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Abstract: In this paper, the interactive application of data gloves based on emotion recognition and
judgment system is investigated. A system of emotion recognition and judgment is established based
on the set of optimal features of physiological signals, and then a data glove with multi-channel
data transmission based on the recognition of hand posture and emotion is constructed. Finally, the
system of virtual hand control and a manipulator driven by emotion is built. Five subjects were
selected for the test of the above systems. The test results show that the virtual hand and manipulator
can be simultaneously controlled by the data glove. In the case that the subjects do not make any
hand gesture change, the system can directly control the gesture of the virtual hand by reading the
physiological signal of the subject, at which point the gesture control and emotion control can be
carried out at the same time. In the test of the manipulator driven by emotion, only the results driven
by two emotional trends achieve the desired purpose.

Keywords: human-computer interactive; data glove; virtual hand; emotion driven; test

1. Introduction

Though virtual reality (VR) is a way for human beings to interact with computers and
complex data, its main purpose is to allow users to enter the virtual environment, wherein
they can have the same experience and feeling as in real life. VR involves many fields and
advanced technologies.

VR systems can be divided by different aspects. In terms of system functionality,
the essential function of a VR system is environment simulation, so it can be applied to
many fields such as military, medicine, and so on. At present, there are three kinds
of VR systems: (1) systems used for simulation exercise or training in military field,
(2) systems for planning and designing places and environment in the field of architec-
ture, and (3) entertainment equipment and high-immersion systems in the entertainment
field. In terms of interaction mode and user immersion mode, VR systems can be divided
into non-interactive experience, human-virtual environment interactive experience, and
group-virtual environment interactive experience. In terms of data input channels, VR can
be divided into platform data, model data, perception data, and control data. In terms
of interaction mode and interaction equipment, VR can be divided into four types: scene
display, force/touch interaction, tracking and positioning, and walking interaction. The
scene display type includes a helmet such as the popular VR glasses, desktops, projections,
handhelds, and free stereoscopic displays. The force/touch interaction type includes the
data glove with transmission functions, joysticks with force feedback, etc. The tracking
and positioning type includes source and non-source tracking and positioning systems.
The walking interaction type includes pedal walking and ground walking. In the design
of VR system, attention should be paid to the elements of multi-perception, immersion,
interaction, and imagination space.
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Hand gesture recognition is an interactive type of VR system that relies on sensor
technologies such as the electromyographic (EMG) and inertial measurement unit (IMU).
There have been numerous studies on hand gesture recognition based on EMG and IMU.
For example, Kundu et al. [1] presented a hand gesture based control of an omnidirectional
wheelchair using IMU and myoelectric units as wearable sensors, and recognized and
classified seven common gestures using a shape-based feature extraction and a Dendrogram
Support Vector Machine (DSVM) classifier. Classification involved recognizing the activity
pattern based on periodic shape of trajectories of the triaxial wrist tilt angle and EMG-RMS
from the two selected muscles. Classification accuracy of 94% was achieved by DSVM
classifier on ‘k’ fold cross validation data of 5 users. Zhang et al. [2] computed a deep
learning technique known as the long short-term memory (LSTM) algorithm to build a
model to classify hand gestures by training and testing the collected IMU, EMG, and finger
and palm pressure data. The experimental results showed an outstanding performance
of the LSTM algorithm. Song et al. [3] proposed a force myography (FMG), EMG, and
IMU-based multi-sensor fusion model for hand motion classification, and evaluated the
feasibility by motion classification accuracy and qualitative of subjects’ questionnaires.
They showed that the offline classification accuracy of adopting combined FMG-EMG-IMU
was 81.0% for the 12 motions, which was obviously higher than single sensing modality;
that is, only EMG, FMG, and IMU were 69.6, 63.2, and 47.8%, respectively. Jiang et al. [4]
presented the design and validation of a real-time gesture recognition wristband based on
surface EMG and IMU sensing fusion, which can recognize 8 air gestures and 4 surface
gestures with 2 distinct force levels. The results showed that classification accuracies for the
initial experiment were 92.6% and 88.8% for air and surface gestures, respectively, and there
were no changes in accuracy results during testing 1 h and 1 day later. Yang et al. [5] applied
the multivariate variational mode decomposition to extract the spatial-temporal features
from the multiple channels to the EMG signals and used the separable, convolutional
neural network for modeling by proposing an extensible two-stage machine learning
lightweight framework for multi-gesture task recognition. The experimental results for
a 52 hand gestures recognition task showed that the average accuracy on each stage is
about 90%. Alfaro and Trejos [6] presented a user-independent gesture classification
method combing EMG data and IMU data. They obtained average classification accuracies
in the range of 67.5-84.6%, with the Adaptive Least-Squares Support Vector Machine
model obtaining accuracies as high as 92.9%. Wu et al. [7] proposed a wearable system
for recognizing American Sign Language (ASL) by fusing information from an inertial
sensor and surface EMG sensors. Four popular classification algorithms were evaluated
for 80 commonly used ASL signs on four subjects. The results showed 96.16% and 85.24%
average accuracies for intra-subject and intra-subject cross session evaluation, respectively,
with the selected feature subset and a support vector machine classifier. Shin et al. [8]
studied a myoelectric interface that controls a robotic manipulator via neuromuscular
electrical signals generated when humans make hand gestures. They proposed a system
that recognizes dynamic hand motions and configuration of a hand over time. The results
showed that the average real-time classification accuracy of the myoelectric interface was
over 95.6%. Shahzad et al. [9] studied the effects of surface EMG signal variation on
the performance of a hand motion classifier due to arm position variation, and explored
the effect of static position and dynamic movement strategies for classifier training. A
wearable system was made position aware (POS) using IMU for different arm movement
gestures. The results showed the effectiveness of the dynamic training approach and
sensor fusion techniques to improve the performance of existing stand-alone surface EMG-
based prosthetic control systems. Ordonez Flores et al. [10] proposed a new methodology
and showed its particular application to the recognition of five hand gestures based on
8 channels of electromyography using a Myo armband device placed on the forearm.
Romero et al. [11] presented the application of hand gestures and arm movements to
control a dual rotor testbench. Chico et al. [12] employed a hand gesture recognition system
and the inertial measurement unit integrated in the Myo armband sensor as a human-
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machine interface to control the position and orientation of a virtual six-degree-of-freedom
(DoF) UR5 robot.

Hand gesture recognition mainly includes two methods. One is gesture recognition
based on data gloves (i.e., the motion characteristics such as the bending degree), angle,
and displacement of each key joint of the hand are obtained through the motion sensor
and are then inversed to the system database as much as possible. The other is image-
based gesture recognition (i.e., the image data of the hand are collected through camera),
wherein the background segmentation and motion modeling are carried out through image
recognition, and the hand motion is ultimately restored in the computer. The above two
methods have their own advantages and disadvantages. Data gloves need subjects to wear
external equipment, which may affect the user interaction experience and have delay in data
processing, but they have strong anti-interference to data acquisition, more accurate data
acquisition, and are not easily affected by the external environment. The image recognition
method is more convenient, and the user’s operation is more natural, but it has certain
requirements for the environment and is easy to be disturbed by environmental factors. In
this paper, the data glove is selected as the interactive device because its data acquisition is
more accurate and the sensor used in this paper must contact the user’s hand to obtain the
physiological signal. In addition, data gloves are easy to implement modification measures,
such as adding additional sensors, and have more advantages and pertinence than other
interactive devices in hand movement.

Some achievements have been made in the research and development of data gloves,
such as 5DT data gloves, cyberglove force feedback data gloves, measurand high-precision
data gloves, X-IST music simulation data gloves, etc. Tarchanidis et al. [13] presented a data
glove equipped with a force sensor with a resolution of 0.38 N and a sensitivity of 0.05 V/N.
Kamel et al. [14] implement data glove from motion animation to signature verification and
showed a high accuracy in finding the similarities between genuine samples as well as those
differentiated between genuine-forgery trials. Yoon et al. [15] presented a data glove with
adaptive mixture-of-experts model and showed the excellent performance and adaptability
through tests. Kim et al. [16] used a data glove to present a sign language recognition
system and indicated that the system was useful when employed to smartphones in some
situations. Chen et al. [17] presented a data glove with highly stretchable conductive
fiber strain sensor, which could recognize various gestures by detecting the finger motion.
Fang [18] proposed a data glove to recognize and capture the gestures of 3-D arm motion,
and the test results verified its effectiveness. Lin et al. [19] presented a data glove with
characteristics of low cost, high reliability, and easy wearability. Wang et al. [20] presented
a data glove with the feedback force control of a safe, lightweight, yet powerful and stable
passive force feedback. Li [21] developed a data glove to monitor the hand posture and
operated the division between sensor and base signal to decrease the test error induced
by instability of light sources. Wu et al. [22] presented a data glove for catching finger
joint angles and tested its effectiveness. Sarwat et al. [23] used a data glove to construct an
automated assessment system for in-home rehabilitation, helping poststroke patients with
a high level of recovery. Takigawa et al. [24] developed a controlled functional electrical
stimulation to realize multiple grasping postures with data glove.

The previous research on data gloves has mostly focused on improving the accuracy
of motion recognition and pressure simulation of force feedback. However, the study
on the data glove which can capture the user’s behavior and obtain the user’s emotion
through physiological signal sensor is rare. Therefore, in this paper, a kind of data glove
with functions of emotion recognition and interaction between human and computer, or a
human and hardware device according to the user’s emotion, is presented. The data glove
can be used in medicine, health, military training, academic research, and other fields.

2. Classification of Emotion Trends

In order to obtain user’s emotion through physiological signal sensor, a system of
emotion recognition is needed, while emotion recognition is based on the emotion evalua-
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tion [25]. Here the valence-arousal (V-A) model is used for the emotion classification. In
the V-A model, as shown in Figure 1, V and A indicate the degree of emotional pleasure
and emotional arousal, respectively. Four poles of the emotion classification model are ex-
tracted and used to represent tired, tense, happy, and depressed, respectively. The emotion
classification system based on the V-A model is extended to a plane, and four quadrants of
the plane stand for high-arousal and positive-valence (quadrant I: HAPV), high-arousal
and negative-valence (quadrant II: HANV), low-arousal and negative-valence (quadrant
III: LANV), and low-arousal and positive-valence (quadrant IV: LAPV), respectively.

Arousal
Il A I
I I high High-Ar I
High-Arousal, Tense Excited .\, 1-Arousa
Negative-Valence Positive-Valence
Angry Delighted
Frustrated Happy
<-negative neutral positive —» Valence
Depressed Content
111 Bored Relaxed IV
Low-Arousal Tired Calm Low-Arousal,
Negative-Valence 1°+W Positive-Valence

Figure 1. Valence-arousal model.

3. System of Emotion Recognition and Judgment
3.1. Data Analysis of Physiological Signal (PS)

In the present study, skin electricity and pulse wave are taken as PS. The former
is easily disturbed by other signals, so the noise interference should be removed before
advancing. In order to facilitate computer analysis and processing, the discrete wavelet
transform is used to decompose the signal into different frequency bands through low-
pass and high-pass filtering. The unit of the frequency used for the filter is Hertz. The
wdencmp function in MATLAB 9.0 R2016a is used to denoise the skin electrical signal, and
all segments of skin electrical signal were normalized within the range of 0 to 100.

As shown in Figure 2, the signal of pulse wave is composed of main wave, dicrotic
anterior wave, dicrotic notch and dicrotic wave. In the figure, the key feature points
include: (1) c (peak systolic pressure), (2) e (starting point of left ventricular diastole),
(3) g (maximum pressure point of anti tide wave), (4) d (point of aortic dilation depres-
surization), (5) f (origin of anti tide wave), and (6) b1 (point of aortic valve opening). The
key amplitude includes: (1) main wave hl, (2) dicrotic anterior wave h2, (3) dicrotic notch
h3, and (4) dicrotic wave h4. The key time includes: (1) the time from the starting point of
waveform period to the peak ¢ point of main wave t1, (2) the time from the starting point of
waveform cycle to the lowest point of dicrotic notch t2, and (3) duration of one waveform
period t. The pulse wave is smoothed and filtered using Butterworth low-pass filter and
the relevant parameters of pulse wave are normalized after filtering.

p C (l“ilill wave)

¢ (dicrotic anterior wave)
g(dicrotic wave)
d
h4

(dicrotic
notch)

hl

h2

h3
bl b2

b | —

2

t

Figure 2. Key feature points of pulse wave.
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3.2. Extraction of Optimal Feature of PS

Features of PS are divided into a time domain, a frequency domain, and a feature
related with physiological processes [26]. The direct fusion of original signal features will
result in too much computation. As such, the dimensionality reduction of original signal
feature is performed using the method of principal component analysis (PCA) to make
the classifier more efficient and accurate in emotion recognition. Principal components are
obtained using PCA, and then the weight threshold of each feature of PS on the principal
component is taken as the criterion for selecting feature. Finally, some original features
that play a major role can be determined as optimal feature subset. After obtaining optimal
feature subset, the Pearson correlation coefficient (PCC) is used to judge the relationship
between the emotional interval and these features. The PCC is calculated for features of
four emotion trends and can be used to draw the significance P of the features. Based on P
and correlation coefficient, the normalized threshold of optimal features correlated with
emotional trends is determined. These optimal features include BpNN50 (percentage of
main pulse wave interval >50 ms), the “range” of skin electrical signal (the mean value
of first order difference for skin electrical signal), and 1dmean (mean value of first order
difference of skin electrical signal).

3.3. Establishment of the System of Emotion Judgment

The range of skin electrical signal has a high positive correlation between the two
completely opposite emotional trends (i.e., HVLA and LVHA). As such, the skin electrical
waveform corresponding to the emotional trend is studied. The results show that it is
necessary to add a directional judgment to the range of skin electrical signal. Based on the
set of optimal signal feature from the Pearson correlation coefficient, the system of emotion
recognition and judgment can be built according to the process as shown in Figure 3.

signal input
I skin electricity ] [ pulse wave ]

[

r--‘ BpNN50
|

|
|NO ]
§ }
2 - 1;3;126 ~. -~ range -
" Xth “%th >Xth
- YESI NO { ] YES
NO ~1d \
% < DNmax~Nmin> SN ;g?;ﬂ g LANV
v YESl YES
y /ldﬁléan ~ ) HAPV
. ‘>Xth -
YES
HANV

Figure 3. Process of emotion judgment model.

4. Design and Connection of Data Glove

The design framework of data glove with emotion recognition function is shown in
Figure 4 where the data glove equipment consists of data acquisition and the controller.
The data are acquired from the finger movement and physiological signal. The data glove
customized based on DN-01 data module is taken as an example as shown in Figure 5,
wherein the data module is an attitude acquisition board, which is used to collect the
information of hand motion such as finger motion parameters, angular velocity of hand
rotation, hand rotation acceleration, and angle change. The controller processes and
integrates the collected information of hand motion, and then packages the processed
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data and sends it to the host computer for processing through Bluetooth or USB to serial
port. The interface of the attitude acquisition board is connected with the sensor, and the
acquisition board and the controller are connected by a flat cable as shown in Figure 6.

user [:D ma'ggs‘l:mr — >{ manipulator

finger real time .
data glove :> movement E:> simulation fﬁ> virtual hand

acquisition
physiological
signa

acquisition

Figure 4. Design framework of data glove with emotion recognition function.

e ] &
(a) data acquisition part (b) controller part

Figure 5. DN-1 composition of data glove module.

signal of pulse wave

bending sensor | ) .
g skin electric signal

: N USB data
bending sensor 2 UsB transmission unit

r A

bending sensor 3 data f(g:i;it on SPI
h
bending sensor 4 — . BLUETOOTH |—»{ bluetooth data
triaxial acceleration transmission unit

. sensor
bending sensor 5

Figure 6. Data glove hardware structure framework.

The data acquisition module in the data glove mainly collects two kinds of data: one
is gesture data, and the other is physiological signal data. The prototype design of the
data glove is shown in Figure 7, where the sensor of gesture data is Flex2.2 bending sensor
which can capture the bending degree of five fingers and the motion posture of the palm,
including acceleration, angular velocity, and angle. The length of the bending sensor is
7.7 cm, the non-bending resistance is 9000 (2, the 90-degree bending resistance is 14,000 (2,
and the 180-degree bending resistance is 22,000 Q).
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Figure 7. Prototype design of data glove based on emotion recognition of physiological signal.

The skin electrical signal is acquired using a Grove-GSR skin electrical kit, as shown
in Figure 8 (left). Two finger sleeves containing electrodes were put on the middle part of
the middle finger and the thumb of the left hand, and the frequency of signal sampling was
20 Hz. A pulse sensor, as shown in Figure 8 (right), was used to acquire the signals of the
pulse wave and heart rate. The pulse sensor was fixed on the tip of the middle finger of the
left hand with a bandage, and the frequency of signal sampling was 100 Hz.

Figure 8. GSR skin electrical kit (left) and pulse sensor (right).

Gestures are reflected by the bending of fingers, and the output format of finger
bending is: Oxaa al a2 a3 a4 a5 Oxbb, where Oxaa and Oxbb are the head and tail of the
frame, and al, a2, a3, a4, and a5 represent the bending data of five fingers from thumb to
little thumb, respectively. The data x read on the interface (al-a5) is the quantization of the
voltage value on the bending sensor:

Vy x33
409 M
where V, is voltage at sensor. Based on
Ve =33 X ——7v= 2
x = 33X R0 @

the resistance value R can be obtained. The value of R is proportional to the bending degree
of the bending sensor—i.e., the values of al, a2, a3, a4, and a5 are inversely proportional to
the degree of finger bending.

The finger bending data can be analyzed through the following functions: (1) the
resume function is used to determine whether the data related to the finger part is received
correctly (i.e., the correctness of frame header and tail), (2) finger_calculate function is
used to calculate the bending data of the finger, (3) judge function is used to determine
whether the finger is bent within a reasonable range (i.e., filtering out wrong motion
information), and (4) calculate function is used to process data related to finger bending



Sensors 2022, 22, 6327

8of 13

including bending data of a single finger, storing and recording the data, calculating the
offset of bending data, etc.

The acquisition sensors of physiological signal are the skin electrical sensor Grov-GSR
skin electric kit (fixed on the middle part of the middle finger and the thumb of the glove)
and the pulse sensor (fixed on the tip of the middle finger of the glove). The sensors are
connected to the data acquisition module with a wire, and then the acquisition module is
connected to the PC end and external hardware equipment through the Bluetooth interface.
Unity3D receives the data information transmitted by the data acquisition board through
the IO interface.

5. Test of Virtual Gesture Change Driven by Emotion
5.1. System Design

The data glove is used to control the hand gesture of the virtual hand and manipulator,
and then the gesture of the virtual hand is changed through the awakened emotion of the
subjects and compared with the gesture of the manipulator. The technological process
of the system is shown in Figure 9, where DN-1 data glove is adopted and two kinds of
sensors are added to DN-1 data glove.

emotion change

virtual hand detected | virtual hand
ges‘tjm;e cthgnge > posture *| posture change
electe
data glove
manipulator
- posture

Figure 9. The technological process of the system that virtual gesture change driven by emotion.

The virtual hand model comes from network shared resources. The fingers of index
finger, middle finger, ring finger, and little thumb have 5 movable joint points, respectively,
and the thumb has four movable joint points. There are 24 movable joint points for changing
the gesture of the hand, as shown in Figure 10.

Directional Light
¥ Hand Right
Hand Mesh Right
YR_ Wrist
Y R_Palm
¥YR_index
¥ index_a
Vindex b
¥ index ¢

index_end
¥ R_middle

¥ middle_a
v middle_b
v middle_c
middle_end
v R_pinky
v pinky_a
v pinky_b
v pinky_¢
pinky _end
YR_ring
vring_a
¥ ring_b
wring _c
ring_end
Y R_ thumb_a
¥ thumb
v thumb _b
thumb_end
Camera

Figure 10. Virtual hand model.
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Each joint of the hand is taken as a changeable unit, and two sets of attitude change
systems are loaded for the virtual hand model in Unity3D. One is the gesture system which
is related to the data of finger gesture transmitted from the data glove; that is, the virtual
hand changes the gesture according to the related data of finger gesture, which is consistent
with the subject’s hand gesture. Another set of action templates is the gesture animation file
designed in advance; that is, the corresponding gesture action of virtual hand is activated
after the activation conditions are met.

5.2. Virtual Hand Control Driven by Emotion

Five subjects, aged between 24 and 30, participated in the test. Music materials were
used to awaken the subjects” emotions in the test. The DN-1 customizable five fingers
mechanical claw with the most basic functions is used as external hardware equipment,
and the connection of test equipment is shown in Figure 11.

connect PC end

bluetooth

two physiological
signal sensors

bluetooth

Figure 11. Connection of test equipment that virtual gesture change driven by emotion.

The principle and test process are as follows: (1) playing the music with style of
terror, sadness, grandeur, and freshness to awake subjects” emotion; (2) the physiological
signals (skin electricity and pulse wave) caused by the subjects’ emotion are collected by
sensors placed in the data glove; (3) four emotional trends HANV, LANV, HAPV, and LAPV
corresponding to terror, sadness, grandeur, and freshness are detected using the system
of emotion recognition and judgment as described in Section 3 based on the physiological
signals; (4) the emotion changes of the subjects are detected by the system which is built
based on the relationship between the emotion and gesture of the virtual hand; and (5) the
system drives the virtual hand to make four animation gestures of “1”, “2”, “3”, and “4”
corresponding to HANV, LANV, HAPV, and LAPV as shown in Figure 12.

Figure 12. Four hand animation gestures.

The virtual gesture changes of subject 3 as driven by emotion are shown in Figure 13,
where we can see the corresponding relationship between physiological signal and virtual
gesture change.
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<10 signal
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manipulator

& gesture change

virtual gesture
change

Figure 13. Gesture changes of subject 3 driven by emotion.

A gesture data acquisition module is also placed in the data glove as described in
Section 4. The system can drive the virtual hand and the manipulator to make the gesture
consistent with the gesture of the subject. In the process described above, when the
virtual hand makes the gestures of “1”7, “2”, “3”, and “4”, the subjects also make the
same gesture, which drives the manipulator also to make the same gesture as shown in
Figure 13. Therefore, there is a time deviation between the gestures of the virtual hand and
the manipulator as show in Table 1.

Table 1. The time deviation between virtual hand change driven by emotion and manipulator change.

Subjects 1 2 3 4
1 —8.44% +13.42% —7.12% —5.03%
2 —14.62% X +3.94% —21.01%
3 —16.38% —18.93% +11.27% —15.50%
4 —15.11% X —9.21% +10.48%
5 —15.57% —17.81% —7.44% X

In Table 1, the time deviation between virtual hand change driven by emotion and
manipulator change is basically less than 20%, showing that the virtual hand and manipu-
lator can be controlled synchronously through the data glove. When the user’s data glove
does not make any gesture change, the system can directly control the gesture of the virtual
hand by reading the physiological signal of the subject, and gesture control and emotion
control can be carried out at the same time to achieve the desired purpose.

5.3. Manipulator Control Driven by Emotion

The manipulator with six degrees of freedom, weight of 4.5 kg, and load capacity of
5 kg is directly controlled using data glove as shown in Figure 14, where the DN-1 data
glove is adopted and two kinds of sensors are added to DN-1 data glove.

Figure 14. Manipulator in the test.
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The control of manipulator is divided into gesture control of finger part and arm
part. The control of the finger part can be seen in Section 4, and the arm part controls the
movement angle, including the elbow joint (float anglere), the wrist joint (float anglere 1)
and the finger root joint on the palm (float anglere 2).

The output angle related data includes acceleration, angular velocity, and angle.

(1) Acceleration:

0 x 550 x 51 AxL AxH AyL AyH AzL AzH TL TH SUM 3)

where 0 x 55 and 0 x 51 are the head and tail of the frame; AxL, AyL, and AzL are the low
byte of x, y, and z axes; AxH, AyH, and AzH are the high byte of x, y, and z axes; TL and
TH are the total data transmission; and SUM is the acceleration output checksum:

0x55+0 x51+AxH+ AxL + AyH + AyL + AzH + AzL + TH + TL 4)

where the symbols are the same as those in Equation (3).

(2) Angular velocity:

0 x 550 x 52 wxL wxH wyL wyH wzL wzH TL TH SUM ®)

where 0 x 55 and 0 x 51 are the head and tail of the frame; wxL, wyL, and wzL are the low
byte of x, y, and z axes; wxH, wyH, and wzH are the high byte of x, y, and z axes; TL and
TH are the total data transmission; and SUM is the acceleration output checksum:

0 x 55 + 0 x 52+wxH+wxL+wyH+wyL+wzH+wzL+TH+TL (6)

where the symbols are the same as those in Equation (5).

(3) Angle:

0 x 550 x 53 RollL RollH PitchL PitchH YawL YawH TL TH SUM (7)

where 0 x 55 and 0 x 53 are the head and tail of the frame, RollL and RollH are roll angle
for x axis, PitchL and PitchH are pitch angle for y axis, YawL and YawH are yaw angle for z
axis, TL and TH are total data transmission, and SUM is the acceleration output checksum:

0 x 55+ 0 x 53 + RollH + RollIL + PitchH + PitchL + YawH + YawL + TH+TL (8)

where the symbols are the same as those in Equation (7).
The angle related data is parsed by the following function:

(1) port_noanglesure function is used to reverse judgment. The data packet is not the
angle packet of the hand.

(2) angle_resume function is used to verify whether the data received by the angle
package is correct, and to obtain 11-bit data of angle packet (angle_data0, angle_datal,
angle_data2, ..., angle_data9, angle_datal0).

(3) angledata_calculodegree function is used to convert the received angle data into
two-bit angle data in degrees.

The angle drive data are replaced with physiological signal data. The driving con-
ditions of the manipulator steering are determined by the system of emotion recognition
and judgment as shown in Section 3. The steering settings are up (HANV), left (LANYV),
right (HAPV), and down (LAPV), respectively. Each piece of music lasts 30 s == 1 s. The
manipulator steering change driven by emotion is shown in Figure 15. We can see that the
manipulator completes the steering action only driven by the emotions of LANV and HAPYV,
and there was no response under the emotion conditions of HANV and LAPV, showing that,
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although the scheme of manipulator driven by emotion is feasible, it needs to be further
improved in the recognition rate of emotion and the response speed of the manipulator.

manipulator

steering

signal of skin
electricity

S (Hz)

music playing
sequence and time

0 600 1200 1800 2400
i(s)

Figure 15. Manipulator steering change driven by emotion.

6. Conclusions

In this paper, the interactive application of data glove based on emotion recognition
and judgment system is studied. A data glove with multi-channel data transmission
based on hand gesture recognition and emotion recognition is constructed. The system
of virtual hand control and manipulator driven by emotion is established using Unity3D
as a construction tool of computer system. In the test of virtual hand control driven by
emotion, the data glove is used to simultaneously control the virtual hand on the PC side
and external mechanical claw, while the system of emotion recognition and judgment is
only used in the virtual hand control. In the test of the manipulator driven by emotion, the
data glove is used to directly control the manipulator, and the arm angle control is replaced
by the optimal features of physiological signal. The test results show that the virtual hand
and manipulator can be simultaneously controlled by the data glove. The main innovation
lies in the discovery that, in the case that the subjects do not make any hand gesture change,
the system can directly control the gesture of the virtual hand by reading the physiological
signal of the subject, and the gesture control and emotion control can be carried out at the
same time. In the test of the manipulator driven by emotion, only the results driven by two
emotional trends achieve the desired purpose. Although the system of the manipulator
driven by emotion is feasible, it needs to be improved.
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