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Abstract: Deep learning is widely used in modern orchard production for various inspection missions,
which helps improve the efficiency of orchard operations. In the mission of visual detection during
fruit picking, most current lightweight detection models are not yet effective enough to detect multi-
type occlusion targets, severely affecting automated fruit-picking efficiency. This study addresses
this problem by proposing the pioneering design of a multi-type occlusion apple dataset and an
augmentation method of data balance. We divided apple occlusion into eight types and used the
proposed method to balance the number of annotation boxes for multi-type occlusion apple targets.
Finally, a validation experiment was carried out using five popular lightweight object detection
models: yolox-s, yolov5-s, yolov4-s, yolov3-tiny, and efficidentdet-d0. The results show that, using
the proposed augmentation method, the average detection precision of the five popular lightweight
object detection models improved significantly. Specifically, the precision increased from 0.894 to
0.974, recall increased from 0.845 to 0.972, and mAP0.5 increased from 0.982 to 0.919 for yolox-s. This
implies that the proposed augmentation method shows great potential for different fruit detection
missions in future orchard applications.

Keywords: deep learning; modern orchards; visual detection; fruit picking; lightweight detection
models; augmentation method

1. Introduction

Deep learning has evolved rapidly in recent years. A proper deep learning algorithm
requires a suitable dataset or data augmentation method to demonstrate its superior
performance. Therefore, finding pre-processing methods to enhance data quality is a critical
step in research since it is more effective to increase the quantity, diversity, and quality of a
dataset than to increase the complexity and depth of a model [1], not only to increase the
generalization capability of the algorithm but also to make research more convincing.

Research related to data quality improvement is essential for fruit-picking detection in
agriculture. It is well-known that the significant demand for mechanized automatic fruit
harvesting in the agricultural sector offers significant opportunities for developing agricul-
tural picking robots. Automatic picking robots have received a great deal of attention from
researchers in recent decades, and a variety of robots have been developed domestically
and internationally to harvest fruits and vegetables, such as apple-picking robots [2]. In
addition, vision-based control technology for picking robots has seen rapid development
in recent years. Although there has been a great deal of research in the development of
vision-control techniques for robotic picking, the low success rate of fruit recognition and
inefficient hand–eye coordination still limits picking robot performance [3]. Occlusion is
considered to be one of the challenges of robotic vision picking technology since it seriously
affects the recognition and localization accuracy of picking robots [4], mainly in the case of
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leaf and branch occlusion and when fruit overlaps, resulting in a long time requirements for
target fruit recognition, low recognition accuracy, and more difficult recognition at night [5].
Recent advances in deep learning have greatly improved the perception of occlusion fruit
because relevant detection algorithms are sensitive to changes in object appearance and
environmental conditions [6]. Research related to improving the quality of training data
can further facilitate the optimal performance of deep learning detection algorithms.

In researching a detection model for apple-picking robots, the model needs to deter-
mine multi-type occlusion generated by branches, leaves, and fruits to improve the picking
ability of the robot to select fruit. In various studies, apple-picking robots only detected
apples as one class [4,7–24], ignoring apple occlusion during picking, which can potentially
damage the end-effector and target apples [25,26]. Therefore, fine detection of multi-type
occlusion fruits is required prior to picking, which is a much more complicated method
and requires detection based on fine features of the apple position. In studies performed
to detect multi-type occlusion fruit, a significant variation in sample size between classes
in most datasets is common [27,28]. We also found high intra-class variation when the
collected raw images were annotated and counted by multi-type occlusions. Moreover,
classification bias or algorithm performance degradation will occur in the process of model
detection due to the imbalance of annotation numbers in each type of occlusion, which
affects the effectiveness and accuracy of the trained model. For example, the algorithm
overfits classes with too many samples and underfits classes with very few samples. It is
necessary to have methods that can solve the problem from a data perspective, including
oversampling and undersampling, to reduce the effects of the uneven number of training
samples of each type on the training of the model [29]. The method presented in [30]
derived the result that both oversampling and undersampling increased model recall by
using multiple resampling algorithms, with oversampling improving the detection perfor-
mance of all models and being one of the common methods used in deep learning [31,32].
Oversampling methods generally replicate samples from a small number of classes to fill
the number. To reduce the overfitting problem of the model, the method in [33] used a
combination of inter-class weight assignment, central loss, and adaptive synthetic sampling
approaches [34] to achieve a balance in the number of samples for each type of pest and
disease, which eventually further reduced model loss during model training, and the
detection accuracy of each type of pest and disease was greatly improved. Undersampling
methods involve randomly removing a large number of available sample classes to equal
the number of classes [35]. While these methods can be helpful in some cases, randomly
discarding data reduces the total amount of learning data required by the model and may
prevent the model from performing optimally. In contrast, some methods modify the way
the model learns during training, focusing less on the majority groups and more on the
minority groups [36].

In this study, we first build the multi-type occlusion apple (MTOA) dataset, then
propose a balance augmentation method. The method is based on the differences between
the number of annotation boxes of each apple occlusion class and the pattern of occlusion
existence for manual data synthesis. Moreover, this method achieved a balanced number
of annotation boxes of each apple occlusion class in different regions under different
illuminations. Five lightweight models (i.e., yolox-s, yolov5-s, yolov4-s, yolov3-tiny, and
efficientdet-d0) were used as basic models to verify the effectiveness of the proposed
method. Each model was trained with basic training datasets of MTOA and balanced
MTOA datasets. Finally, the performance metrics were compared. The results show that
the proposed method could solve the imbalance problem in the number of annotation
boxes in the training part of the MTOA dataset. In addition, it could avoid the annotation
noise and overfitting phenomena.

The highlights of this study are as follows:

1. We created the MTOA, the first dataset considering multi-type occlusion of apple
fruits, and made it available for free under the MIT license.
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2. We proposed a balance augmentation method to achieve a balanced number of an-
notation boxes of each apple occlusion class in different regions under different
illuminations and solved the problem of severe differences in the number of samples
between classes.

3. We validated the effectiveness of the proposed algorithm using five popular lightweight
object detection models.

2. Materials and Methods
2.1. Making the MTOA Dataset

The raw images in the apple orchards were obtained by self-collection and web-
collection, respectively, and an example of the collected images for each region is shown in
Figure 1. The raw images include images of Yanfu-3 apples from Zhaoyuan, Shandong,
China (SD_ZY_IMG), Yanfu-8 apples from Qixia, Shandong, China (SD_QX_IMG), and Jon-
agold apples from Prosser, Washington, USA (WT_PSR_IMG) [25]. The specific information
about the collected images is listed in Table 1.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 18 
 

 

1. We created the MTOA, the first dataset considering multi-type occlusion of apple 

fruits, and made it available for free under the MIT license. 

2. We proposed a balance augmentation method to achieve a balanced number of an-

notation boxes of each apple occlusion class in different regions under different illu-

minations and solved the problem of severe differences in the number of samples 

between classes. 

3. We validated the effectiveness of the proposed algorithm using five popular light-

weight object detection models. 

2. Materials and Methods 

2.1. Making the MTOA Dataset 

The raw images in the apple orchards were obtained by self-collection and web-col-

lection, respectively, and an example of the collected images for each region is shown in 

Figure 1. The raw images include images of Yanfu-3 apples from Zhaoyuan, Shandong, 

China (SD_ZY_IMG), Yanfu-8 apples from Qixia, Shandong, China (SD_QX_IMG), and 

Jonagold apples from Prosser, Washington, USA (WT_PSR_IMG) [25]. The specific infor-

mation about the collected images is listed in Table 1. 

   
(a) (b) (c) 

Figure 1. Example of the raw images in the MTOA dataset: (a) SD_ZY_IMG; (b) SD_QX_IMG; (c) 

WT_PSR_IMG. 

Table 1. Information about raw images of apple orchards. 

Data Owner Country Location Acquisition Date Sensor Platform 
Development 

Stage 
Size 

No. of Im-

age 

SD_ZY_IMG CAAS China ZhaoYuan 25 October 2021 
Intel 

d455 
Handheld filling-ripening 1280 × 720 4870 

SD_QX_IMG CAAS China Qixia 10 October 2020 
Osmo Ac-

tion1 
Handheld filling-ripening 640 × 480 2827 

WT_PSR_IMG Fu3lab America Prosser 2017/2018 Kinect V2 Tractor filling-ripening 640 × 480 1558 

There is variability in the way orchards are grown and data collected between the 

three regions. The Zhaoyuan orchard is a modern spindle planting structure with apple 

trees spaced in rows approximately 3.5 m apart, with 1.5 m between plants, and with a 

height of 3.5 m. Multi-angle photography was mainly performed by handheld cameras at 

a distance of about 0.5–1.0 m. The images were taken in the morning, at midday, and in 

the evening, with clear weather during the day and artificial lighting at night. On the other 

hand, the Qixia apple orchard is a traditional orchard with a happy canopy, with rows 

about 4 m apart, plants approximately 5 m apart, and trees with a height of about 3 m. It 

was mainly photographed by handheld cameras at a distance of 0.3–0.8 m, at midday with 

clear weather. Meanwhile, the Prosser apple orchard in Washington State has a tree-wall 

structure. The data on Jonagold apples were collected by mounting the camera, which 

Figure 1. Example of the raw images in the MTOA dataset: (a) SD_ZY_IMG; (b) SD_QX_IMG;
(c) WT_PSR_IMG.

Table 1. Information about raw images of apple orchards.

Data Owner Country Location Acquisition
Date Sensor Platform Development

Stage Size No. of
Image

SD_ZY_IMG CAAS China ZhaoYuan 25 October
2021

Intel
d455 Handheld filling-

ripening 1280 × 720 4870

SD_QX_IMG CAAS China Qixia 10 October
2020

Osmo
Action1 Handheld filling-

ripening 640 × 480 2827

WT_PSR_IMG Fu3lab America Prosser 2017/2018 Kinect V2 Tractor filling-
ripening 640 × 480 1558

There is variability in the way orchards are grown and data collected between the
three regions. The Zhaoyuan orchard is a modern spindle planting structure with apple
trees spaced in rows approximately 3.5 m apart, with 1.5 m between plants, and with a
height of 3.5 m. Multi-angle photography was mainly performed by handheld cameras at a
distance of about 0.5–1.0 m. The images were taken in the morning, at midday, and in the
evening, with clear weather during the day and artificial lighting at night. On the other
hand, the Qixia apple orchard is a traditional orchard with a happy canopy, with rows
about 4 m apart, plants approximately 5 m apart, and trees with a height of about 3 m. It
was mainly photographed by handheld cameras at a distance of 0.3–0.8 m, at midday with
clear weather. Meanwhile, the Prosser apple orchard in Washington State has a tree-wall
structure. The data on Jonagold apples were collected by mounting the camera, which was
approximately 1.7 m above the ground, on a mobile platform and keeping the distance
from the camera to the tree wall at about 0.5 m at midday with clear weather.
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Since there are no publicly available apple datasets, we manually annotate all images.
Annotation classes consisted of eight types of occlusions, including no occlusions (N), leaf
occlusions (L), fruit occlusions (F), branch occlusions (B), leaf and fruit occlusions (LF),
leaf and branch occlusions (BL), branch and fruit occlusions (BF), and leaf, branch, and
fruit occlusions (BLF). Each annotation class is shown in Figure 2. The MTOA dataset was
constructed after all annotations. We counted all annotation boxes, and the result showed
that the class with the largest number of annotation boxes was N (22986), accounting for
28.2% of the total, and the class with the smallest number of annotation boxes was BLF
(1374), accounting for 1.7% of the total, which is a difference of approximately 16 times. In
BF, F, and LF, the proportion of data in each occlusion class did not exceed 5% of the total
number of annotated boxes, which shows the significant variability between all occlusion
apple classes in the MTOA dataset.
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Figure 2. Annotation classes: (a) no occlusion; (b) leaf occlusion apples; (c) fruit occlusion; (d) branch
occlusion; (e) leaf and fruit occlusion; (f) leaf and branch occlusion; (g) branch and fruit occlusion;
and (h) leaf, branch, and fruit occlusion.

2.2. Data Balance Algorithms
2.2.1. Algorithm Validation Process

The validation flow of the data balance augmentation algorithm proposed in this study
is shown in Figure 3. The diagram contains the following steps.

1. Splitting the MTOA dataset into a basic test and training dataset with a ratio of 3:7
and then training five lightweight models with the basic training dataset. The training
of five lightweight models was carried out to form five corresponding basic models.

2. Balancing the basic training dataset using the proposed method to form the balanced
MTOA dataset.

3. Training five lightweight models with the balanced MTOA dataset. Five lightweight
models were trained to form five corresponding balanced models.

4. Using basic test dataset to perform metrics on five basic and balanced models and
analyze reasons for changes in model performance.
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2.2.2. MTOA Dataset Statistical Analysis by Illumination

The lighting methods in the apple orchards were natural lighting during the day and
artificial lighting at night. Different lighting methods produce different light illuminations
(i.e., RGB vectors of different lighting colors) [37]. As illumination changes, the same scene
shows different color representations, for example, backlit and artificially lit images in
which apple targets tend to be too bright or have severe color distortion. In this study,
to effectively classify images under different illuminations [38], a MobileNetV3-based
classification model was used to classify raw images from each region into high and low
illuminations, with low-illumination images mainly containing images under backlight,
evening, or nighttime artificial lighting conditions, and high-illumination images containing
images under sufficient daytime light conditions. The classification of raw images by
illumination is shown in Figure S1 in the Supplementary Material.

The MTOA dataset was analyzed and counted by illumination to clarify the number
of each type of annotation box in each region with high and low illuminations in the
MTOA dataset. First, raw images in the MTOA dataset were classified using the illumi-
nation binary classification model of MobileNetV3 to form six sub-datasets, including the
ZhaoYuan high-illumination dataset (ZY_H), ZhaoYuan low-illumination dataset (ZY_L),
Qixia high-illumination dataset (QX_H), Qixia low-illumination dataset (QX_L), Prosser
high-illumination dataset (PSR_H), and Prosser low-illumination dataset (PSR_L). Six sub-
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datasets were counted by illumination for each occlusion type, and the results are shown in
Table 2.

Table 2. MTOA dataset statistics by high and low illuminations.

Data
Name

No. of
Images

No. of
Annotation

Boxes
No. of N No. of B No. of L No. of BL No. of BF No. of F No. of LF No. of BLF

ZY_H 2738 36,803 9856 10,579 5597 6405 1936 1296 474 660
ZY_L 2132 25,165 9639 5671 4558 3133 728 901 252 283
QX_H 2681 8159 1273 3053 804 1442 934 268 116 269
QX_L 146 491 68 215 34 112 41 6 0 15

PSR_H 1558 10,774 2150 189 5295 942 54 540 1457 147
PSR_L 0 0 0 0 0 0 0 0 0 0

The statistics showed that QX_L had a low number of annotation boxes and PSR_L
had zero annotation boxes because most of the raw images in QX_L and all raw images
in PSR_L were collected in the morning with even lighting, respectively. Due to the small
number of annotation boxes in QX_L and PSR_L, data balance augmentation of these two
sub-datasets was ignored. From the other four sub-datasets, the number of annotation
boxes varied greatly between apple occlusion classes, with the largest class being B for
ZY_H, the smallest class being BF for PSR_H, and the difference between them being
approximately 195 times. In summary, the number of annotation boxes and data in sub-
datasets by illumination varied greatly between regions, resulting in difficulty making
the training data from different regions and different illuminations play an equal role in
calculating the training loss of the model.

2.2.3. Rules for Building the Component Pool

The component pool is a collection of elements required for synthesizing each occlu-
sion apple. It consists of five elements in high and low illuminations: base image elements,
fruit elements, branch elements, leaf elements, and composite elements.

a. Rules for making base image elements

In this study, images with no fruit in high illumination and matching the orchard
background were selected as high-illumination base images. Images with no fruit in low
illumination and matching the orchard background were selected as low-illumination base
images. However, since there were fewer images in this study, some low-illumination
images were blurred and supplemented as base images. These two types of base images
were randomly scaled to 640 × 480 and 1280 × 720 to maintain consistency with the image
size in basic training dataset. Finally, 1000 high-illumination base images and 1000 low-
illumination base images were selected. Figure 4 shows various base images under high
and low illuminations.

b. Rules for the selection of occlusion elements

In this study, fruit, branch, leaf, and composite occlusion elements were segmented
from images from the basic training dataset. The fruit occlusion elements were mainly
single intact fruits; the branch elements were divided into multiple branches and single
branches; the leaf elements were divided into a single leaf and multiple leaves; and the
composite elements were mainly the combination of branches, leaves, and fruits. Five
hundred elements of each of the five classes were segmented to ensure the diversity of
selected results. After that, fruit, branch, leaf, and composite occlusion elements under
high illumination were grouped into one category. Meanwhile, the fruit, branch, leaf, and
composite occlusion elements under low illumination were grouped into another category.
Figure 5 shows the occlusion elements at high and low illuminations.
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Figure 5. Various occlusion elements under high and low illuminations: (a) fruit occlusion elements
under high and low illuminations; (b) branch occlusion elements under high and low illuminations;
(c) leaf occlusion elements under high and low illuminations; (d) combined leaf, branch, and fruit
occlusion elements under high and low illuminations.

2.2.4. Data Synthesis Methods for Each Apple Occlusion Class

The main idea in synthesizing each occlusion apple class was to paste the correspond-
ing occlusion elements into the N area of the raw image, depending on the number of
occlusion apple classes to be synthesized and the illumination requirements. This was
because the occlusion classes could be combined from N and occlusion elements after
observing raw images. All occlusion elements entered from the boundary region of N
and extended randomly to arbitrary locations. This study used this prior knowledge to
complete the synthesis of each occlusion apple class. There was also variability in the
synthesis of each occlusion class. For B and L, both could be formed by randomly pasting
leaf and branch elements into N according to the edge entry rule. However, for F, they
could not be synthesized according to this method because if N was shaded by more than
50%, the fruit occlusion element easily became an N and the shaded fruit became F (i.e.,
both occlusion apple classes would appear simultaneously). The BL, BF, LF, and BLF
were composite occlusion classes and could be formed by either synthesizing composite
occlusion elements or attaching the existing composite occlusion elements to N.

a. N, B, and L class synthesis methods

N synthesis required the cyclic extraction of the required number of N from the basic
training dataset for the corresponding region and illumination. B and L were formed
by directly attaching branch and leaf occlusion elements to the surface of N randomly
according to the edge entry rule. Figure 6 shows the synthesis of B and L.

1. First, the numbers of B and L to be synthesized were calculated. Then, the N class was
selected from the images of the basic training dataset for the corresponding region
and illumination. The selected N was divided into six equal parts according to their
width and height to form a grid with a size of 6 × 6. Since all occlusion elements were
entered by the edges of N, the boundary of the grid was set in this study as an edge
entry area, within which the starting points of branch and leaf needed to be selected.

2. The branch and leaf elements were randomly extracted from the component pool and
cropped at a scale of 0.5–1.0 to form a new occlusion element.

3. The edge entry area contained 24 location points from which the starting point of
the occlusion element was randomly selected. The endpoint of the occlusion element
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could not be in the same row or column as the random starting point because the area
formed by the starting and endpoints of the occlusion element in the same row and
column was a line, which cannot provide a rectangular area of the same size for the
occlusion element. To highlight the occlusion elements, this study set the distance
between the starting and endpoints of the occlusion element to be greater than three
grid lengths to ensure that any area adjacent to the random starting point that was less
than three grid lengths could not be used as the endpoint of the selection area. Other
areas could be used as the endpoint of the selection area. Then, we randomly selected
the endpoint of the occlusion elements from the endpoint of the selection area.

4. After determining the random starting points and random endpoints of the occlusion
element, the dimensions of the new occlusion element were transformed by scaling
or cropping the rectangular area between the random start and endpoints. Then, the
changed occlusion element was pasted in the random starting and ending areas to
form B or L, and finally, the synthetic B or L image was saved.

b. Class F synthesis method

When synthesizing class F, it was impossible to directly attach the fruit occlusion
element to the N surface. This was because it was easy to identify the fruit occlusion
element as N during the model training process if the N area was overshadowed. The
synthesis process of F, shown in Figure 7, was accomplished by limiting the common area
of the fruit occlusion element and N.

1. First, N was selected from the images of the basic training dataset for the correspond-
ing region and illumination, which depended on the number of F to be synthesized.
Then, we obtained the fruit occlusion element from the component pool according
to illumination demand and adjusted its size to the same size as the selected N. Sub-
sequently, we divided N into a 6 × 6 grid and created a 14 × 14 grid area with the
center point of N as the origin. The 14 × 14 grid area was divided into four quadrants,
with the upper left corner as the first quadrant.

2. The location of the upper left corner of the fruit occlusion element was randomly
selected in the first quadrant. To prevent the fruit occlusion element from completely
obscuring N, the centroid of the occlusion element and origin were not allowed to
overlap. This method limited the area of overlap between the fruit occlusion element
and N to no more than 34%, because the fruit occlusion element would become N if it
exceeded 34%, leading to confusing annotations.

3. After determining the starting position of the upper left corner for the fruit occlusion
element, the upper left corner of the fruit occlusion element and starting position
were overlapped to complete the operation of pasting the fruit occlusion element on a
14 × 14 grid. Finally, area N on a 14 × 14 grid was intercepted, and the result of the
interception was the synthesized F image.

c. Fused occlusion-type compositing methods

The fused occlusion apples mainly consisted of BL, BF, LF, and BLF. All four could be
synthesized on the basis of B, L, and F by the attachment of a second or third occlusion
element to form the final fused occlusion apple class. The results of BL, BF, LF, and BLF
are shown in Figure 8, and the specific synthesis process is described in Method 1 of the
Supplementary Material.
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Figure 6. The synthesis process of B and L: (a) N is selected from the annotated images. (b) N area
is gridded, and the blue part is the edge entry area. (c) The gridded area is divided into a random
element insertion point selection area and a random element endpoint selection area, with the red
point being the random starting point and the blue point being the random endpoint. (d) Branch or
leaf occlusion elements are inserted between the random starting and random endpoints. (e) Synthetic
B image; (f) Synthetic L image.

2.2.5. Making the Augmented MTOA Dataset

After synthesizing all occlusion apple images, the next step was to attach these images
to base images and automatically label them to form the augmented MTOA dataset, as
shown in Algorithm 1. Finally, the augmented MTOA and basic training datasets were
combined to form the balanced MTOA dataset.

2.3. Equipment and Model Training
2.3.1. Training Equipment

All experiments were conducted on a deep learning server with Intel Xeon(R) Gold
6226R v4@2.90 Hz × 64 CPU, 251.6 GB RAM, 1.9 TB SSD, 2 × 16 GB NVIDIA Tesla V100
and software: Ubuntu 20.04 OS, PyTorch 1.10 (America, Facebook), NVIDIA driver 495.46,
CUDA 11.5 and cuDNN 8.2.4 (America, Nvidia).
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Figure 7. The synthesis process of F: (a) N is selected from annotated images. (b) Fruit occlusion
element is selected from the component pool. (c) Fruit occlusion element is resized to N size. (d) N is
divided into 6 × 6 grid regions, a 14 × 14 grid region is created with the center of N as the origin, and
it is divided into four quadrants. (e) The randomly selected start point of the fruit occlusion element
is based on the first quadrant, which is a red circle. (f) The fruit occlusion element is attached to the
14 × 14 grid area based on the random starting point, ensuring that the overlap between the fruit
occlusion element and N is less than 34% of N area. (g) The original image is cut in according to the
size of N to form F. (h) The other four F.
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Figure 8. Synthesis results of fused occlusion apple: (a) Synthetic BL image; (b) Synthetic BF image;
(c) Synthetic LF image; (d) Synthetic BLF image; and (e) Synthetic BLF image.
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Algorithm 1: Making the Augmented MTOA Dataset

Input:

a. Synthetic occlusion apple images: D = Area l
id

d
imgs

j
i


b. Base images under high and low illumination: B = Area l

id{b_imgsk}

Output: Balanced MTOA dataset: DB = Area l
id{db_imgs, db_labels}

for area← Zhaoyuan to id do
for lgt← high to l do

b_img_id = Random(0, k− 1)

b_img = Area l
id{b_imgsk}(area, lgt, b_img_id)

for cls← N to i do
for img_id← 1 to j do

shelter_img = Area l
id

{
d_imgsj

i

}
(area, lgt, cls, b_img_id)

if bimg .remainingspace > shelterimg .shape then
start_pos = random(x, y) in b_img.remaining_space

end_pos = (x + shelter_img.shape.x, y + shelter_img.shape.y)
copy shelterimgto bimg .remainingspace with strartpos
update b_img.remaining_space

labels+ = (cls, strart_pos, end_pos)
else

save new bg_img
DB(area, lgt) = (bg_img, labels)

clear labels
id∈(Zhaoyuan,Qixia,Procieer), l∈(low,high), i∈(N,L,F,B,LF,BL,BF,BLF), j is num of class i with l light, k is img num with l light.

2.3.2. Model Selection and Training

In this study, from the perspective of the practical use of agricultural robots with
embedded computing, the primary consideration is the ability of the algorithm to detect
fruits quickly and accurately in real time [39]. Therefore, five lightweight models that
could be deployed in embedded AI terminals were used to verify the effectiveness of the
algorithm. These models were yolox-s, yolov5-s, yolov4-s, yolov3-tiny, and efficientdet-d0,
with fps of 73, 73, 164, 556, and 31, respectively, on the experimental host. The specific
information for each model is listed in Table 3. The training progress was stopped when the
accuracy of each model reached convergence, and the optimal model was saved at the end
of training. The model training time was measured in hours, and each model contained
two training times; the first value was the training time using the MTOA dataset, and the
second value was the training time using the balanced MTOA dataset.

Table 3. Information for each model.

Model Epochs Image_Size
Original

Augmentation
Algorithm

New
Augmentation

Algorithm

Training Time
(h) Project Website

yolox-s ≤300 640 × 640 mosaic, mixup,
flip, hsv

mosaic, mixup
(≤60 epoch)
flip, hsv (≥0

epoch)

7.8/17.2
https://github.com/

MegEngine/YOLOX (accessed
on 30 December 2021)

yolov5-s ≤300 640 × 640
mosaic, mixup,
flip, copy_paste,

multi-scale

flip, copy_paste,
multi-scale 4.4/10.4

https://github.com/
ultralytics/yolov5 (accessed on

30 November 2021)

yolov4-s ≤300 640 × 640 hsv, flip, mosaic hsv, flip 11.1/27.7

https:
//github.com/WongKinYiu/

PyTorch_YOLOv4 (accessed on
30 November 2021)

yolov3-tiny ≤300 640 × 640 flip, hsv, mosaic,
mixup flip, hsv 4.8/11.6

https://github.com/
ultralytics/yolov3 (accessed on

30 November 2021)

efficientDet-
d0 ≤200 640 × 640 – – 19.4/33.8

https:
//github.com/zylo117/Yet-

Another-EfficientDet-Pytorch
(accessed on 31 December 2021)

https://github.com/MegEngine/YOLOX
https://github.com/MegEngine/YOLOX
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/WongKinYiu/PyTorch_YOLOv4
https://github.com/WongKinYiu/PyTorch_YOLOv4
https://github.com/WongKinYiu/PyTorch_YOLOv4
https://github.com/ultralytics/yolov3
https://github.com/ultralytics/yolov3
https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch
https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch
https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch
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2.4. Performance Metrics

In this study, four metrics were used to evaluate the performance of the trained model,
including precision (P), recall (R), average precision (AP), and mean average precision
(mAP), which were calculated as follows:

P = TP/(TP + FP), (1)

R = TP/(TP + FN), (2)

AP(n) =
∫ 1

0
Pn(Rn)dRn, (3)

mAP = 0.125 ∗
8

∑
n=1

AP(n), (4)

where P is the proportion of the correct prediction boxes detected among all prediction
boxes; R is the proportion of the correct prediction boxes among all annotation boxes; AP
is the average accuracy value for each occlusion apple class that measures how well the
trained model does on each class; mAP is the average AP value for eight occlusion apple
classes to measure how well the trained model does on all classes; TP is the number of
correctly matched prediction boxes for all annotation boxes; FP is the number of incorrectly
predicted boxes; and FN is the number of missed annotation boxes.

3. Results
3.1. Results after the Balance of Each Occlusion Class

The basic training dataset was balanced to ensure that the numbers of annotation
boxes in each occlusion apple class were equal. However, annotation boxes in QX_L and
PSR_L were not balanced because of their small number. The final number of annotation
boxes in each occlusion apple with each illumination was 10,579, which is the number of B
in ZY_H. The total number of annotation boxes was 338,937, and the original number of
annotation boxes was 81,631. The results of the synthesis of the images under high and low
illuminations are shown in Figure 9, and the numbers of annotation boxes of each occlusion
class after synthesis are shown in Table 4.
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Table 4. Synthesis results of basic training dataset by high and low illumination.

Results
of Data

Synthesis

Total
Synthetic No. of N No. of B No. of L No. of BL No. of BF No. of F No. of LF No. of

BLF

ZY_H_syn 4,7829 723 0 4982 4174 8643 9283 10,105 9919
ZY_L_syn 59,467 940 4908 6021 7446 9851 9678 10,327 10,296
QX_H_syn 76,473 9306 7526 9775 9137 9645 10,311 10,463 10,310
QX_L_syn 0 0 0 0 0 0 0 0 0
PSR_H_syn 73,858 8429 10,390 5284 9637 10,525 10,039 9122 10,432
PSR_L_syn 0 0 0 0 0 0 0 0 0

ZY_H_syn, ZY_L_syn, QX_H_syn, QX_L_syn, PSR_H_syn, and PSR_L_syn represent the synthesized data after
the equalization of ZY_H, ZY_L, QX_H, QX_L, PSR_H, and PSR_L, respectively.

3.2. Training Results before and after Data Balance

In this study, the yolox-s-basic, yolov5-s-basic, yolov4-s-basic, yolov3-tiny-basic, and
effidentdet-d0-basic models were obtained after training five lightweight models using
basic training dataset from the MTOA dataset, and we obtained yolox-s-bal, yolov5-s-bal,
yolov4-s-bal, yolov3-tiny-bal, and efficidentdet-d0-bal after training five lightweight models
using the balanced MTOA dataset. Since all models were pre-trained using the balanced
MTOA dataset, it was found that models trained without mosaic and mixup augmentation
algorithms performed better than those trained with such algorithms, indicating that the
balance augmentation method is more effective than mosaic and mixup methods when
training models for apple occlusion detection. This is mainly because the feature difference
between the occlusion targets is often in a small local area, and the mosaic and mixup
augmentation algorithms increase annotation noise. The test dataset in this study consisted
of the basic_test and balance_test datasets, both of which were identical. The test dataset
contained 1000 images and labels under ZY_H, ZY_L, QX_H, and PSR_H, excluding
synthetic images, for a total of 12,666 apple occlusion targets. The test metrics for each
model were calculated using Equations (1)–(4), as shown in Table 5, and the following
information was obtained from the analysis of the results.

1. Yolox-s-bal improved significantly over the yolox-s-basic model in terms of precision,
recall, and mAp, and it showed some improvement in Ap values between all occlu-
sion classes. Moreover, yolov4-s-bal, yolov3-tiny-bal, and yolox-s-bal had the same
performance, indicating that the balance method proposed in this study can improve
the performance of the above four models in detecting apple occlusion targets in a
comprehensive manner. Compared with the yolov5-s-basic model, the precision and
APBLF values decreased by 0.001 and 0.042, respectively. However, the recall value
improved significantly, the mAp value remained balanced, and the AP values of all
classes except BLF improved, indicating that the proposed method in this study can
maintain an accurate performance of yolov5-s-basic while improving the ability of the
model to find a full range of occlusion targets.

2. The highest values of each metric in the detection results were P (0.974) in yolox_s_bal;
R (0.972) in yolox-s-bal; mAp (0.960) in yolov5-s-basic and yolov5-s-bal; APN (0.985)
in yolov5-s-bal; and APB (0.982), APL (0.975), APF (0.963), APBL (0.965), APBF (0.959),
APLF (0.956), and APBLF (0.994) in yolox-s-bal, showing that the highest metric values
were among the models trained with the balanced MTOA dataset. This indicates that
the proposed method can promote a great expression of the detection performance of
the model for some categories.

3. The proposed method improved most of the metrics of each model, but the APBLF
metrics decreased after the training of yolov5-s-bal and efficientDet-d0-bal, indicating
that the features of the BLF in the balanced MTOA dataset differed from those in the
BLF classes of the basic training dataset. This affected the detection ability of the BLF
in these two models.
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Table 5. Detection results of different models on the test dataset.

Model Comparison P R mAP0.5 APN APB APL APF APBL APBF APLF APBLF

yolox-s-basic 0.894 0.845 0.892 0.904 0.898 0.897 0.892 0.886 0.888 0.884 0.885
yolox-s-bal 0.974 0.972 0.919 0.909 0.909 0.908 0.909 0.908 0.908 0.906 0.994

diff 0.080 0.127 0.027 0.005 0.011 0.011 0.017 0.022 0.020 0.022 0.109

yolov5-s-basic 0.947 0.914 0.960 0.984 0.979 0.97 0.960 0.957 0.948 0.955 0.934
yolov5-s-bal 0.946 0.936 0.960 0.985 0.982 0.975 0.963 0.965 0.959 0.956 0.898

diff −0.001 0.022 0 0.001 0.003 0.005 0.003 0.008 0.011 0.001 −0.036

yolov4-s-basic 0.900 0.751 0.727 0.835 0.797 0.768 0.699 0.742 0.693 0.639 0.646
yolov4-s-bal 0.961 0.913 0.907 0.941 0.930 0.916 0.910 0.904 0.920 0.879 0.859

diff 0.061 0.162 0.180 0.106 0.133 0.148 0.211 0.162 0.227 0.240 0.213

yolov3-tiny-basic 0.856 0.791 0.883 0.959 0.936 0.941 0.856 0.889 0.842 0.877 0.768
yolov3-tiny-bal 0.910 0.842 0.918 0.97 0.95 0.956 0.897 0.912 0.895 0.917 0.835

diff 0.054 0.051 0.035 0.011 0.014 0.015 0.041 0.023 0.053 0.040 0.067

efficientdet-d0-basic 0.933 0.896 0.930 0.951 0.938 0.936 0.923 0.923 0.934 0.919 0.913
efficientdet-d0-bal 0.940 0.923 0.935 0.951 0.948 0.939 0.934 0.935 0.935 0.934 0.901

diff 0.007 0.027 0.005 0.000 0.01 0.003 0.011 0.012 0.001 0.015 −0.012

The diff represents the difference between detection metrics of the model trained by the balanced MTOA dataset
and the model trained by basic training dataset, and the value is shown in bold black.

4. Discussion

The experimental results show that the APBLF value decreased for the yolov5-s-bal
and efficientDet-d0-bal models and increased for all other models. To analyze the reasons,
the original test dataset was divided into four sub-classes of test datasets (ZY_H_TEST,
ZY_L_TEST, QX_H_TEST, and PSR_H_TEST). Then, the yolov5-s-bal model was used as
a representative of an APBLF decreasing model because the APBLF value in yolov5-s-bal
declined the most, and yolov4-s-bal was used as a representative of a rising model for
all metrics. Finally, these two models were tested separately with four sub-classes of test
datasets, as the APBLF value in yolov4-s increased the most.

1. First, four sub-classes of test datasets were tested based on the yolov5-s-basic and
yolov5-s-bal models. Test results are shown in Table 6, and visualization test results
are shown in Supplementary Material Figure S2. In the test results for ZY_H_TEST
and QX_H_TEST, the APBLF improved by 0.018 and 0.071, respectively, but the APBLF
decreased by 0.085 and 0.096 in the test results for ZY_L_TEST and PSR_H_TEST,
respectively. Meanwhile, in the test results for PSR_H, all metrics decreased for
different illuminations except APF, indicating that the yolov5-s-bal model had a loss
in the detection performance of the BLF in PSR_H_TEST and ZY_L_TEST, which is
also the main reason for the decrease in APBLF when testing the yolov5-s-bal model.
In addition, the yolov5-s-basic model had the greatest variability in all test metrics for
PSR_H_TEST. If we want to continue to improve the metrics, we need to provide data
that are more similar to source data for model training. However, for PSR_H_TEST
balance augmentation, the occlusion elements in ZY_H and ZY_L were used for
synthesis, which improved the amount of training data but fell short of the goal
of being more similar to the source data, resulting in a decrease in the APBLF and
other metrics.

2. Four sub-classes of test datasets were tested based on the yolov4-s-basic and yolov4-s-
bal models. The test results are shown in Table 7, and the visualization test results
are shown in Supplementary Material Figure S3. The decreases in APBLF and P for
ZY_L_TEST data were 0.036 and 0.001, respectively, with a large decrease in APBLF,
which is due to the same reason as the decrease in APBLF for the yolov5-s-bal model
test. Moreover, the detection metrics under all other sub-class test datasets showed
substantial improvements, indicating that the combined detection performance of
the yolov4-s-bal model improved significantly. Although the detection ability of BLF
in ZY_L_TEST data was suppressed, the AP values in other sub-classes increased
significantly, which was the main reason for the increase in APBLF when all test
datasets passed the yolov4-s-bal test. The results of the yolov4-s-basic model for
PSR_H_TEST, ZY_H_TEST, and PSR_H_TEST were all relatively low, which shows
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that there is more room to improve the performance of the model. All other metrics
improved after training the model with a balanced MTOA dataset, indicating that the
proposed method in this study is more effective in improving the performance of the
model when there is more room for improvement.

Table 6. Comparison of the statistical results of yolov5-s-basic and yolov5-s-bal for all metrics in
test dataset.

Model Comparison Data P R mAP0.5 APN APB APL APF APBL APBF APLF APBLF

yolov5-s-basic
ZY_H_TEST

0.943 0.935 0.960 0.983 0.975 0.964 0.944 0.971 0.940 0.977 0.926
yolov5-s-bal 0.970 0.950 0.970 0.986 0.983 0.970 0.968 0.979 0.957 0.970 0.944

diff 0.027 0.015 0.010 0.003 0.008 0.006 0.024 0.008 0.017 −0.007 0.018

yolov5-s-basic
ZY_L_TEST

0.954 0.913 0.96 0.985 0.966 0.950 0.968 0.935 0.952 0.953 0.971
yolov5-s-bal 0.966 0.943 0.965 0.992 0.983 0.979 0.977 0.951 0.985 0.967 0.886

diff 0.012 0.030 0.005 0.007 0.017 0.029 0.009 0.016 0.033 0.014 −0.085

yolov5-s-basic
QX_H_TEST

0.948 0.950 0.958 0.985 0.985 0.955 0.935 0.977 0.962 0.967 0.890
yolov5-s-bal 0.943 0.902 0.973 0.992 0.986 0.982 0.954 0.981 0.964 0.967 0.961

diff −0.005 −0.048 0.015 0.007 0.001 0.027 0.019 0.004 0.002 0.000 0.071

yolov5-s-basic
PSR_H_TEST

0.923 0.936 0.960 0.989 0.985 0.983 0.964 0.947 0.905 0.963 0.942
yolov5-s-bal 0.957 0.886 0.934 0.979 0.951 0.982 0.964 0.936 0.859 0.957 0.846

diff 0.034 −0.050 −0.026 −0.010 −0.034 −0.001 0.000 −0.011 −0.046 −0.006 −0.096

The diff represents the difference between detection metrics of yolov5-s-basic assay and detection metrics of
yolov5-s-bal, and it is bolded in black; the boxed area shows a larger decline in APBLF.

Table 7. Comparison of the statistical results of yolov4-s-basic and yolov4-s-bal for all metrics in the
test dataset for each subcategory.

Model Comparison Data P R mAP0.5 APN APB APL APF APBL APBF APLF APBLF

yolov4-s-basic
ZY_H_
TEST

0.894 0.845 0.892 0.904 0.898 0.897 0.892 0.886 0.888 0.884 0.885
yolov4-s-bal 0.974 0.972 0.919 0.909 0.909 0.908 0.909 0.908 0.908 0.906 0.994

diff 0.08 0.127 0.027 0.005 0.011 0.011 0.017 0.022 0.02 0.022 0.109

yolov4-s-basic
ZY_L_
TEST

0.947 0.914 0.960 0.984 0.979 0.97 0.96 0.957 0.948 0.955 0.934
yolov4-s-bal 0.946 0.936 0.960 0.985 0.982 0.975 0.963 0.965 0.959 0.956 0.898

diff −0.001 0.022 0.000 0.001 0.003 0.005 0.003 0.008 0.011 0.001 −0.036

yolov4-s-basic
QX_H_
TEST

0.900 0.751 0.727 0.835 0.797 0.768 0.699 0.742 0.693 0.639 0.646
yolov4-s-bal 0.961 0.913 0.907 0.941 0.93 0.916 0.910 0.904 0.92 0.879 0.859

diff 0.061 0.162 0.180 0.106 0.133 0.148 0.211 0.162 0.227 0.240 0.213

yolov4-s-basic
PSR_H_TEST

0.856 0.791 0.883 0.959 0.936 0.941 0.856 0.889 0.842 0.877 0.768
yolov4-s-bal 0.910 0.842 0.918 0.97 0.950 0.956 0.897 0.912 0.895 0.917 0.835

diff 0.054 0.051 0.035 0.011 0.014 0.015 0.041 0.023 0.053 0.040 0.067

The diff represents the difference between detection metrics of yolov4-s-basic assay and detection metrics of
yolov4-s-bal, and it is bolded in black; the boxed area shows a larger decline in APBLF.

The method proposed in this study is expected to be applied to the fine detection
of apple fruit in multiple regions. Compared with most data augmentation algorithms,
the proposed method greatly increases the quantity and quality of underlying multi-type
occlusion apple data and solves the problem of unbalanced quantities between classes.
The detection capability of the lightweight model and the generalization capability of the
model were also improved, which shows that our method can be used for advancing the
fine-grained identification of occlusion fruits. This method needs to be used to fully use
a priori knowledge (consistency of occlusion elements, type of occlusion, and features
of external illumination) to generate high-quality data and ensure that synthetic data are
consistent with the main features of the original data.

5. Limitations and Future Research

Despite the aforementioned achievements [40], there is still room for improvement
in the proposed method. Firstly, the process of component pool production consumes a
great deal of time because all elements need to be manually selected or extracted, such as
selecting base images, manually segmenting fruits, leaves, branches, etc., which increases
the cost of data production. Secondly, after the MOTA dataset is balanced, the size of the
balanced MOTA dataset will increase, and the training time of the model will increase
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accordingly when more data are used for model training. In the future, our research
direction is to reduce the dataset production time and labor cost by using the existing
segmentation model for building a component pool.

6. Conclusions

In this study, we addressed the problem that most lightweight models detect multiple
types of occlusion targets inefficiently during fruit picking. We proposed the first MTOA
dataset and a balance augmentation method. The results show that using the proposed
method, the average detection precision of the five popular lightweight object detection
models can be significantly improved, demonstrating the effectiveness of the proposed
method. However, we still need to pay attention to the selected occlusion types that
should be consistent with the actual situation since this will affect the similarity between
the synthetic and actual data. The proposed method showed considerable potential for
different fruit detection missions in future orchard applications in complex environments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22176325/s1. Figure S1. Results of raw images classified by
illumination; Figure S2. Visualization test results of yolov5-s-basic and yolov5-s-bal; Figure S3.
Visualization test results of yolov4-s-basic and yolov4-s-bal.
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