiDAR.

Figure 16. The estimated trajectory inthe rectangular path walking experiment, in which the LiDAR
data are not used.

6. Conclusions

This paper proposes a human gait tracking system using a dual foot-mounted IMU
and multiple 2D LiDARs. Two LiDARs are placed far apart: LiDAR 1 is at the starting
point and LiDAR 2 is at the destination in straight walking or at the turning point in
rectangular path walking. A calibration algorithm is proposed to estimate the rotation
angle and translation vector of two LiDARs. The calibration uses a cylinder placed at four
positions which are known their geometrical information. An iterative algorithm is then
used to estimate the calibration parameters with the including of LiDAR measurement
errors and configuration errors. Then, we can use the LiDARs as anchors to correct the
inertial sensor system estimation. The LiDAR-based stance leg position estimations are
transformed to stance foot position, and then combined as the measurement update of the
Kalman filter and the smoother algorithm.

Since the LiDAR can provide the environment information, the LiDAR 1 coordinate
system is chosen as the global coordinate system. The initial heading and position of each
IMU can be estimated using IMUs data and the leg scan data from LiDAR 1. For further
improvement, we update the heading and foot position if straight walking is detected.
This is used as a measurement update in the Kalman filter. In the smoother algorithm, the
straight-walking-based foot position update is replaced by a relative step width constraint
update. We assume that in normal walking, the width of walking step is almost constant.
We verify the stride length estimation of the proposed system with straight walking of 20 m
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and 50 m. We also model the abnormal walking by assuming that the subject cannot follow
the straight path during a time interval. The measurement update of straight walking is
therefore not available during this interval. The root mean square errors of the walking
stride length estimation of both normal and modeled update are less than 3 cm compared
with an optical tracking system. Through the rectangular path walking experimental results,
we can see the LiDAR measurement can be used to correct the heading effectively. The
proposed system has the potential for use in many fields, such as human gait monitoring
and human gait navigation systems.
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