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Abstract: To avoid the potential safety hazards of electric vehicles caused by the mechanical fault
deterioration of the in-wheel motor (IWM), this paper proposes an intelligent diagnosis based on
double-optimized artificial hydrocarbon networks (AHNs) to identify the mechanical faults of IWM,
which employs a K-means clustering and AdaBoost algorithm to solve the lower accuracy and poorer
stability of traditional AHNs. Firstly, K-means clustering is used to improve the interval updating
method of any adjacent AHNs molecules, and then simplify the complexity of the AHNs model.
Secondly, the AdaBoost algorithm is utilized to adaptively distribute the weights for multiple weak
models, then reconstitute the network structure of the AHNs. Finally, double-optimized AHNs are
used to build an intelligent diagnosis system, where two cases of bearing datasets from Paderborn
University and a self-made IWM test stand are processed to validate the better performance of the
proposed method, especially in multiple rotating speeds and the load conditions of the IWM. The
double-optimized AHNs provide a higher accuracy for identifying the mechanical faults of the IWM
than the traditional AHNs, K-means-based AHNs (K-AHNs), support vector machine (SVM), and
particle swarm optimization-based SVM (PSO-SVM).

Keywords: intelligent diagnosis; in-wheel motor; artificial hydrocarbon networks; K-means clustering;
AdaBoost algorithm

1. Introduction

With the outbreak of the oil crisis, many policies and measures have been introduced
to promote the development of the new energy vehicle (NEV) from countries all over the
world. As a result, many new driving technologies have become research hotspots, one
of which is the in-wheel motor (IWM), which has the advantages of high efficiency, fast
response, and full-time wire control. The IWM-based driving system can reduce vehicle
energy consumption, improve vehicle performance, and optimize spatial layout. Therefore,
the IWM-based driving system has been recognized as the ideal configuration of future
NEV power systems [1,2]. However, the unique installation between the IWM and the
suspension must increase the unsprung mass of a vehicle, whereby the vibration isolation
performance of the suspension is deteriorated, and the operational stability and safety are
compromised. Moreover, as each IWM must directly withstand the intermittent strong
impact load from the road, its local structure, such as the bearing, can be broken very easily,
and it is difficult to detect the subtle damage. At present, there is no system for monitoring
the IWM’s condition. Once a fault occurs to one or more of the IWMs in the driving system,
local driving performance should deteriorate, which creates a security threat for the safe
operation of the whole vehicle [3,4]. Therefore, it is urgent to explore efficient and reliable
diagnosis methods for monitoring IWM’s fault condition [5–7].
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In recent years, studies have been performed on signal processing, feature extraction,
intelligent diagnosis, and the condition recognition of the common motor. For example,
an intelligent fault diagnosis algorithm has been proposed by adaptive transfer affinity
propagation clustering, which can extract potential energy features from the intrinsic mode
functions of vibration signals using complete ensemble empirical mode decomposition
(EMD) with adaptive noise [8]. A dual-tree complex wavelet transform (WT) is employed to
acquire the multiscale signal’s features, which improve the classification accuracy of a fault’s
characteristic signal [9]. A novel intelligent fault diagnosis approach based on principal
component analysis (PCA) and a deep belief network (DBN) has been presented to extract
the fault signatures in terms of primary eigenvalues and eigenvectors [10]. Ensemble EMD,
wavelet packet transform (WPT), and sparse representation (SR) are utilized to accurately
extract the information of fault features which are buried in vibration signals [11,12]. The
method of attribute selection and feature extraction based on random forest (RF) combined
with PCA has a faster recognition time and a higher recognition accuracy than other
algorithms [13]. The integrated time-domain, frequency-domain statistical characteristics,
EMD, and deep learning methods are proposed to realize the automatic recognition of
different fault states of rotating machinery [14,15]. These methods of signal processing
and feature extraction have the advantages of high resolution and strong interference
suppression ability.

Moreover, Lagrange particle swarm optimization (L-PSO) has been improved to
establish the multiple fault diagnosis model, which verifies the effectiveness and stability
by sensor data-based multiple fault diagnosis [16]. Support vector machines (SVMs) have
been applied to report the health states of railway turnout with high accuracy and self-
adaptability [17,18]. A neural network (NN) is used establish the fault diagnosis model
of large-scale ship engines, which has a higher diagnostic accuracy and use value [19,20].
The convolutional NN is modified with transfer learning for analyzing the thermal images
of the rotor-bearing system under different working conditions [21]. The ensemble deep
auto-encoders (EDAEs) method is proposed to intelligently diagnose the faults of rolling
bearings [22]. A novel model with continuous WT and a local binary convolutional NN is
applied to intelligently diagnose the faults of rotating machinery [23–25]. An improved
particle swarm optimization variational mode decomposition (IPVMD) and improved
convolutional neural network (I-CNN) are proposed to solve the problem of planetary
gearbox composite fault diagnosis [26]. The improved convolutional neural network–
support vector machine (CNN-SVM) method is presented to extract representative features
from the multichannel vibration signals of the rolling bearing [27]. A novel tracking deep
wavelet auto-encoder (TDWAE) method is introduced for the intelligent fault diagnosis of
electric locomotive bearings [28]. The diagnosis method based on the auto-encoder and
extreme learning machines is proposed for diagnosing faults in bearings so to overcome the
deficiencies of longer training times [29]. A new real-time diagnosis method based on the
dynamic Bayesian network (DBN) is used to distinguish the IWM’s mechanical faults [30].
The above methods have good classification effects or better applicability for specific
application scenarios, but it is essential to establish the operation classification model and
summarize the algorithm that can play better roles for specific scenarios [31–33]. However,
as IWMs are often working in variable and complex conditions, the methods directly
applied for fault diagnosis show neither superior performance nor acclimatization [34,35].
Therefore, it is urgent to make some improvement and achievement with respect to the
existing artificial intelligence technologies so to establish the optimal intelligent diagnosis
model for IWMs [36].

Artificial hydrocarbon networks (AHNs) are a new artificial intelligence algorithm that
have excellent information encapsulation and integration ability. AHNs can not only realize
the classifier function by using the target information in adjacent molecules, but also have
the advantages of a clear network topology and strong adaptability [37]. However, while
better performance would be achieved by training large samples, AHNs are confronted
with large computational quantities and response times in these application [38–40].
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To solve the above problems, K-means clustering and the AdaBoost algorithm are
employed to design double-optimized AHNs with the core idea to improve the interval
updating method of any adjacent AHN’s molecules and the linear connection scheme of
multiple molecules. Moreover, the iterative process and computing speed of the proposed
methods are researched, and the classification accuracies are also compared with several
existing methods under different operating conditions. The rest of the paper is organized as
follows. The basic theory of traditional AHNs is introduced in Section 2, and the improved
method of the double-optimized AHN algorithm is presented in Section 3. Experimental
results and analysis are mainly described in Section 4. Conclusions are summarized and
future research is determined in Section 5.

2. Artificial Hydrocarbon Networks

Artificial hydrocarbon networks (AHNs) are a new paradigm of computational algo-
rithms whose framework is a chemically inspired technique based on organic chemistry,
and many of the technical terms, such as atom, CH molecule, compound, and mixture,
inherit from hydrocarbon networks. Therefore, many properties of organic chemistry
become the main characteristics of the AHNs’ algorithm, such as structural organization,
clustering information, inheritance of behavior, encapsulation of data, and stability in
structure and response. There are some studies on the application of AHNs in the fields of
signal processing and condition recognition [39,40].

In general, a linear and saturated chain of hydrocarbons, as shown in Figure 1, is used
to establish the graph structure of an AHN that represents their physical properties, and the
chemical behaviors of the components and their interactions are modeled through a mathe-
matical object that can describe the nonlinear relationships between the input (attribute)
and the output (target) variables. Certainly, these variables can be a number or vector.
For convenience, let x (x ∈ [a, b]) be any chemical environment, f (x) be the corresponding
chemical behaviors, and a mathematical model of an AHN can be described by

y = f (x) = ∑K
k=1 Ck∏

r
(x− hkr) x ∈ [a, b] (1)

where K is the number of CH primitive molecules in the AHNs, Ck is the carbon atomic
value in the k-th hydrocarbon molecule, and hkr is the r-th hydrogen atomic value around
the carbon atomic Ck. According to chemical rules, r is a positive integer up to 4.

Figure 1. Common graph structure of an AHN.
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When two or more AHNs are mixed together, the resultant mixture contains more
information. Suppose any number of AHNs can interact without sharing electrons, the
optimal ratios of AHNs can be found to obtain the minimum loss energy in the whole
structure. Then, the whole model of an AHNs can be defined by

Y = ∑J
j=1 αj · yj (2)

where yj is the output value of the j-th AHN model, αj is the stoichiometric coefficient of
the j-th AHN model, and J is the number of AHNs in a system.

In practical application, the number of hydrocarbons J and the number of each hy-
drocarbon molecule K are determined according to practical engineering problems. When
AHNs are used to build the system of condition recognition, J depends on the engineering
requirement and K hinges on the output class. Usually, it is easier to determine the values
of J and K for specific classification, but harder to find the optimal values of carbon atomic
Ck and hydrogen atomic hkr. This is because the input domain Dk excites the k-th molecule.
For the input domain Dk,

⋃K
k=1 Dk = [a, b], Dk

⋂
Dn = ∅ (k 6= n), and the initial domain,

Dk
(0) is assigned by the equipartition method [34]; then, the criterion of minimizing the

absolute errors is employed to determine the attribution domain of each sample. Suppose
Σ = {(x, y)|x ∈ X, y ∈ Y} to be a training set, and M to be the number of training samples.
Each sample (xm, ym) (m = 1, 2, . . . , M) includes the state parameter and the state label.
Then, the attribution domain zk of each sample (xm, ym) can be expressed as follows:

zk = argmin
k
|xm − (2k− 1) ∗ b− a

2K
| (3)

In this way, all training samples are assigned to the different input domains, then
the attribution set Z = {z1, z2, . . . , zk, . . . , zK} is obtained to activate the parameters of the
AHN’s model. In this traditional approach, the least square method is used to determine
the values Ck, hkr of the carbon atom, and the hydrogen atom in each hydrocarbon molecule,
and an AHN’s model can be expressed as follows:

Λ = {C1, · · · , CK; h11, · · · , h1r, · · · , hKr; D1, · · · , DK} (4)

Similarly, the different training sets are used to build the corresponding AHN’s models.
However, it is difficult to evaluate the stoichiometric coefficient of each AHN model. At
present, the classification abilities of different training sets are compared, and the weight
matching method is employed to confirm the coefficient αj, then multiple AHN models are
synthesized into a complete classifier called AHNs.

In fact, there are two problems to confront in the renewal of the hydrocarbon molecular
interval by the traditional AHN method: the single way and the slow convergence speed.
Therefore, it is difficult for the traditional AHN method to be competent in a complex
environment and attain the rapid response requirement. Based on this, K-means clustering
and AdaBoost algorithms are employed to improve the clustering rule of the hydrocarbon
molecular interval and linear connection scheme for hydrocarbons, as well as perfect the
multistate classification model. Since the traditional AHN algorithm is optimized twice,
the improved AHN is called the “double-optimized AHNs” in the paper. Figure 2 is the
flow chart of double-optimized AHNs.
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Figure 2. Flow chart of double-optimized AHNs.

3. Double-Optimized AHNs
3.1. AHNs’ Model Optimization Based on K-Means

The K-means algorithm is a common clustering method which uses Euclidean distance
to attribute the samples with a high similarity and a low difference to the same interval so
as to form multiple interval blocks [41,42]. To make the distance between the center point
as large as possible so to accelerate the convergence speed and improve the classification
error in the subsequent iteration processing when the AHNs model is trained, the K-means
algorithm is applied to optimize the update mode of the hydrocarbon molecular interval,
and then improve the training speed of the AHNs model and reduce the strict requirements
of the training sample set.

In the initialization process of the AHNs’ hydrocarbon molecular interval, the number
of hydrocarbon molecules K is regarded as the number of clustering intervals, and the
input sample set X and the center point of each hydrocarbon molecular interval block are
made to classify the input activation parameters Z corresponding to different hydrocarbon
molecular interval blocks.

In general, the number of K-means clusters is defined as the number of hydrocarbon
molecules K of the AHN model, and a sample is selected randomly as the center point
of the first interval block in the interval µ

(0)
1 from the input sample set X. Secondly, the

Euclidean distance between the remaining input samples xm and the center point of the
existing interval block is calculated to obtain the probability P that each sample is selected
as the center point of the next interval block, and then the input sample with the highest
probability is selected as the center point of the next interval block, and so on until the
initialization of K interval block centers is completed. Let P(0)

k + 1(x) be the probability of
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an input sample x is selected as the (k + 1)-th interval block center point µ
(0)
k + 1 in the

initialization processing, then P(0)
k + 1(x) and µ

(0)
k + 1 are expressed as follows:

P(0)
k+1(x) =

R(x, µ
(0)
k )

∑M
m=1 R(xm, µ

(0)
k )

(5)

µ
(0)
k+1 = argmax

x∈X
P(0)

k+1(x) (6)

where µ
(0)
k is the k-th interval block center point in the initialization process, R(·) is the

Euclidean distance, and M is the number of training samples. In that way, the K interval
block center points have been obtained to complete the initialization of center point set
U(0) of hydrocarbon molecule interval block, as follows:

U(0) =
{

µ
(0)
1 , µ

(0)
2 , · · · , µ

(0)
k , · · · , µ

(0)
K

}
(7)

In the following process, the interval block center point set U(t) in the t-th (t ≥ 1)
clustering process is used to find the interval block center point with the shortest Euclidean
distance, then the input sample xm is classified into the corresponding interval blocks
for obtaining the input activation parameter set Z corresponding to K interval blocks, in
which the input activation parameter z(t)k corresponding to the k-th interval block in the
t-th clustering process can be expressed as follows:

z(t)k = arg min
xm∈X

R(xm, µ
(t)
k )µ

(t)
k ∈ U(t) (8)

The above algorithm is performed to satisfy the convergence condition of the improved
AHN model. When the algorithm is iterating, the input activation parameters z(t)k of each
interval block is used to calculate the corresponding center point. Let E(t) be the error
function of the improved AHN model in the t-th clustering process, where it is judged
whether E(t) reaches the convergence condition. If the convergence condition is met, the
training samples have been classified into the different hydrocarbon molecular interval.
Otherwise, the k-th interval block center point µ

(t + 1)
k in the (k + 1)-th clustering process is

updated by the sum of the Euclidean distances between each center point and all samples in
z(t)k . The center point corresponding to the smallest one is confirmed as µ

(t + 1)
k , as follows:

E(t) =
K

∑
k=1

∑
x∈z(t)k

R(x, µ
(t)
k ) (9)

µ
(t+1)
k = argmin

λ
∑

x∈z(t)k

R(x, λ) (10)

Then, the center point set U(t) in the t-th clustering process is used to drive each
hydrocarbon molecule interval block D(t), as follows:

D(t) =


[a, (µ(t)

1 + µ
(t)
2 )/2), i = 1

[(µ
(t)
i−1 + µ

(t)
i )/2, (µ(t)

i + µ
(t)
i+1)/2), i = 2, · · · , K− 1

[(µ
(t)
K−1 + µ

(t)
K )/2, b], i = K

(11)

Finally, the least square method is employed to determine new AHN model, such as
Ck, hkr, and Dk. This has completed the first optimization of the AHN model based on the
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K-means algorithm. In this paper, the improved AHN model based on K-means is denoted
as the K-AHNs model, and the output of the K-AHNs model is expressed as follows:

y′ = KAHN(x) (12)

3.2. K-AHNs’ Model Optimization Based on AdaBoost

Adaptive boosting (AdaBoost) is a familiar iterative algorithm, where the core idea is
to train different classifiers for the same training data and then combine these classifiers
to form a stronger classifier [43,44]. In the process of algorithm improvement, each classi-
fier will use an adaptive resampling technique to choose different samples, whereby the
misclassified samples produced by previous classifiers are focused to form a new training
sample with the other data. Moreover, the misclassified samples are endowed with higher
weights to train the next classifier. The final classifier is a weighted sum of the ensemble
predictions. Therefore, the AdaBoost algorithm is often applied to solve two-class problems,
multiclass single-label problems, multiclass multilabel problems, categories of single-label
problems, and regression problems [45].

In this paper, the AdaBoost algorithm is used to optimize the K-AHNs model for
solving the strong dependence on the distribution of training samples. For the various
samples, the sensitivities of these classifiers are made to assign the optimal weights for
weak K-AHNs, then weaken the weight of the weak classifier and enhance the evaluation
grade of stable one in the linear combination of all classifiers. In general, it takes four steps
to achieve the optimization process of the K-AHNs model based on AdaBoost, as follows:

Step 1: Assign a weight to each training sample and obtain the first K-AHNs classifier.
In the initial process, each example is endowed with the same weight. Suppose there are M
samples in the training set X, the weight w1m of each sample xm (xm ∈ X, m = 1, 2, . . . , M) is
set as 1/M, then all samples with the same weights are trained to obtain the first K-AHNs
classifier. Usually, the classifier is weak.

Step 2: Calculate the error rate of the training samples and determine the weight of
the corresponding classifier. The training result of the first K-AHNs classifier is analyzed,
especially the misclassified samples, and the error rate rg of the training samples in the g-th
K-AHNs classifier is defined as follows:

rg = P(KAHNg(X) 6= Y) =
M

∑
m=1

wgmh(KAHNg(xm) 6= ym) (13)

h(KAHNg(xm), ym) =

{
1, KAHNg(xm) 6= ym
0, KAHNg(xm) = ym

(14)

where KAHNg(·) is the output result of the g-th K-AHNs classifier and wgm is the weight of
m-th sample in the g-th K-AHNs classifier. While the error rate rg is determined, the weight
αg of the g-th K-AHNs classifier can be calculated for comprehensive evaluation, as follows:

αg =
1
2

ln(
1− rg

rg
) (15)

where ln(·) is the natural logarithm function.
Step 3: Update the weights of each sample and K-AHN classifier in next process.

According to the weight of each sample wgm and the K-AHN classifier αg in the g-th process,
the weight of each sample w(g + 1) m in the (g + 1)-th process can be updated as follows:

w(g+1)m =
wgm

Zg
exp[αg · (KAHNg(xm)− ym)] (16)

where Zg is the normalization factor of the g-th K-AHN classifier. Based on this, the weights
of the misclassified samples will be increased progressively in exponent regularity.
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Step 4: Obtain the strong K-AHN classifier. When the above operation is repeated T
times, these weak classifiers are weighted to fuse into a strong classifier G(x), as follows:

G(x) =
T

∑
g=1

εgKAHNg(x) (17)

where εg is the fusion weigh of the g-th K-AHN classifier in the final classifier, εg = αg/∑T
g=1 αg.

4. Experimental Verification

To verify the effectiveness of double-optimized AHNs for diagnosing some mechanical
faults, two cases of bearing data are studied, including Case 1: the bearing data from
Paderborn University, and Case 2: the bearing data from the self-made IWM test stand.
The experimental data of Case 1 are representative in the field of fault diagnosis, where
traditional AHNs, K-AHNs, and double-optimized AHNs will be used with the same
training data and test data for comparison and discussion. However, the experimental data
of Case 2 are especially particular in the application scenarios, where the robustness and
diagnosis accuracy of double-optimized AHNs can be compared with the existing methods.

4.1. Case 1: The Bearing Data from Paderborn University

The experimental data of the bearing faults from Paderborn University [46] are firstly
analyzed. Single faults with inner race and outer race defects were set on the testing bearing
(ball bearing with Type 6203) separately, and the extent of the bearing defect was cut by
an electric engraver into a trench of a 0.25 mm length in the rolling direction and a depth
of 1–2 mm, respectively. The operating condition was that the rotational speed was 900,
1500 rpm, the load torque was 0.1, 0.7 Nm, and the radial force was 1000 N. The vibration
was measured with the sampling frequency of 64 kHz.

The vibration signal in each condition was firstly processed by empirical wavelet
transform (EWT) [47] to extract five highly sensitive symptom parameters (SPs), such as the
root mean square (RMS), average peak, skewness, kurtosis, and waveform stability index,
wherein the SPs are labeled with SP1, SP2, SP3, SP4, SP5 [37,48], respectively. Then, the
five-dimensional vector, namely (SP1, SP2, SP3, SP4, SP5), is used to represent the bearing
state within a certain time. In this paper, the five states of the bearing from Paderborn
University are selected, including the normal state (State 1), the slight fault of inner ring
(State 2), the severe fault of inner ring (State 3), the slight fault of outer ring (State 4), and
the severe fault of outer ring (State 5). The vibration data of each state every 0.128 s are
regarded as a sample to set s vector of SPs, then 30 samples are obtained in each state
of bearing.

According to the actual condition of the above bearing experiment, the double-
optimized AHNs model is built with a five-type classifier. The input xm is five-dimensional
vector (SP1m, SP2m, SP3m, SP4m, SP5m), and the corresponding output is an integer of 1, 2,
3, 4, or 5 which maps into the state with the same number. Then, 70 percent of each of
the state samples are randomly selected to associate with the corresponding label for the
training samples {(SP1, SP2, SP3, SP4, SP5, y) | y = 1, 2, 3, 4, 5}, while the other samples
are used to test the performance of the double-optimized AHNs classifier. Certainly, the
basic parameters of each classifier are set in advance. In particular, the learning rate is 0.1,
the tolerance value is 0.05, and the maximum number of iterations is 50. Therefore, the
diagnosis system based on the double-optimized AHNs is performed. When the output
value agrees with the defined label, it indexes the stipulated state, and the diagnosis result
is correct. Otherwise, the state is a case of mistaken identity. Similarly, the diagnosis models
based on the AHNs and K-AHNs are performed with the same training and test samples,
respectively. Then, the diagnosis accuracies of all the test samples of the different bearing
states under the three operating conditions are shown in Figure 3. Moreover, the average
CPU times of the three methods in the training and test processes are shown as Table 1.
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Figure 3. The classification results of the five states of the motor bearing of Paderborn University
under three operating conditions (a) Rotational speed = 1500 rpm, load torque = 0.7 Nm; (b) Rotational
speed = 900 rpm, load torque = 0.7 Nm; (c) Rotational speed = 1500 rpm, load torque = 0.1 Nm;
(d) Average classification rate and error degree.

Table 1. The average CPU 1 times of the three methods in the training and test processes.

Operating Condition AHNs K-AHNs Proposed Method

Speed [rpm] Load [Nm] Training [s] Test [s] Training [s] Test [s] Training [s] Test [s]

1500 0.7 35.21 14.73 4.50 2.45 9.69 2.58
900 0.7 31.60 13.69 4.75 2.16 8.76 1.95
1500 0.1 35.47 14.74 4.56 2.10 8.89 2.13

1 Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz 3.19 GHz.

Obviously, there are great differences in the classification accuracies of three classifiers.
In the first condition, with a rotational speed of 1500 rpm and load torque of 0.7 Nm, the
diagnosis accuracies of the double-optimized AHNs proposed in this paper are all over
80%, and the classification results of the AHNs and K-AHNs are in fluctuation, especially
the accuracies that are less than 60% for identifying State 2, State 3, and State 5. In the
other operating conditions, the performances of these methods show a drop, but nearly all
accuracies of the proposed method are still higher than 60%, and almost half of the results
based on AHNs and K-AHNs are less than 60%. Using statistical analysis, the average
accuracy of the proposed method is 7.35% more than the K-AHNs, and 11.99 % more than
the AHNs. Moreover, the variance error of the proposed method is less than 0.39%. As
far as the average CPU times are concerned, the training and test processes are discussed
separately. In the training process, the processing rate of the proposed method is obviously
faster than the traditional AHNs but slower than the K-AHNs. In the test process, the
processing speed of the proposed method is well up to the leading level. On the whole, the
performance of the proposed method is the highest, followed by the K-AHNs model.
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4.2. Case 2: The Bearing Data from Self-Made IWM Test Stand

Figure 4 shows the self-made IWM test bench, which is mainly composed of batteries,
the IWM, an inverter, and a magnetic powder brake. Since the bearing defect is a typical
machine fault of IWMs, double-rowed tapered rolling bearings (Type: DU2505237) are
artificially processed with a single damage (width 0.5 mm and depth 0.15 mm) across
rolling element, inner ring, and outer ring, which are then fixed tightly on the stator axis
of each IWM by a professional, respectively. In the process of the experiment, four IWMs
are orderly operated with the same speed and load, including the normal state (State 1),
the rolling element defect (State 2), the inner ring defect (State 3), and the outer ring defect
(State 4). Moreover, the operating condition of each state is relatively fixed in different ways.
For example, the single chip microcomputer is used to simulate the gas pedals of the NEV
for controlling each IWM at the rotating speeds of 100, 200, . . . , 700 rpm (or thereabouts).
The magnetic powder brake is adjusted by the tension controller to the different loads of
0, 10, 20, and 30 N m. The vibration from the stator axis of each IWM is collected with a
sampling frequency of 12.8 kHz to last for 60 s. Figure 5 shows the part of the vibration
signals of four IWMs at the rotating speed of 700 rpm and load torque of 30 N m.

Figure 4. The test bench system of IWM.

Figure 5. Vibration signals of four IWMs at the rotating speed of 700 rpm and load torque of 30 N·m:
(a) State 1—normal state; (b) State 2—rolling element defect; (c) State 3—inner ring defect; (d) State
4—outer ring defect.
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All the raw signals are filtered with a 1–5 kHz band-pass filter. Since the fault features
of the IWM at the lowest rotating speed are analyzed, the vibration data every 1.28 s are
regarded as a sample to calculate the same SPs above, and then 45 samples of each IWM’s
state are obtained in each operating condition. Based on the four states of the IWMs,
the double-optimized AHNs model is set to a four-type classifier. The input xm is still
a five-dimensional vector (SP1m, SP2m, SP3m, SP4m, SP5m), and the corresponding output
becomes an integer of 1, 2, 3, or 4, which maps into the IWM’s state defined by the same
number. Then, 70 percent of each state samples are randomly selected to associate with
the corresponding label for the training samples {(SP1, SP2, SP3, SP4, SP5, y) | y = 1, 2, 3, 4},
while other samples are used to test the performance of the double-optimized AHNs
classifier. Moreover, the learning rate is 0.1, the tolerance value is 0.05, and the maximum
number of iterations is 50. Then, the double-optimized AHNs classifier is firstly performed
and the classification results of four IWM’s states are computed in the same operating
condition. For example, all test samples of the four IWMs at the rotating speed of 100 rpm
and the no-load condition, that is, the load of 0 N m, are regarded as the different states of
an IWM, and the IWM’s state is correctly judged as long as the output value agrees with
the defined label. Then, the classification results are shown in Figure 6.

Figure 6. The classification results of five methods under different operating conditions. (a) No-load
condition, (b) 10 N·m load condition, (c) 20 N·m load condition, (d) 30 N·m load condition.

To reveal the effectiveness of the proposed method, four existing classifiers, the AHNs,
K-AHNs, SVM [49], and the particle swarm optimization-based SVM (PSO-SVM), [50] are
employed to build the diagnosis system. Here, the basic parameters of the AHNs and the
K-AHNs are set as double-optimized AHNs. In this paper, two methods of the SVM and
the PSO-SVM directly select the same configuration parameters of the relevant references
to establish the classification systems, respectively. For example, Ref. [49] used the SVM
with the Gaussian RBF function and the width parameter of 0.4, while Ref. [50] set the
parameters of the PSO algorithm, such as two acceleration factors of 1.5, weight coefficient
of 1, maximum iterations of 40, and population size of 20, to determine automatically the
two key parameters of the SVM. Moreover, the same training samples above were used to
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train the classifier based on each method, then the same test samples were regarded as an
unknown state to verify the classification performance of each method. The corresponding
diagnosis results are shown in Figure 6.

Since the receiver operating characteristic (ROC) curve and the area under the curve
(AUC) have a better sensitivity and specificity evaluation standard for each fault state, the
ROC and AUC are used to judge the quality of the above classifiers. To better eliminate
the contingency of the experiment and reflect the sensitivity and specificity of different
operating states, seven random trials were conducted to show the ROCs and AUCs of
bearing states from the self-made IWM test stand by the five methods shown in Figure 7.

Figure 7. The ROCs and AUCs of the bearing states from the self-made IWM test stand by five
methods: (a) proposed method, (b) AHNs, (c) K-AHNs, (d) SVM, (e) PSO-SVM.

Obviously, the proposed method, K-AHNs and PSO-SVM, have better performances.
Hence, their specific confusion matrixes among the IWM’s bearing states are further
analyzed, as shown in Figure 8.

It is clear that the double-optimized AHNs method has a better identification capability
and robustness thanks to the classification accuracies of more than 88%, with the AUCs and
diagnosis accuracies of the IWM’s bearing states being over 92% no matter how the rotating
speed and load condition change. The second is the K-AHNs method, which maintains
a high classification accuracy above 80%, where the AUCs and diagnosis accuracies of
the IWM’s bearing states are over 89% under four different operating conditions. The
condition recognition level based on the PSO-SVM algorithm can hover around 85%, but
the stability is not better than the K-AHNs. The traditional methods of the AHNs and SVM
cannot meet the engineering requirements in the fault diagnosis of the IWM with a variable
working condition.



Sensors 2022, 22, 6316 13 of 15

Figure 8. The confusion matrixes among IWM’s bearing states by different methods: (a) proposed
method, (b) K-AHNs, (c) PSO-SVM.

5. Conclusions

To effectively identify the mechanical faults of the IWM under variable rotating speeds
and load conditions, double-optimized AHNs are proposed to build an intelligent diagnosis
system, and the effectiveness is experimentally verified by two case studies of using datasets
from Paderborn University and a self-made IWM test stand. The superiority of the method
proposed in this paper can be summarized by the following points:

(1) K-means clustering and AdaBoost are used to optimize the AHNs algorithm, which
not only simplify the complexity of the AHNs model, but also reconstitute the net-
work structure of the AHNs; as a result, the double-optimized AHNs displays ex-
cellent performance due to the organic fusion of AHNs, K-means clustering, and
AdaBoost mainly.

(2) As long as the intelligent diagnosis system is built by the double-optimized AHNs,
no matter how the rotating speed and load conditions of the IWM are altered, the
high classification accuracy can be obtained. It is attributed primarily to the strong
robustness of double-optimized AHNs.

(3) The intelligent diagnosis method based on the double-optimized AHNs can avoid
selecting configuration parameters and adaptively distribute the weight of multiple
weak models for a strong classifier.

This paper has preliminarily verified the application of the double-optimized AHNs
method in the field of the IWM’s condition recognition. The real operating conditions of
the EV are more complex, the speed changes frequently, and the duration is not constant,
which greatly increases the application difficulty of the double-optimized AHNs method.
Certainly, the interpretability of AHNs is still an issue. In the future, the double-optimized
AHNs algorithm will be further optimized to lay a better foundation for the field of the
on-line fault diagnosis of the IWM in the real environment. Moreover, the performances
of the double-optimized AHNs with different parameters will be discussed in detail and
compared with the advanced network models such as the CNN, deep belief network (DBN),
and stacked auto-encoder network (SAN).
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