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Abstract: This paper reports a study that aims to solve the problem of the weak adaptability to
angle transformation of current monocular depth estimation algorithms. These algorithms are based
on convolutional neural networks (CNNs) but produce results lacking in estimation accuracy and
robustness. The paper proposes a lightweight network based on convolution and capsule feature
fusion (CNNapsule). First, the paper introduces a fusion block module that integrates CNN features
and matrix capsule features to improve the adaptability of the network to perspective transformations.
The fusion and deconvolution features are fused through skip connections to generate a depth image.
In addition, the corresponding loss function is designed according to the long-tail distribution,
gradient similarity, and structural similarity of the datasets. Finally, the results are compared with the
methods applied to the NYU Depth V2 and KITTI datasets and show that our proposed method has
better accuracy on the C1 and C2 indices and a better visual effect than traditional methods and deep
learning methods without transfer learning. The number of trainable parameters required by this
method is 65% lower than that required by methods presented in the literature. The generalization
of this method is verified via the comparative testing of the data collected from the internet and
mobile phones.

Keywords: depth estimation; convolutional neural network; matrix capsule feature; feature fusion

1. Introduction

Depth estimation is a branch of basic computer-vision research. It depends on profes-
sional depth acquisition equipment and robust computer-vision algorithms. Obtaining a
depth image of a real-world scene through depth estimation provides data that can serve
as the basis for many applications, such as robots [1], autonomous driving [2], SLAM [3],
augmented reality [4], 3D reconstruction [5], and segmentation [6]. There are many depth
estimation methods, including structured light [7], time of flight (TOF) [8], binocular vi-
sion [9], and monocular vision [10]. The structured light and TOF methods are highly
accurate indoors, but they are easily affected by scattered light and multiple reflections
outdoors, distorting measurement data. Although binocular vision is applicable both
indoors and outdoors, the camera baseline limits the measurement range, and the mea-
surement effect of weak-texture areas in the scene is poor. Compared with other methods,
the monocular vision method can be applied to indoor and outdoor scenes and has a wide
field of vision, simple structure, and low cost. Therefore, few studies have recently focused
on monocular vision [11–16].

Early monocular depth estimation methods utilized traditional computer-vision meth-
ods [17,18]. With the rapid development of GPUs, monocular depth estimation based on a
CNN has become common. In 2014, Eigen [19] adopted the CNN structure in monocular
depth estimation, achieving better accuracy than that of traditional methods, but the res-
olution of the generated depth image was low, only 80 × 60 pixels. Laina [20] proposed
a complete convolutional depth estimation network with an encoder–decoder structure
to improve image resolution using an up-sampling method and treating the first inverse
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Huber loss as the optimization function. Moreover, this method achieved better estimation
accuracy by increasing the number of network layers. However, they still did not fully
use multi-scale information, which limited the further improvement of the estimation
accuracy. To solve this problem, Xu [21] proposed a depth estimation network based on a
conditional random field model in 2017 by extracting multi-scale feature maps and fused
features and achieving superior results. However, the estimation accuracy was still not
high because the context information was not used in network reasoning. Hao [22] adopted
ResNet-101 as the backbone network to take full advantage of context information based
on transfer learning research. They exploited hole convolution to extract texture features
and constructed an attention fuse block; the channel reduced block-to-fuse features in
the decoding stage with high accuracy. Since then, many studies on monocular depth
estimation have taken advantage of transfer learning and have used different backbone
networks to improve the depth estimation accuracy, such as the VGG model [23] and
the DenseNet model [24,25]. However, the CNN still cannot consider perspective trans-
formation. To reduce the impact of perspective transformation on model generalization
performance, these methods need to design overly complex network structures to adapt to
the different perspective images, which results in a large number of parameters and limited
generalization performance. To overcome these shortcomings, Hinton [26] proposed a
robust capsule network. The capsule network constructed a 16-dimensional vector as a
capsule to characterize object features and achieved better performance than baseline CNN.
Further, Hinton [27] transformed the vector features into matrix capsule features with the
GMM (Gaussian Mixture Model). Further, the matrix capsule features had good perspective
transformation ability. Meanwhile, they used the EM algorithm to extract features and
realized end-to-end training. After that, many scholars have made improvements on these
two original networks. Ribeiro [28] proposed a better capsule routing algorithm derived
from Variational Bayes for fitting a mixture of transformation Gaussians. Gu [29] proposed
interpretable GraCapsNets (Graph Capsule Networks) and replaced the routing part with
a multi-head attention-based graph pooling approach. Ribeiro [30] proposed an alternative
global view based on representing the inherent uncertainty in part-object assignment and
accelerate the network without sacrificing performance. Sabour [31] proposed a way to
learn primary capsule encoders that detect atomic parts from a single image and improve
the adaptability of occlusion and cluttered backgrounds. Ribeiro [32] introduced many
capsule networks and explored the extensive applications of capsule networks in different
fields. The above methods retain perspective transformation based on matrix capsule fea-
tures. However, there are few studies on the application of capsule networks in monocular
depth estimation. Moreover, whether the combination of capsule networks and CNNs has
better performance has not been fully verified. Based on the above considerations, this
study developed a lightweight monocular depth estimation network (CNNapsule) that
integrates the matrix capsule feature into the CNN model. On the basis of reducing the
number of parameters and improving generalization, this paper verified the effectiveness of
the combination of capsule networks and CNNs in performing monocular depth estimation.
The main contributions of this paper are as follows:

• A fusion block that can simultaneously obtain the matrix capsule feature and CNN
feature of the same scene;

• A method for generating depth images by integrating the three-feature information in
the encoder stage, decoder stage, and fusion block;

• A triple loss function is designed with depth difference, gradient difference, and
structural similarity.

2. Convolutional Capsule Feature-Fusion Network (CNNapsule)
2.1. CNNapsule Network

The CNNapsule presented in this paper adopts the encoder–decoder structure, as shown
in Figure 1. When the size of the input images is 256 × 256 × 3 pixels, the problem of high
computational complexity arises. Therefore, the step size is set to 2, and 5 × 5 convolution
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blocks are first utilized to extract the shallow features in our CNNapsule network. Then, four
feature-extraction modules extract multi-scale features. Each block includes one convolution
layer, one batch normalization (BN) layer, one ReLU activation function, one dropout layer
(rate = 0.2), and an average pooling layer. Simultaneously, the feature of the matrix capsule
is extracted according to the third module. The fusion features consistent with the size of the
CNN feature map can be obtained through the fusion block. In the decoder stage, the fusion
features (yellow blocks), CNN features (orange blocks), and decoder features (blue blocks) are
spliced together through a skip connection. The spliced features are input to the next layer. For
higher-resolution images, the network adopts the deconvolution operation and the Leaky ReLU
activation function (α = 0.2). Finally, a depth image with 128 × 128 pixels is obtained through
one convolution with a 1 × 1 pixel size.
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2.2. Matrix Capsule Feature Description

In current CNN methods for feature representation, the learning of perspective trans-
formation mostly depends on data enhancements such as translation, flip, and rotation.
These methods resist attacks poorly; thus, Hinton [26] proposed the CapsNet network in
2017 and improved feature representation. This method achieved high accuracy on the
MNIST and Cifar10 datasets by replacing CNN’s information transmission unit neuron
with a capsule. Then, they transformed the vector representing the feature into a pose
matrix in CapsNet and proposed a matrix capsule network [27], as shown in Figure 2,
where N capsules characterize n targets. It was verified that the network had a good
perspective transformation learning ability on the SmallNORB dataset.
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Matrix capsule features are illustrated in Figure 3. The capsule set in layer l is rep-
resented by Il . Each capsule contains a post matrix M4×4 and an activation probability
a1×1. For the i-th capsule of layer l and the j-th capsule of layer l + 1, there is a trainable
4× 4 conversion matrix Wij. Parameters Wij and two learnable offsets per capsule are the
only stored parameters. The pose matrix of the i-th capsule is transformed by Wij, and
the pose matrix of the j-th capsule is voted by Vij = MiWij. For all iεIi and jεIj, Vij and
ai are taken as inputs. All pose matrices and activation probabilities of layer l + 1 can be
calculated using the EM algorithm. The solution steps of the EM algorithm are as follows
(Algorithm 1):

Algorithm 1. EM algorithm

Procedure EM algorithm returns activation and pose of the capsules in layer l + 1 based on
activations and poses of capsules in layer l. Vh

ij is the hth dimension of the vote from capsule i with

activation ai in layer l to capsule j in layer L + 1. mh
j is the hth dimension of the pose from capsule j.

Rij is initialized to 1/|Il+1 |.

M-STEP for one higher-level capsule
Rij = aiRij, ∀i ∈ Il

mh
j =

∑i RijVh
ij

∑i Rij
, ∀h(

σh
j

)2
=

∑i RijVh
ij

∑i Rij
, ∀h

costh =
(

γu + log
(

σh
j

))
∑i Rij

aj = logistic
(

ρ
(

γv −∑h costh
))

E-STEP for one lower-level capsule

pj =
1√

∏h 2π
(

σh
j

)2
e
(−∑h

(Vh
ij−mh

j )
2

2(σh
j )

2 )

, ∀j ∈ Il+1

Rij =
aj pj

∑n∈Il+1
an pn

, ∀j ∈ Il+1

The network accepts all poses obtained from the last layer as the features of the matrix
capsule. In the experiment, the number of iterations of the EM algorithm between capsules
is set to three to obtain good matrix capsule characteristics.
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2.3. Fusion Block

Most depth estimation networks are based on CNNs, and the CNN model’s lack of
perspective transformation ability also affects the accuracy of depth estimation. Therefore,
we designed a network structure by introducing the matrix capsule feature. The fusion
block (FB) structure easily provides feature fusion, as shown in Figure 4. First, the matrix
capsule feature is reshaped into one vector with a length of n + 1. Next, the n + 1 vector
is mapped onto another vector with a length of n2 using a fully connected layer. Then,
the resulting vector is remapped to an n× n characteristic graph. To further improve the
diversity of feature maps, m kinds of feature maps of size n× n are generated through a
matrix capsule network. They are spliced into an n× n×m characteristic graph. Finally,
the network adopts three 1× 1 convolution layers to obtain the fusion features. The number
of channels of the feature map is expanded to balance the contribution ratio of the matrix
capsule and CNN features. In the experiment, n was set to 16, and m was set to 4 in the
network parameters.
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2.4. Loss Function

An effective loss function is often conducive to network training, speeding up the
training speed and improving the overall depth estimation performance. Many kinds of
loss-function designs optimize the network in the reported literature [19,25,33,34]. Jiao [33]
found a long-tail distribution of depth values in the NYU depth V2 and KITTI datasets. This
means that the contribution of hard examples with large depth values to model training
is minimal, making the model more inclined to predict small depth values. To increase
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the contribution of hard examples to model training, we designed an adaptive depth
loss function:

Ldepth =
1
N ∑N

p y∗p
[

f
(

y∗p
)
− f

(
yp
)]

(1)

f (y) =
maxDis

y
(2)

where N is the number of pixels in the image, y∗p is the true value of the depth map, yp is
the predicted depth value of the depth estimation network, and maxDis is the maximum
depth value in the dataset. In the comparison experiment, m was set to 1000.0 for the NYU
depth V2 dataset, with an effective depth range of 0–10 m, and to 8000.0 for the KITTI
dataset, with an effective depth range of 0–80 m.

To make full use of the edge information of the depth map, this paper utilized the
gradient similarity to construct gradient loss Lgrad:

Lgrad =
1
N ∑N

p

∣∣∣gx

[
f
(
yp
)
, f
(

y∗p
)]∣∣∣+ ∣∣∣gy

[
f
(
yp
)
, f
(

y∗p
)]∣∣∣ (3)

where gx and gy represent the calculated gradients of f (y) and f (y∗) in the x and y
directions, respectively.

Considering the influence of structural similarity (SSIM) on depth estimation, struc-
tural similarity loss LSSIM is calculated as follows:

LSSIM = 1− SSIM
[

f
(
yp
)
, f
(

y∗p
)]

(4)

Taken together, the overall loss function Lcost in this paper is given by:

Lcost = Ldepth + Lgrad + λLSSIM (5)

In this experiment, λ was set to 0.5.

3. Evaluation Indicators

In this paper, the proposed method is quantitatively compared with existing methods
according to the seven evaluation indices [19] proposed in the previous study. These
evaluation indicators are named the C1 index and C2 index.

The C1 indices are the average relative error (AbsRel), the root mean square error
(RMSE), the log mean error (log10), and the log root mean square error (logRMS), which are
given by:

AbsRel =
1
N ∑N

p

∣∣∣yp − y∗p
∣∣∣

y∗p
(6)

RMSE =

√
1
N ∑N

p

(
yp − y∗p

)2
(7)

log(10) =
1
N ∑N

p

∣∣∣log10
(
yp
)
− log10

(
y∗p
)∣∣∣, and (8)

log(RMS) =
1
N ∑N

p

∣∣∣log10
(
yp
)
− log10

(
y∗p
)∣∣∣2 (9)

The threshold accuracy (δi) is the percentage of the number of pixels satisfying Equa-
tion (10) in the predicted value yp and the real value y∗p in the number of pixels of the input
image:

max

(
yp

y∗p
,

y∗p
yp

)
= δ < δi (10)

where three thresholds in δi = 1.25i are used for quantitative comparison, that is, δ1 = 1.25,
δ2 = 1.252, and δ3 = 1.253. We call the three thresholds the C2 indices.
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To prevent the influence of missing values on error calculation, the part with missing
values in the real depth image is filtered. In addition, the seven indices are calculated when
the pixels are present only in the real depth images.

4. Experimental Results and Analysis

First, we present the data-expansion method. The quantitative analysis using the
C1 and C2 indices was carried out on the NYU depth V2 [35] and KITTI datasets [36],
and the qualitative analysis was compared with the reported methods. The qualitative
comparison experiment was conducted to better verify the generalization performance of
the constructed network by selecting some real indoor images (for NYU depth V2), and
outdoor road images (for KITTI) collected from the internet and reality. The experiment
used the Tensorflow deep learning framework to build the network, and the processor was
Intel (R) core (TM) i7-10750h CPU @ 2.6 GHz. The graphics card was an NVIDIA Geforce
RTX 2060. The Tensorflow version was 1.13.0; the CUDA version adopted was cuda10.0.

4.1. Data Augmentation

The data-augmentation strategy employed in many papers is an important means
of improving the generalization performance of a deep network. This experiment used a
random online transformation to expand the training data. The expansion methods were
as follows:

• Brightness: The input image’s brightness was changed with a probability of 0.5, in the
brightness range of [0.5, 1.5];

• Contrast: The contrast of the input image was 0.5, with a probability of changing the
contrast to 0.5;

• Saturation: The input image’s saturation was changed with a probability of 0.5. The sat-
uration range was [0.4, 1.2];

• Color: The R and G channels of the input image were exchanged with a probability of 0.25;
• Flip: The input and depth images were flipped horizontally with a probability of 0.5;
• Pan: The input image was randomly cropped to 224 × 224. To adapt to the network

structure, the input image was scaled to 256 × 256, and the true depth map was scaled
to 128 × 128.

Part of the augmented results from the NYU depth V2 and KITTI datasets are shown
in Figure 5. In this study, changes in the lighting of the actual scene were simulated by
changing the input image’s brightness, contrast, and saturation. In addition, some studies
proved the effectiveness of exchanging the R channel and G channel [25]. Due to the scaling
in the translation operation adopted, the world space geometry of the scene could not
be retained. To solve this problem, the depth value was divided by the scaling multiple
to correct it (increase the image by s times to make the camera closer by s times) [19].
The horizontal flip used in this paper preserved the geometry.
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4.2. Experiments on NYU Depth V2

The NYU depth V2 dataset was used for the quantitative comparative analysis of
indoor scene depth estimation, including 120,000 training samples and 654 pairs of test
samples. In the experiment, the input RGB image was from 640 × 480 down to 256 × 256,
and the true depth image was from 640 × 480 down to 128 × 128. In addition, there was
no additional filling for the points without depth information in the real depth image in
the experiment. The initial learning rate of each layer in the network was 0.01, and the
momentum was set to 0.9. Due to the limitation of VRAM of GPU, the maximum batch
size could only be set to four, and the occupation of VRAM was 4.8 G. The total training
took 52 h and 750,000 iterations. To more intuitively illustrate the depth estimation effects
of different methods, the depth estimation results of different methods were scaled to the
same size.

During the test, the resolution of the predicted image was adjusted to 640 × 480
pixels using bilinear interpolation. The quantitative evaluation experiment adopted the
predefined center-clipping method proposed by Eigen [19]. Since the constructed network
does not use the “pre-training + fine-tuning” training mode, this method was quantitatively
compared with the traditional method and deep learning algorithm without the pre-training
model. The comparison of the C1 and C2 indices of different methods on NYU Depth V2
is shown in Table 1, where the evaluation index used the C1 and C2 indices, FB indicates
whether the fusion block module is adopted, “×” stands for the unused module, “

√
”

represents the use of the model, and bs indicates the batch size set in training. Compared
with other methods, except for Zhou’s, five of the six evaluation indices were the best in
this method (bs = 4, fusion block, Lcost), and the network output a higher resolution depth
estimation image. Moreover, the errors between our method and Zhou’s method were
also small.

To intuitively show the quality of the generated depth image, this section presents
a qualitative comparison of different methods. Pseudo-color processing was performed
on the generated depth estimation image to obtain a better visual effect. These results are
shown in Figure 6. We can see that the proposed method obtained clear contour information
for the bookshelf and generated better texture information for the table lamp. These results
verified that the depth image generated using our method was of superior quality.
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Table 1. Comparison of C1 and C2 indices of different methods on NYU Depth V2.

Method FB bs Loss
C1 Indices C2 Indices

Output
AbsRel↓ RMSE↓ log10 δ1↑ δ2↑ δ3↑

Zheng [15] × 6 - 0.257 0.915 0.305 0.540 0.832 0.948 256 × 192

Liu [37] × - - 0.230 0.824 0.095 0.614 0.883 0.971 -

Wang [38] × - - 0.220 0.745 0.094 0.605 0.890 0.970 -

Zhou [39] × × - 0.208 0.712 0.086 0.674 0.900 0.968 -

Lin [40] × × - 0.279 0.942 - 0.501 - - -

Eigen [19] × 32 0.215 0.907 - 0.637 0.887 0.971 80 × 60

Ours × 4 Lcost 0.226 0.792 0.092 0.637 0.887 0.970 128 × 128

Ours
√

2 Lcost 0.216 0.757 0.088 0.657 0.897 0.973 128 × 128

Ours
√

4 Ldepth 0.229 0.817 0.094 0.605 0.883 0.971 128 × 128

Ours
√

4 Lcost 0.214 0.760 0.087 0.663 0.900 0.973 128 × 128
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This paper also presents a qualitative comparison between the proposed method and
the network model after transfer learning. The results are shown in Figure 7. Although the
methods discussed in this paper were not pre-trained, the depth estimation results still had
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similar visual effects when using these methods and even clearer texture information for
some samples. For example, due to the long-tail distribution effect on the dataset, there
were more accurate estimation results in areas with large depth in the first and second lines.
In addition, the comparison between the network parameters and the number of training
iterations is shown in Table 2. The method described in this paper reduces the number of
parameters by 65% and needs fewer iterations to converge.
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Table 2. Comparison of parameters and iterations between the proposed method and transfer
learning methods.

Method Parameters Iterations

Fu [23] 110 M 3 M

Alhashim [25] 42.6 M 1 M

Ours 14.9 M 0.75 M

4.3. Experiments in KITTI

The KITTI dataset consists entirely of stereo images of outdoor scenes captured by
equipment installed on mobile vehicles. A 3D laser scanned the images. Images with
a depth range of 0–80 m are often used for quantitative comparison and analysis of the
depth estimation of roads and outdoor scenes. The RGB image resolution in the dataset is
1241 × 376 pixels, but the corresponding depth image has only a small density of depth in-
formation, and there are many pixels without depth information. According to the division
method by Eigen [19], about 26,000 left-view images and corresponding depth images were
extracted for training, and 697 test images were used for quantitative comparisons and
analyses. For the missing depth information, this paper used the repair method provided in
the KITTI toolkit to fill in the depth information. Similar to the preprocessing method used
on NYU depth V2, the RGB image was sampled down to 256 × 256 pixels as the network
input, and the real depth map was sampled down to 128 × 128 pixels as the network
output and loss-function optimization. The hyperparametric design in the network was the
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same as in NYU depth v2. The training took 23 h and 325,000 iterations. The occupation of
VRAM was 4.8 G.

The quantitative comparison results using our method and traditional deep learning
methods without transfer learning on the KITTI dataset are shown in Table 3. It can be
seen that our method achieved the lowest error under the three indicators. Even if the
method by Zheng [15] limited the depth range to 1–50 m, our method still achieved a
smaller estimation error. In addition, from the qualitative comparison with the method
by Eigen [19], as shown in Figure 8, the edge of the depth image generated using our
method was clearer, and the estimated depth information was more accurate, such as the
automobile part in column 1 and column 3. These results also verified the effectiveness of
adding gradient similarity and structural similarity to the design of the loss function.

Table 3. Error comparison of different methods on the KITTI dataset.

Method Depth Range
C1 Index

AbsRel↓ RMSE↓ logRMS↓
Make3D [41] 0–80 m 0.280 8.734 0.361

Eigen [19] 0–80 m 0.190 7.156 0.270

Zheng [15] 1–50 m 0.168 4.674 0.243

Ours (FB + Lcost, bs = 4) 0–80 m 0.163 3.873 0.226
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4.4. Experiments on Collected Images

To further verify the generalization performance of the proposed method on indoor
datasets, we collected indoor images from the internet and captured indoor images with
mobile phones. The model trained on the NYU depth V2 dataset was directly used to test
the collected samples. Some estimation results are shown in Figure 9. Even if the collection
scenarios and collection methods of test and training samples were different, this method
still obtained robust estimation results.

To verify the generalization performance of this algorithm on outdoor data, outdoor
road data samples were collected from the network, directly estimating the monocular
depth of the algorithm model trained on the KITTI dataset on these images. The estimation
results are shown in Figure 10. Our method could still obtain certain scene texture informa-
tion and was robust in estimating the relative depth of the scene. For example, the relative
depths of two motorcycle riders and two vehicles provided good estimation results in the
depth estimation results in row 4, which also verified the generalization performance of
our method’s in-depth estimation on outdoor road data.
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5. Conclusions

This paper describes a lightweight monocular depth estimation network based on
convolution and capsule feature fusion. The basic architecture of the network adopts the
encoder–decoder structure. The network integrates the matrix capsule feature and the
CNN feature by constructing a fusion block to improve the adaptability of the network
to perspective transformation. Moreover, considering the long-tail distribution effect of
the dataset, an adaptive depth loss function is designed, and gradient similarity and
structural similarity are introduced into the design of the loss function simultaneously.
The experimental results show that the proposed method is better than the traditional
method and the method without transfer learning and also has significant advantages in
the number of parameters and similar visual effects with respect to methods using transfer
learning. The generalization performance of this method is shown to be further proved
using the collected images. On the other hand, there are still few research studies on the
fusion method and adaptability with the routing algorithm. Therefore, how to further
optimize the integration mode of our model is a challenge. Meanwhile, how to improve
the routing algorithm to make it fit better with the fusion mode is another challenge. We
leave this for our future work.
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