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Abstract: Microwave hyperthermia (MH) requires the effective calibration of antenna excitations for
the selective focusing of the microwave energy on the target region, with a nominal effect on the
surrounding tissue. To this end, many different antenna calibration methods, such as optimization
techniques and look-up tables, have been proposed in the literature. These optimization procedures,
however, do not consider the whole nature of the electric field, which is a complex vector field;
instead, it is simplified to a real and scalar field component. Furthermore, most of the approaches
in the literature are system-specific, limiting the applicability of the proposed methods to specific
configurations. In this paper, we propose an antenna excitation optimization scheme applicable
to a variety of configurations and present the results of a convolutional neural network (CNN)-
based approach for two different configurations. The data set for CNN training is collected by
superposing the information obtained from individual antenna elements. The results of the CNN
models outperform the look-up table results. The proposed approach is promising, as the phase-
only optimization and phase–power-combined optimization show a 27% and 4% lower hotspot-to-
target energy ratio, respectively, than the look-up table results for the linear MH applicator. The
proposed deep-learning-based optimization technique can be utilized as a protocol to be applied on
any MH applicator for the optimization of the antenna excitations, as well as for a comparison of
MH applicators.

Keywords: antenna excitation optimization; breast cancer; deep learning; energy focus; microwave
hyperthermia; hyperthermia treatment planning

1. Introduction

Microwave breast cancer hyperthermia (MH) is a treatment modality aiming at a
non-invasive temperature increase in a malignant breast tumor using electromagnetic
(EM) radiation in microwave frequencies [1]. The hyperthermia procedure can be used
with other modalities to increase the effectiveness of the cancer therapy [2,3]. Depending
on the procedure, a target temperature rise above 39–45 °C is expected [4]. Many MH
applicator designs have been proposed [5,6]. After deciding on the applicator, in order
to effectively increase the temperature of the malignant tumor and prevent hot spots in
the healthy tissue, focusing the microwave energy on the target is essential. Focusing, also
called hyperthermia treatment planning (HTP), is achieved through the optimization of the
antenna excitations. To this end, many different studies are reported in the literature.

In one of the earlier studies of breast MH, two microwave wave guides were used as
the radiation source [7]. During the treatment, Fenn et. al adjusted the excitation phase
and amplitude in real-time with a connected phase shifter using the feedback obtained
from the invasive measurements of the electric field amplitude and local temperature of the
tissue. The time reversal (TR) technique is one of the most used methods in hyperthermia
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applications due to the general validity of its principle. However, the time-reversal of the
energy from the desired target point does not enable regulation of the side lobes. Hence,
the technique creates hot spots, especially in lossy media, where TR invariance is no longer
valid [8–13].

Another proposed approach is to optimize the field distribution in the target region.
In [14–17], the scalar field constrained optimization problem is tackled using convex pro-
gramming (CP) strategies. For vector fields, the proposed optimization problem becomes a
non-deterministic polynomial-time hard (NP-hard) problem, and the authors introduce
constrained optimization problem approaches for vector fields in [17,18]. The advantage of
constrained focusing over TR is the minimization of the side lobes, since multi-objective
optimization minimizes the field outside of the target. These studies show successful results
on homogeneous or piece-wise homogeneous scenarios; hot spots are decreased, yet not
completely vanished. Due to the nonlinear nature of the problem, the objective function is
separated into sub-functions, the optimization is conducted in parallel, and assumptions,
such as neglecting the imaginary part of the electric field component, are made.

Nguyen et al. utilized particle swarm optimization (PSO) on 2D and 3D simulation
cases, as well as experimental phantom studies [19–21]. Antenna array excitations are
initially calculated to focus the energy on the target, and then PSO is implemented to adjust
the focusing of both energy and temperature distributions with the hybrid utilization of an
EM solver and MATLAB. However, the utilized technique has restrictions that prevent its
large-scale applicability. For instance, the phase difference is calculated with the distance
between antenna arrays, requiring the algorithm to be altered for the application of a
different antenna system.

Deep learning has been employed as a tool for solving the medical diagnostics and
therapeutics problems in the past decade, such as the registration of multi-modality diag-
nostic images [22], tissue type classification [23], the optimization of elements in ultrasound
thermometry [24], MH monitoring [25], and many more, and it continues to extend its va-
lidity. One of the indispensable applications of deep learning is the antenna array selection
and excitation optimization problem in beamforming, which is a high-cost problem [26–28].
In [28], CNN performs well even in the presence of antenna array imperfections. In [26],
an arbitrary radiation pattern was learnt with the use of a deep neural network on antenna
excitation phase values.

In this study, a CNN-based approach is proposed for the optimization of antenna
excitations in order to enable the focusing of microwave energy in a realistic breast medium.
To carry this out, data sets of the possible breast heat distributions and the corresponding
antenna excitations using the superposition property are produced. Next, a CNN-based
approach is implemented in two steps: first, a CNN is designed to optimize the antenna
phases, and, then, in order to optimize the antenna power, the second CNN is designed.
In particular, the contributions of this paper can be summarized as follows;

• We propose a CNN-based optimization of the antenna excitation parameters, which
can be used as a hyperthermia treatment protocol. The proposed approach is ap-
plicable to any MH applicator since it learns directly from the generated dataset.
The proposed approach is independent of system parameters such as operation fre-
quency, antenna type, medium, or breast type; therefore, it enables the fair comparison
of different MH applicator designs or operation parameters.

• The proposed optimization approach does not depend on the initial value assignment,
which may yield a different local best each time it is performed.

• HTP requires multiple cost optimizations and the available optimization techniques
solely rely on the given cost function. Combining different cost functions increases the
complexity; therefore, most of the techniques do not take these multiple cost functions
into consideration. The proposed method does not depend on a cost function, but on
a simple mask that substitutes the desired heating map directly.

• We demonstrated the applicability of the proposed CNN-based method with two MH
applicator configurations; that is, linear array and circular MH applicators. We used
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a heterogeneously dense realistic digital breast phantom, which is a difficult breast
type to focus the energy. The successful focusing on this breast type demonstrates the
capability of the proposed approach.

• CNN models are created offline, but they can be used online for different targets
without any time or computational requirements.

• To the best of the author’s knowledge, this is the first paper to utilize deep learning
for optimizing the antenna excitations for MH application.

• Finally, this work proposes a fast and simple data generation approach.

The rest of the paper is divided into the following sections: Section 2 lays an overview
of the hyperthermia problem, Section 3 gives the details of the followed methodology,
Section 4 depicts the results of the proposed approach, along with a comparison to look-up
table results, and the conclusions are drawn in Section 5.

2. Overview of Hyperthermia Problem
2.1. Bio-Heat Equation

The microwave hyperthermia phenomenon is essentially the microwave heat transfer
problem within the biological tissues. Penne’s bio-heat equation governs this problem [29]:

Cpρ
∂T
∂t

= ∇ · (K∇T) + A0 + Q0 − B(T − Tb) (1)

where Cp is the specific heat capacity, ρ is the density, K is the thermal conductivity, T is the
temperature, Tb is the blood temperature, A0 is the metabolic heat generation, and B is the
capillary blood perfusion coefficient. These parameters are tissue-specific terms. Q0 is the
heating potential (HP) and is proportional to the square of the electric field amplitude, and
Q0 = 0.5σ|E|2 Wm−3, where E is the electric field and σ (S/m) is the electrical conductivity.
It is shown by Iero et al. [30] that the maxima of HP and the temperature are located at
the same position, assuming that K and B are constants and in a steady-state, via Green’s
function approach. Based on the reported work in [30], this paper aims to focus the energy
on the target within the HP distribution in order to reach the desired temperature at
the target.

2.2. Optimization

The total electric field vector inside the breast with N antenna excitations can be
written as [31]:

~Etot(r) =
N

∑
i

ai~Ei(r)ejφi (2)

where ~Ei(r) is the electric field vector inside the breast when only the ith antenna is excited
with unitary excitation, and aiejφi is the ith excitation coefficient with φi phase difference.
The corresponding HP is

Q0(r) = 0.5σ(r)|~Etot(r)|2 W/m3 (3)

at any location in the breast. The focusing problem requires the maximization of the energy
at the target while minimizing it at the healthy tissue; such an objective function Ω can be
written as follows [31]:

max
ai ,φi

Ω =

∫
target σ(r)|~Etot(r)|2∫
breast σ(r)|~Etot(r)|2

. (4)

The electric field is a complex vector with three components in 3D geometry,
|~Etot(r)|2 = |E2

x(r) + E2
y(r) + E2

z(r)| and E2
x(r) = (Re(Ex) + jIm(Ex))2. Thus, the opti-

mization problem in (4) is non-linear and a challenging task. In the literature, generally,
some assumptions are made, such as Im(Ex) = 0 [18], so that the problem is simplified.
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This work proposes a method to find the optimum antenna excitations without making
any assumptions.

3. Methods
3.1. Antenna Systems and Numerical Test Bed

Two different antenna configurations, namely hyperthermia applicators, were used
in this work: linear and circular. Antipodal Vivaldi antennas, whose frequency range is
given in Figure 1a, were used as sources. A 2.45 GHz operation frequency was chosen as
it is one of the ISM bands. Figure 1b shows the linear antenna system (linear applicator),
where 6 antennas are placed linearly 2 cm apart on one side of the breast and the remaining
6 antennas are placed on the opposite side of the breast. Although there are 12 antennas, we
treated 3 successive antennas as an array with same excitation, and N = 4 excitations took
place for 4 antenna arrays. Consequently, 4 phase and 4 amplitude variables were defined.
Please see [6] for a detailed explanation of the antenna configuration and the excitation
scheme. Among the 4 phase variables, one of them should be defined as a reference, φ1 = 0,
in order to obtain a unique phase set. From the remaining phase variables, two of them
were given a solution space of [0, 2π) and, finally, the 4th phase variable was defined as a
function of the previous two phase variables, φ4 = φ2 + φ3.

The applicator where the antennas are placed with a circular orientation around the
breast tissue is shown in Figure 1c. Antennas were placed into the applicator circularly
with 30◦ angular separation and numbered as shown in the figure. In the circular applicator,
there were a total of 12 antennas and the number of antenna excitations was N = 12. Even-
numbered antennas were allowed to take phase values varying between [0, 2π), and the
odd-numbered antenna phases were assigned as the summation of two adjacent antennas
to lower the degrees of freedom in order to ensure convergence and enable rapid training.
Please note that the phase value of 1st antenna was always kept as 0◦ for reference.

In hyperthermia studies, it is assumed that the patient has been scanned with an
imaging modality such as X-ray mammography or magnetic resonance imaging (MRI), and
that it is decided that the patient should undergo hyperthermia therapy. It is also assumed
that the dielectric properties of the breast is obtained from these imaging modalities.
In [32,33], the authors registered the corresponding breast tissues (glandular, fat, skin) to the
MRI data and also provided the Cole–Cole and Debye parameters for these tissues. In this
study, heterogeneously dense breast with ID 062204 given in [32,33] was used. The dielectric
property, namely the relative permittivity (εr) and electrical conductivity (σ) distributions
at 2.45 GHz, were calculated using the Debye parameters given in [33]. This is a healthy
breast model. Figure 1d,e display the relative permittivity and electrical conductivity from
the central slice with a tumor inclusion of the said breast phantom, respectively.

(a)

Figure 1. Cont.
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(b) (c)

(d) (e)

Figure 1. Microwave hyperthermia (MH) applicator configurations: (a) S11 parameter vs. frequency
graph of a single Vivaldi antenna. (b) Linear antenna system, (b) circular antenna system with a
tumor. Dielectric properties of the central slice of the breast with tumor: (d) relative permittivity,
(e) electrical conductivity (S/m).

3.2. Data Generation

Given the linearity in EM radiation with a single frequency, the superposition property
in (2) was used for data generation. One option for data generation is simulation of the
whole system with N antennas for every potential excitation voltage and phase value.
However, both the time and computation cost of said method is high. Therefore, instead,
each antenna was excited separately with unitary excitation in a finite element method
(FEM)-based multiphysics simulation software (COMSOL Multiphysics) using the RF
module. While one antenna is excited, remaining N − 1 antennas are kept in the system
to capture their effect. Electric field (~E) distributions at the central axial slice of the breast,
as well as the electrical conductivity σ distributions, were exported for each antenna;
that is, a total of N simulations. All possible electric field vectors and heating potential
distributions can be constructed using (2) and (3).

The 3D model of the breast and the electrical properties were imported to COM-
SOL Multiphysics. Antipodal Vivaldi antennas were also imported and positioned as in
Figure 1b,c. Note that both the applicator and the said phantom were placed in free space
and uniform lumped ports with 50 Ω impedance were used to excite the antennas. During
the first set of simulations, for the circular applicator, 1st antenna was excited with 1 volt
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and 0 phase difference, whereas excitation option of the remaining N − 1 ports was chosen
as Off. The input power was calculated as P = V2/R = (1V)2/(50Ω) = 0.02 W. This
process was repeated for N = 12 excitations. For the linear applicator, on the other hand,
all 3 ports of the 3 successive antennas included in the 1st antenna array were excited
with 1 volt and 0 phase difference, for the first set of simulations, whereas the ports of the
remaining antenna arrays were kept as Off. This process was repeated for N = 4 excitations.
Note that, Electromagnetic Waves, Frequency Domain physics, Frequency Domain option at
single frequency of 2.45 GHz was used throughout this study.

Four cases of applicator and breast were studied: (i) linear applicator and breast with-
out tumor, (ii) linear applicator and breast with tumor, (iii) circular applicator and breast
without tumor, and (iv) circular applicator and breast with tumor. During simulations with
tumor, a sphere with 5 mm radius was placed on the central slice of the breast phantom.
Tumor inclusion had εr = 40 and σ = 2.0 S/m, which is very close to the maximum
electrical conductivity level in the breast [34]. Note that, in the cases (ii) and (iv), it was
assumed that the patient was diagnosed with cancer, and that the tumor location, as well
as the breast dielectric properties distributions, were known.

Data sets for each simulation case were built using (2). The central slice of the breast
was utilized; that is, a data set composed from 2D data. First, only phase optimization was
considered, in which, the antenna excitation voltages were equal. For the linear system,
2000 ~E distributions were produced with unitary excitations using integer phase pairs that
were randomly chosen. Electric fields were then converted to HP distributions using (3).
HPs were normalized such that the highest energy level was 1 and lowest energy level was
0. Produced HP data were labeled with the corresponding phase pairs. Note that, instead
of using the phase values directly, sine and cosine of the phase were utilized for robustness.
As can bee seen in Figure 2, these HP data with size 71 × 91, along with the labels, were
used for training the CNN-1, where CNN-1 is the first step of the CNN model fed with
the data set, in which, only the phase of the antennas change. CNNs were modeled on
Jupyter Notebook using Python‘s Keras and TensorFlow modules on an Intel Xeon CPU
with 3.10 GHz.

Figure 2. CNN-1 model for the linear system. In order to train the CNN-1 model of the linear system,
2000 data with the size of 71× 91 from HP data set was used along with 2000 corresponding labels
with the size of 4× 1. Labels include the sine and cosine of the two phase values that are optimized
in the linear applicator. To utilize the trained CNN-1 model for phase optimization, masked input
indicating the desired focus region with a size of 71× 91 was given as input, and an estimated 4× 1
output was obtained, which has the same structure as the labels.

Another data set with 2000 HP distributions was built with optimized phase values
obtained from the CNN-1 and varying integer voltage values randomly chosen between
0 and 9. Obtained HP data were then normalized and labeled with the corresponding
excitation voltage values. CNN-2, second step of the CNN model, was trained with this
data set.

For the circular system, 50,000 normalized HP distributions and corresponding phases
were used for training of CNN-1. Using the optimized phase values obtained from CNN-1,
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another 50,000 HP distributions and corresponding voltages were produced to train CNN-2.
Produced data sets were split for training and validation of CNN with 80–20% ratio.

3.3. CNN Models

The designed sequential CNN had 3 convolution layers with 3× 3 filter size and 16,
64, and 128 filters at respective layers, each followed by a maximum pooling operator of
2× 2 as seen in Figure 2. These numbers were selected from common practise examples
and adjusted by trial-and-error to meet requirements of this study, which is to build a fast,
accurate, and robust optimization scheme. Convolution layers had ReLu activation. Then,
batch normalization and flatten layers were applied. CNN model ended with 3 dense
layers. The CNN optimizers and parameters were assigned as follows: optimizer was
“Adam” optimizer, loss function was “Mean Absolute Error”, batch size was 100 for linear
applicator (200 for circular applicator), and learning rate was 0.0001.

The same structure was used for CNN-1 and CNN-2 models. Only difference was the
output size of the last dense layer: for linear applicator data set, output size was 4, whereas,
for the circular applicator data set, output size was 12. CNNs were trained successfully
using the generated data sets. An example of training and validation loss graphic for
CNN-2—that is, for circular system voltage level optimization with increasing epoch—is
given in Figure 3a. The flowchart for excitation optimization approach is given in Figure 3b.

0 20 40 60 80 100
Epoch

0.05

0.10

0.15

0.20

0.25

0.30

0.35

lo
ss

training_loss
val_loss

(a) (b)

Figure 3. (a) Training and validation loss with increasing epoch. (b) System flowchart.

The exact HP distribution in the breast medium is unknown. To represent the desired
HP in the breast medium, a masked HP input was generated. The masked input contains
a square region with a 10 mm side length centered at the target point. The target point
location coincides with the tumor center if the handled case has a tumor. Since the goal is
to maximize the HP on the target and minimize it in the healthy tissue, the value of the
square and the remaining region were assigned as 1 and 0, respectively. This masked HP
distribution was used as the input to both trained CNN-1 and CNN-2 models, and the
outputs were the sine and cosine of the excitation phases for CNN-1 and excitation voltages
for CNN-2. Note that the outputs are not necessarily from the data set; since we used
CNN for regression, the outputs can take any value within the acceptable range. Obtained
excitation voltage levels were then converted to power for convenience.



Sensors 2022, 22, 6343 8 of 15

3.4. Evaluation Metrics

The objective function given in (4) was used as an evaluation metric of this study for
the discrete data as shown below:

Ωtarget(Θ, V) =
∑target σ(r)|~Etot(r, Θ, V)|2

∑breast σ(r)|~Etot(r, Θ, V)|2
∗ 100% (5)

where Θ and V represent the phase and the voltage excitation vectors. Since the tumor
radius is 5 mm, the target heating domain was chosen as 10 mm × 10 mm square at the
desired location.

In hyperthermia, minimizing the hotspots is almost as important as focusing the
energy on the target domain. Since Equation (5) does not account for the hotspots, another
metric, named hotspot-to-target ratio, was also utilized in this work. The hotspot-to-target
ratio is defined as follows [31]:

Ψ(Θ, V) =
Ωhotspot(Θ,V)
Ωtarget(Θ,V)

. (6)

In the case of multiple hotspots, the most dominant hotspot was used to evaluate
this metric.

Another important parameter is the total input power. In this study, total input power
of all of the antennas was fixed to 6 W for all cases, and the results are given accordingly.
With the constant total input power of 6 W, the average power deposition at the target
domain can be calculated as follows:

Pav(Θ, V) =
∑target σ(r)|~Etot(r, Θ, V)|2

target area
(7)

where the target area was chosen in accordance with the tumor size similar to the earlier
target area: 10 mm × 10 mm square at the desired location.

4. Results and Discussion

The results of the four applicator and breast cases mentioned previously are given.
First, the linear applicator was analyzed with the breast without a tumor inclusion. The po-
sition of (x, y, z) = (26, 12, 0) mm was targeted for energy focusing. The CNN-1 model
for phase estimation was successfully implemented. The estimated phase values for each
antenna array, in order to focus the energy at the target position, are given in Table 1 (shown
with A.i). The CNN-2 was trained using these phase values as explained in Section 3.3.
The predicted antenna input powers, which were scaled such that the total input power
was 6W, are given in Table 1 (shown with A.ii). Note that there are three antennas in
each array in the linear applicator, and the input powers are given for each antenna in the
corresponding antenna array. The obtained HP distributions after CNN-1 and CNN-2 are
given in Figure 4a,b, respectively. Note that the HP distributions are generated with the
scaled input power values. The calculated evaluation metric Ωtarget is 8.42% after CNN-1
and 10.20% after CNN-2. The hotspot-to-target ratio decreases from Ψ = 1.28 to Ψ = 0.89
points after CNN-2 as Ωtarget increases, whereas the Ωhotspot decreases. Pav decreases from
14.89 kWm−3 to 12.01 kWm−3.

In order to evaluate the effectiveness of the CNN-based antenna excitation optimiza-
tion, a comparison was performed with the results obtained from look-up tables. For the
linear antenna system, two phase values (φ2, φ3) were varied to focus the energy on to
the target [6]. The HP distributions were calculated for all possible integer phase val-
ues (in degrees), and 360 × 360 = 129,600 HP distributions were obtained. For each HP,
the evaluation metric of the target, Ωtarget, was calculated in a simple loop. The phase
pair with the highest Ωtarget was recorded. Phase values for each antenna element are
given in Table 1 (shown with B.i). The obtained Ωtarget is 8.69%. The corresponding HP
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distribution is displayed in Figure 4c. Using the phases obtained from the first look-up
table, the antenna voltage excitations vary between 0 V and 1 V, with 0.025 V increments,
41 × 41 × 41 × 41 = 2,825,761 HP distributions were calculated in a simple loop, and the
voltage levels that gave the highest Ωtarget were recorded. Next, the voltage levels were
converted to power and are given in Table 1 (shown with B.ii). The HP distribution obtained
from the second look-up table is shown in Figure 4d.

Table 1. Estimated linear antenna excitation parameters for target at (26, 12, 0) mm.

Study Excitation Antenna Array No. Ωtarget Ωhotspot Ψ Pav
Case Parameters 1 2 3 4 % % (kWm−3)

A. CNN, i. Phase (deg) 0.00 −48.46 −178.10 133.44 8.42 10.78 1.28 14.89
without tumor ii. Power (W) 0.44 0.27 0.10 1.19 10.20 9.04 0.89 12.01

B. Lookup T. i. Phase (deg) 0.00 −100.00 138.00 38.00 8.69 16.64 1.91 10.67
without tumor ii. Power (W) 0.20 0.00 0.33 1.47 10.56 12.71 1.20 12.06

C. CNN, i. Phase (deg) 0.00 −43.10 135.73 92.63 12.63 11.44 0.91 22.72
with tumor ii. Power (W) 0.15 0.10 0.03 1.72 15.20 10.08 0.66 19.55

D. Lookup T. i. Phase (deg) 0.00 −100.00 140.00 40.00 13.67 16.05 1.17 17.11
with tumor ii. Power (W) 0.33 0.0 0.0 1.67 15.10 10.24 0.68 18.62

(a) (b)

(c) (d)

Figure 4. Heating potential (Wm−3) distributions for the linear antenna system and the breast
without a tumor, target at (26, 12, 0) mm position. Parameters obtained from CNN: (a) phase-only
optimization, (b) phase and power optimization. Excitation parameters obtained from look-up table:
(c) phase-only optimization, (d) phase and power optimization.

For the phase-only optimizations, the evaluation metric for the target position
(x, y, z) = (26, 12, 0) mm obtained using the look-up table is higher than the CNN metric
by 0.27%. However, the hotspot-to-target ratio (Ψ) is also higher than the CNN result
by 0.63 points, which is not desired in the hyperthermia applications. Since the look-up
table is formed by only weighing the evaluation metric at the target location, the hotspots



Sensors 2022, 22, 6343 10 of 15

are neglected. On the other hand, well-trained CNN models are known to generalize,
and, when the masked input is entered, the CNN model naturally gives the excitations for
an HP that is maximized at the target but also minimized at the rest.

An additional power level adjustment improves the evaluation metrics for both CNN
and look-up table methods. This second stage not only increases Ωtarget but also decreases
Ωhotspot, consequently boosting the hotspot-to-target ratio, Ψ, considerably. CNN-2 opti-
mization provides a 1.78% higher Ωtarget and 0.39 point lower Ψ than CNN-1; however, Pav
decreases from 14.89 kW/m3 to 12.01 kW/m3.

Second, the linear applicator was analyzed using the breast with a tumor inclusion.
The tumor has a 5 mm radius and is positioned at (x, y, z) = (26, 12, 0) mm. The obtained
phase values for each antenna array for focusing the energy at the tumor position are given
in Table 1 (shown with C.i). The predicted antenna input powers, which are scaled, are
shown in Table 1 (shown with C.ii). The HP distributions after CNN-1 and CNN-2 are
given in Figure 5a,b, respectively. The calculated evaluation metric Ωtarget(P) is 9.57% after
CNN-1 and 12.43% after CNN-2. The hotspot-to-target ratio decreases from Ψ = 0.91 to
Ψ = 0.68 points in the second stage as Ωtarget increases, whereas the Ωhotspot decreases.
Two-stage CNN optimization provides a 2.57% higher Ωtarget and 0.25 point lower Ψ than
the first stage; however, Pav decreases from 22.72 kW/m3 to 19.55 kW/m3.

(a) (b)

(c) (d)

Figure 5. Heating potential (Wm−3) distributions for the linear antenna system and the breast
with a tumor at (26, 12, 0) mm position. Excitation parameters obtained from CNN: (a) phase-
only optimization, (b) phase and power optimization. Parameters obtained from look-up table:
(c) phase-only optimization, (d) phase and power optimization.

The phase values obtained from the look-up table for each antenna array are given in
Table 1 (shown with D.i) with corresponding Ωtarget = 13.67%. The HP distributions are
displayed in Figure 5c,d for the first and the second look-up tables, respectively. For the
phase only optimizations, the evaluation metric of the target position (x, y, z) = (26, 12, 0)
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mm for the look-up table is higher than the CNN-1 metric by 1.04%; however, the hotspot-
to-target ratio (Ψ) is also higher than that of CNN-1 by 0.25 points.

The comparison of the obtained results from CNN and the look-up table reveals that
using CNN models is a more effective method. Specifically, two-stage CNN has a higher
Ωtarget and Pav, and lower Ψ than a two-stage look-up table. Regarding computational costs,
for the linear antenna system, the training of CNN-1 and CNN-2 models takes ∼2 min.
and ∼4 min., respectively, on the central processing unit (CPU) only, whereas the look-up
table search lasts ∼1 min. and ∼29 min., respectively, for the phase and power search using
simple loops. Note that neither of the methods are adjusted for time optimization.

Metrics for the breast with a tumor are better than the metrics of the breast without a
tumor: higher Ωtarget, lower Ψ, and higher Pav values. This is expected, since the tumor
region has a higher conductivity, 2 S/m, than the background conductivity, which varies
between 1.00 S/m and 1.88 S/m, and the HP is proportional to conductivity according to
Equation (3).

Although the linear applicator metrics obtained via CNN and look-up table methods
are compared, the look-up table was not implemented for the circular applicator due to
the sheer number of variable combinations. Note that 5 independent phase and 12 in-
dependent power values were optimized for the circular applicator. Look-up tables for
phase and power require 3605 ≈ 6 × 1012 and 4112 ≈ 2.25 × 1019 loops, respectively.
Since the CNN outperformed the look-up table in both evaluation metrics, Ωtarget and Ψ,
for the linear antenna system, only the CNN method was chosen to optimize the circular
applicator parameters.

CNN-1 and CNN-2 models were created for the case with the circular applicator and
the breast phantom without a tumor. The parameters obtained from the two CNNs for
a target position (x, y, z) = (7, −11, 0) mm are given in Table 2 (shown with A.). The
evaluation metrics are calculated as Ωtarget = 14.31%, Ωhotspot = 7.81%, and Ψ = 0.55 for
CNN-1, and Ωtarget = 15.42% , Ωhotspot = 7.79%, and Ψ = 0.51 for CNN-2. CNN-2 has a
1.11% higher Ωtarget than phase-only optimization and a 0.04 points lower hotspot-to-target
ratio. The Pav increased from 13.10 kW/m3 to 18.09 kW/m3 with CNN-2.

Table 2. Estimated circular antenna excitation parameters.

Study Excitation Antenna No.
Case Parameters (deg, W) 1 2 3 4 5 6 7 8 9 10 11 12

A. CNN i. Phase 0.00 98.57 −15.76 −114.3 170.8 −74.84 −40.73 34.11 −62.28 −96.39 −108.0 −11.60
without tumor 1 ii. Power 0.05 0.28 0.01 0.32 0.15 0.34 1.09 1.22 0.15 0.86 0.76 0.79

B. CNN i. Phase 0.00 126.03 −61.00 172.97 97.59 −75.38 −94.68 −19.31 −59.18 −39.88 96.33 136.21
without tumor 2 ii. Power 0.34 0.15 0.00 0.15 0.90 0.90 0.82 0.20 1.84 0.25 0.46 0.00

C. CNN i. Phase 0.00 −31.33 138.53 169.86 52.28 −117.6 0.42 118.0 29.80 −88.19 −157.3 −69.07
with tumor 3 ii. Power 0.02 0.40 0.11 0.19 0.69 0.02 0.00 0.01 0.39 1.85 1.04 1.26

Targets at: 1 (−7, 11, 0) mm, 2 (−11, −7, 0) mm, 3 (11, −14, 0) mm positions.

The parameters obtained for another target position (−11, −7, 0) mm are given
in Table 2. (shown with B.). The evaluation metrics for CNN-1 are: Ωtarget = 12.42%,
Ωhotspot = 7.95%, and Ψ = 0.64. The evaluation metrics for CNN-2 are: Ωtarget = 15.07%,
Ωhotspot = 4.87%, and Ψ = 0.32. Pav increased from 10.99 kW/m3 to 12.30 kW/m3 with the
second stage of CNN.

The circular applicator with the breast containing a tumor at (x, y, z) = (11, −14, 0) mm
position is considered. The tumor location is given as the target to CNN models. The phase
values and the scaled antenna input powers acquired from CNN-1 and CNN-2 are given
in Table 2. (shown with C.). The evaluation metrics are calculated as Ωtarget = 12.31%,
Ωhotspot = 7.47%, and Ψ = 0.61 for CNN-1, and Ωtarget = 19.47%, Ωhotspot = 10.51%,
and Ψ = 0.54 for CNN-2. After the additional excitation voltage optimization stage, the
hotspot-to-target ratio decreased by 0.7 points and Pav increased from 9.76 kW/m3 to
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22.83 kW/m3. The resulting HPs are given in Figure 6c,f for phase-only and phase and
voltage optimizations, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 6. Heating potential distributions (Wm−3) for circular antenna system with excitation pa-
rameters obtained from CNN. Phase-only optimization of (a) breast without a tumor, target at
(7,−11, 0) mm position, (b) breast without a tumor, target at (−11,−7, 0) mm position, and (c) breast
with a tumor at (11,−14, 0) mm position. Phase and power optimization of (d) breast without a tumor,
target at (7,−11, 0) mm position, (e) breast without a tumor, target at (−11,−7, 0) mm positionm
and (f) breast with a tumor at (11,−14, 0) mm position.

In [35], five hyperthermia treatment planning optimization techniques are compared to
each other in terms of capabilities. The authors concluded that PSO and genetic algorithm
(GA) or differential evaluation (DE) [36] optimization techniques are superior to Nelder–
Mead simplex [37] and pattern search algorithms and TR in terms of a lower hotspot-to-
target SAR ratio, and, further, DE is superior to PSO in terms of the target-to-breast SAR
ratio and the average power deposition in the target region. PSO and DE algorithms are
dependent on the initial values and are prone to finding a local best solution, as well as the
issue of obtaining a different solution each time the techniques are used. Antenna excitation
parameter optimization is a multi-objective optimization, and the higher the antenna
number, the more complex the optimization becomes. Moreover, these optimization
techniques are dependent on the cost function of choice, and HTP requires multiple cost
functions to be optimized at the same time. The proposed method, on the other hand,
presents a simpler solution, with the usage of a simple mask representing the desired HP
distribution. A comparison of the mentioned techniques and the proposed method will
be conducted in more detail in a later study. Another future work would consist of a 3D
optimization study, and simultaneous phase and power optimization.

5. Conclusions

In this paper, we propose an alternative approach for finding the optimum antenna
excitations for energy focusing in microwave breast hyperthermia. Optimization algorithms
proposed so far on this subject generally deal with linear and real functions. On the other
hand, the optimization of non-linear and complex functions, such as heating potential,
requires mathematical simplifications to ensure convergence. There is a need for a method
to tackle the problem completely, without assumptions. Moreover, there is a need for
a protocol of extracting the optimum antenna excitation parameters, also known as the
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input power and the phase, for any MH system with an arbitrary applicator, matching
medium, etc. To this end, we exploited the learning ability of convolutional neural networks
and let CNN models learn the best fit for any MH system. Linear and circular MH
applicators were used to show the generality of the proposed method, along with healthy
and tumorous numeric breast phantoms. A heterogeneously dense breast phantom was
used as a challenge. Data sets for phase and power optimization were created offline
for training, validation, and testing. A step input data highlighting the desired focusing
region was utilized for online optimization. Based on the comparison of the proposed
method and look-up table results on the linear MH applicator, CNN-optimized excitation
parameters produce HP distributions with a smaller hotspot-to-target ratio. It was also
demonstrated that our approach performs well on the circular applicator, which has a
challenging optimization problem due to the high number of variables.
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