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Abstract: The COVID-19 pandemic caused a sharp increase in the interest in artificial intelligence
(AI) as a tool supporting the work of doctors in difficult conditions and providing early detection of
the implications of the disease. Recent studies have shown that AI has been successfully applied in
the healthcare sector. The objective of this paper is to perform a systematic review to summarize the
electroencephalogram (EEG) findings in patients with coronavirus disease (COVID-19) and databases
and tools used in artificial intelligence algorithms, supporting the diagnosis and correlation between
lung disease and brain damage, and lung damage. Available search tools containing scientific
publications, such as PubMed and Google Scholar, were comprehensively evaluated and searched
with open databases and tools used in AI algorithms. This work aimed to collect papers from the
period of January 2019–May 2022 including in their resources the database from which data necessary
for further development of algorithms supporting the diagnosis of the respiratory system can be
downloaded and the correlation between lung disease and brain damage can be evaluated. The
10 articles which show the most interesting AI algorithms, trained by using open databases and
associated with lung diseases, were included for review with 12 articles related to EEGs, which
have/or may be related with lung diseases.

Keywords: artificial intelligence; databases; lung diseases; EEG; brain damage; AI diagnostic;
pulmonary disease; SARS-CoV-2

1. Introduction

Respiratory diseases are one of the leading causes of morbidity and mortality world-
wide. This situation results from systematic aging of the population, the prevalence of
smoking and exposure to air pollution. By May 2022, there was a sharp increase in interest
in both machine learning and the application of artificial intelligence, in particular as a tool
supporting the diagnosis of lung diseases. The COVID-19 pandemic had a direct impact
on this phenomenon. The term “pneumonia” appears in the PubMed database search
engine in the period of January 2019–May 2022 over 150,000 times. Narrowing the search to
“pneumonia” and “chest X-ray”, we have over 3000 results, while “detecting pneumonia”
and “artificial intelligence”, in the same range, gives 689 results. The searches have been
narrowed down to the works that indicate direct access to databases.

Artificial intelligence finds applications not only in aiding pneumonia detection but
also in: chest screening, sensing lung nodules, fibrosis, effusion, mass, cardiomegaly,
cardiac hypertrophy, pulmonary edema, opacity or pleural effusion. A digital chest X-ray
is one of the most common imaging examinations.

Hospitals collect a very large amount of data, in particular X-ray images along with
radiological reports. In addition to X-ray images, a large number of MRI and CT exami-
nations are performed in the imaging diagnostics facility, which require a large amount
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of available space. The data is stored in picture archiving and communication systems
(PACS) imaging systems. As of today, there are many questions that we cannot answer, in
particular how to use data in building precise computer-aided diagnostics (CAD) systems.
Another issue is how to obtain data from more medical facilities so that the learning process
is even more precise. So far, most of the publications are based on a certain number of
shared photo/study databases. Therefore, we have access to data, which allows us to create
more and more accurate algorithms supporting diagnostics in almost every field.

Today, we know the consequences of the COVID-19 pandemic. Complications that
occur during or immediately after the disease are very dangerous. Based on the latest data
on the pathogenesis of prion diseases and the immune response to SARS-CoV-2, it has
been hypothesized that a cascade of systemic inflammatory mediators in response to the
virus accelerated the pathogenesis of prion disease [1]. This means that, along with the
diagnosis of lung disease, we should look at the central nervous system (CNS) and we
need to evaluate the correlation with specific brain morphological substrates. Therefore,
it is extremely important to develop equally fast and precise algorithms that will support
the diagnosis of the above mentioned possible correlated brain structures with lung issues.
For starters, the most common method is EEG testing, as one of the oldest and still most
reliable neuroimaging techniques for identifying electric activity of the brain and its specific
structures. It turns out that this topic is not fully exhausted yet, and there are not many EEG
databases that contain specific pathologies or diseases, in particular, considering the EEG
tests of patients after COVID-19, who experience various neurological problems and require
rehabilitation. The correlation between the occurrence of brain damage after COVID-19
has already been noticed and described in the literature [2–4]. The topic, however, seems
to still be new and more observations and research are needed to establish the correlation
ratio [5,6]. This makes it all the more reasonable to create overviews that allow researchers
to find as much data as possible without spending a lot of time.

2. Machine Learning Tools
2.1. Tools, Libraries and Blogs

Based on the data available in Google Trends, it is clear that interest in the keyword
“machine learning” is growing, especially since the beginning of 2015. Noticeably, the
most used language is R and Python. Libraries, packages most often used for calcula-
tions, include: NumPy, Pandas and SciPy. The following are used for data visualization:
Seaborn (https://seaborn.pydata.org/introduction.html, accessed on 5 July 2022), Bokeh
(https://docs.bokeh.org/en/latest/, accessed on 5 July 2022), Plotly and Matplotib (https:
//matplotlib.org/2.0.2/users/pyplot_tutorial.html, accessed on 5 July 2022). However, the
most well-known packages are: Keras, Sci-Kit Learn (https://scikit-learn.org/stable/auto_
examples/index.html, accessed on 5 July 2022), Theano, NLTK, Gensim, PyLearn2, Lasagne,
Caffe, Torch7, Deeplearning4j and Tensorflow (https://www.tensorflow.org/guide, ac-
cessed on 5 July 2022). Statistical support libraries are also worth mentioning, such as
Scrapy or Statsmodels. These are not all the available libraries, but only the most popular
(https://numpy.org/arraycomputing/, accessed on 5 July 2022). A total of 51 most used ma-
chine learning tools by experts were described in techvidvan [7,8]. NumPy was introduced
in 2006, Pandas appeared on the landscape in 2008. Many newer libraries mimic NumPy-
like features and capabilities and pack newer algorithms and features geared towards
machine learning and artificial intelligence applications. If we are looking for libraries
for other programming languages, a very good overview is provided in GitHub Awe-
some Machine Learning (https://github.com/josephmisiti/awesome-machine-learning,
accessed on 5 July 2022). A fair number of researchers use the Kaggle platform, which has
a considerable amount of data and tutorials. In one place, we can find machine learning
algorithms for use in data science projects (https://www.kaggle.com/code/shivamb/data-
science-glossary-on-kaggle/notebook, accessed on 5 July 2022). It is also noteworthy to
have access to a free and open source resource with machine learning papers with code
and evaluation tables. Anyone can join and add their implementation to a given paper
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(https://paperswithcode.com/sota, accessed on 5 July 2022). The mission of the service is
to present the latest advances in the field of machine learning. Data visualization is also
an important aspect. Visual Capitalist supports making data visualization as simple as
possible (https://www.visualcapitalist.com/, accessed on 5 July 2022).

Not every user has the right hardware, graphics card and software. Python is an
accessible and free programming language, which can be easily implemented in free
interactive environments. Such environments include, for example, colab (https://colab.
research.google.com, accessed on 5 July 2022), Kaggle, or Anaconda. Currently, the most
effective neural network architectures used for image processing can be listed: AlexNet [9],
VGGNet [10], Xception [11], ResNet [12] and DenseNet [13]. These are learned models
supporting the feature extraction procedure, which are based on convolutional layers. Of
course, the number of packages and libraries that are worthy of interest will grow over
time and we can only guess what else will appear. It is certainly not the case to always use
all of them. Everything depends on the project and solution.

It is not just the tools themselves that have a direct impact on the creation and devel-
opment of ever newer algorithms. Towards Data Science is a platform that features articles
on data science, machine learning, visualization and programming. They collaborate with
more than ten editorial boards, making it a great resource (https://towardsdatascience.
com/, accessed on 5 July 2022). There are also a lot of popular science blogs, where
you can find a lot of inspiring articles that make it easier to explore machine learn-
ing. A blog worth noting is one by a true master of machine learning, Jason Brownlee
(https://machinelearningmastery.com/blog/, accessed on 5 July 2022). Brownlee posts
articles simply explaining how machine learning algorithms work and more advanced
ones supporting the work of experienced researchers. Becoming Human is another blog
with information and tutorials on artificial intelligence and machine learning. In addi-
tion, you can find information about the latest developments in AI and the benefits of
artificial intelligence development for humans (https://becominghuman.ai/, accessed on
5 July 2022). You can also browse 90 of the most popular blogs on the topic discussed (https:
//blog.feedspot.com/data_science_blogs/, accessed on 5 July 2022) and if you are inter-
ested in the latest news and updates in artificial intelligence, this information can be found
on the AWF Machine Learning Blog (https://aws.amazon.com/blogs/machine-learning/,
accessed on 5 July 2022).

The researcher may also use Open AI, a blog through which you can access research
papers on artificial intelligence. This blog focuses on long-term research where research
papers are always available to the general public (https://openai.com/blog/, accessed on
5 July 2022). Tools have been developed to support and facilitate analysis such as Data Is
Beautiful (https://www.reddit.com/r/dataisbeautiful/, accessed on 5 July 2022). The site
offers unique ideas for presenting some data.

Analytics Vidhya has a lot of educational material on artificial intelligence, machine
learning and deep learning. The team presents detailed and high-quality tutorials on
topics related to neural networks (https://www.analyticsvidhya.com/blog/, accessed on
5 July 2022).

In summary, there are more and more tools, libraries and blogs available for use.
They are contributing to a growing understanding of artificial intelligence issues. Most
importantly, the methods are becoming more accessible and the materials available allow
for rapid user implementation. More and more researchers can improve existing algorithms,
create their own and implement cutting-edge solutions.

2.2. Open Databases

Machine Learning is not possible without data that contains the information we need,
allows us to ask questions and enables us to find valuable answers that will turn into
conclusions. Databases used in machine learning algorithms to diagnose lung diseases are
now increasingly available and free of charge. Below shows selected the set of datasets:

For lung diseases:

https://paperswithcode.com/sota
https://www.visualcapitalist.com/
https://colab.research.google.com
https://colab.research.google.com
https://towardsdatascience.com/
https://towardsdatascience.com/
https://machinelearningmastery.com/blog/
https://becominghuman.ai/
https://blog.feedspot.com/data_science_blogs/
https://blog.feedspot.com/data_science_blogs/
https://aws.amazon.com/blogs/machine-learning/
https://openai.com/blog/
https://www.reddit.com/r/dataisbeautiful/
https://www.analyticsvidhya.com/blog/


Sensors 2022, 22, 6312 4 of 23

• OPENI NLM NIH 4 May 2022 [14]
• NIH chest X-rays image dataset 4 May 2022 [15]
• The PLCO dataset 4 May 2022 [16]
• The MIMIC-CXR database 4 May 2022 [17]
• COVID-19 Image Data Collection 4 May 2022 [18]
• The Korean Institute of Tuberculosis dataset 4 May 2022 [19]
• CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert

Comparison 4 May 2022 [20,21]
• The Indiana University dataset 4 May 2022 [22–24]
• The JSRT dataset 4 May 2022 [25]
• Actualmed COVID-19 Chest X-ray Dataset Initiative 4 May 2022 [26]
• COVID-19 Radiography Database 4 May 2022 [27]
• RSNA Pneumonia Detection Challenge 4 May 2022 [28]
• COVID-Net Open Source Initiative 4 May 2022 [29]
• Masks of the lung area for the evaluation of segmentation performance 4 May 2022 [30]
• The Shenzhen dataset 4 May 2022 [31]
• Lung Image Database Consortium (LIDC) 4 May 2022 [32]
• Biobank 26 July 2022 [33]

For the central nervous system:

• OSF HOME 4 May 2022 [34]
• Physionet, list of all the databases 4 May 2022 [35]
• A list of all public EEG datasets 4 May 2022 [36]
• UCI EEG Database 4 May 2022 [37]
• ENGINEURING 4 May 2022 [38]
• ADNI 4 May 2022 [39]
• HeadIT 4 May 2022 [40]
• SCCN, EEG/ ERP 4 May 2022 [41]
• BRAIN SIGNALS 4 May 2022 [42]
• OPEN NEURO 4 May 2022 [43]
• BNCI–HORIZON [44]
• EEG Dataset, I, II, III 4 May 2022 [45]
• MAMEM Phase 4 May 2022 [46]
• The Patient Repository for EEG Data 4 May 2022 [47]
• EEG with positive test PCR 25 July 2022 [48]

These databases are a good source that users can use to create a model of their choice,
based on machine learning. It is worth mentioning that there is a growing need to share
more and more data and to improve existing algorithms and create new ones. The existing
overview should be successively updated so that users, developers and researchers who
create algorithms have up-to-date databases.

3. Systems and Applications

Diagnostic physicians and radiologic technicians must rely primarily on their knowl-
edge and experience when analyzing X-ray images. In most cases, diagnostic physicians
use available applications to support the process of analyzing X-ray images, these appli-
cations usually offer modest capabilities for modifying a given image, such as changing
brightness, negation, etc. (eFilm, Onis, Osiris, Alteris). In many cases, simple methods are
not sufficient, as many lesions are not visible after using simple image processing, by this it
is not possible to unambiguously indicate whether an object on an X-ray image is a lesion.
Computerized methods for analyzing and processing digital images are a solution to this
problem. Thanks to the use of IT methods, it becomes possible to extract the lesions of
interest to the diagnostician. This makes cooperation on the line between medicine and
informatics even more necessary.

Currently, algorithms and methods of computerized processing of medical images are
mainly used for computed tomography, the average waiting time for a chest CT scan is
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about 100 days, but also the greater harmfulness of this type of examination determines the
very frequent use of X-ray machines in early medical diagnosis Section 3.1.

3.1. BlueDot, Application of AI to COVID-19

BlueDot, Tools to Help Predict Pandemics and the Spread of Diseases (demonstrated by
a Canadian company), uses artificial intelligence to scour the internet for signals indicating
epidemiological risk [49]. The system builds complex models of disease occurrence and
spread based on data from more than 100 sources. These include local news, online forums,
data from hospitals and information on illnesses among animals. The algorithm even takes
into account demographic data, local and air transportation or climate data.

Companies like BlueDot use a range of Natural Language Processing (NLP) algorithms
to monitor news sites and official health care reports in different languages around the
world, marking whether they mention high priority diseases such as COVID-19 or others
such as HIV/AIDS or tuberculosis. BlueDot, on the other hand, was able to predict the
COVID-19 epidemic and warn its users even before the World Health Organization did [50].

Ultimately, the biological aspect of the coronavirus could not be investigated as data were
lacking. Without them, artificial intelligence is useless. For this reason, it has been impossible
to detect a completely new virus such as the coronavirus responsible for COVID-19.

3.2. Existing Methods for Pneumonia Brain Correlation Detection

There are data showing a strong correlation between brain-related abnormalities and
COVID-19 [51–53]. However, it is still not quite certain that, except for the mild and severe
cases, early brain damage might be caught in order to reveal possible pathophysiological
mechanisms contributing to brain pathology and its correlation with lung issues [54].

Therefore, we would like to emphasize the importance of database and AI involvement
in the early detection of the lung–brain correlation in COVID-19 cases. The availability of
pre-infection imaging data would and will reduce the possibility of damaging risk factors
being misinterpreted as COVID-19 effects and would also pinpoint the targeted involved
specific brain structures [55–60]. Importantly, emerging literature is showing that the virus
may spread to the central nervous system through neuronal routes, hitting the brainstem
and cardiorespiratory centers, potentially exacerbating the respiratory illness [61]. The
lung disease severity score may be predictive of acute abnormalities on neuroimaging in
patients with COVID-19 with neurologic manifestations. This can be used as a predictive
tool in patient management to improve clinical outcome [5].

It should be noted that due to various divergent pathologies and potential specialist
fatigue, errors in the interpretation of medical images may occur [62]. The time of the
pandemic has influenced the development and emergence of new solutions and technolo-
gies. The first CNN models appeared at the beginning of the pandemic, but they were
based on a limited number of chest X-rays and were characterized by unsatisfactory per-
formance. Recently, there has been greater interest in this subject, which translates into
an increase in the number of solutions, methods and tools based on more and more ad-
vanced algorithms [63–69], that, on the one hand, makes it difficult to make a selection in
search of a good/best solution and, on the other hand, we have a large number of already
ready-made solutions [70–77]. The theory is quite applicable in practice, as in 2022 there are
several tools that can be used while being at home (for example, CheXNet [78], UBNet [79],
PneumoniaNet [80]), which has allowed for the rapid development of telemedicine and
patient–doctor contact at a distance. In Poland, one of the first to appear was the so-called
CIRCA [81]. It uses machine learning techniques that allow doctors on duty in emergency
rooms and hospital wards to make an initial assessment of the nature of changes in the
lung region of patients with respiratory disorders. The system enables the identification of
patients requiring different supplies from medical personnel. It also facilitates diagnosis in
the case of a large number of infections, providing the possibility of separating, on the basis
of a generally available X-ray, a group of people at high risk of imaging changes typical of
COVID-19.
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The least common form, but also very rapidly developing, is the analysis of data (X-ray
images) taken with a smartphone or using a smartphone. Now, in 2022, we have datasets
derived from two large and publicly accessible digital CXR databases [82] (MIMIC-CXR [21]
and CheXpert [17,21]). Blending Artificial Intelligence (AI) with chest X-ray images and
incorporating these models in a smartphone can be handy for the accelerated diagnosis of
COVID-19. In the last 3 years, several applications have appeared that are still evolving,
i.e., Pneumonia Detection [83] or Lung Cancer Detection for Android [84], XraySetu [85],
Chest X-ray Interpretation [86] and CheXphoto [87].

The use of artificial intelligence has as many supporters as opponents, but it has
been proven that AI techniques with chest X-ray images can encourage specialists to com-
plete a thorough analysis in a short time. Some regions have difficult access to specialists
or hospital facilities, which makes early detection and diagnosis a difficult task. Smart-
phone [88–90], tablet or PC applications could in the future support the work of doctors
in less accessible regions. The waiting time for an appointment, the cost of travel or the
course of the diagnosis would definitely be shortened.

3.3. Chatbot, Application of AI

With regard to medical research, algorithms are also used to read diseases other than
COVID-19. Chatbots can take over some of the doctor’s duties and shorten the waiting time
for an appointment. Chatbots can be used, for example, when creating an interview with a
patient or recognizing initial symptoms. Chatbots are already used to fight the pandemic,
and have demonstrated high accuracy during screening for COVID-19 [91]. In addition to
being used by patients, they have also been used in healthcare testing to detect COVID-19
and minimize virus transmission [92]. There is more and more talk about the wider use of
chatbots, e.g., based on new components [93]. A chatbot called SGDormBot was used for
mass screening of migrant workers in Singapore [94].

4. Results

PubMed, the Web of Science, ResearchGate and Google Scholar were searched for the
relevant articles in the last three years with the search terms: “artificial intelligence appli-
cations”, “artificial intelligence tools”, “deep learning”, “neural network”, ”pulmonary
nodules”, “lung cancer”, “respiratory medicine”, “lung changes”, “lung infection”, “pneu-
monia”, “COVID-19”. Inclusion criteria: (1) originality and innovation; (2) reliable source
of data; (3) a good description of the data processing mechanism. Exclusion criteria: old
and irrelevant literature. Literature was selected by two independent authors and read and
discussed by all authors to extract useful information.

Based on above description, 10 articles were included for review (Table 1) associated
with lung diseases and 12 were related to EEGs and cognitive decline, which is or may
be related with lung diseases (Table 2). The selected collection represents access to the
collections and a summary of the main results obtained by the methods presented.

Table 1. Articles included in the review associated with lung diseases.

Study Data Disease Algorithms Applied Outcome Presentation

Bharati et al., 2020 [95] NIH Chest X-rays
dataset [15]

Different pulmonary
diseases VDSNet

F0.5 score of
68% with 73%

validation accuracy.

Varschni
et al., 2019 [96]

NIH Chest X-rays
dataset [15] Pneumonia detection CNN (DenseNet-169)

Providing the
dominating pre-trained

CNN model and
classifier.
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Table 1. Cont.

Study Data Disease Algorithms Applied Outcome Presentation

Tang et al., 2020 [97] NIH Chest X-rays
dataset [15]

Pneumonia detection
(detect pathology

localization)

CNNs (AlexNet,
VGGNet, ResNet,

Inception-v3
(GoogLeNet), and

DenseNet)

All CNNs have AUCs
>0.96.

Annarumma
et al., 2019 [98]

NIH Chest X-rays
dataset [15]

Predict the priority
level (i.e., critical,

urgent, nonurgent, and
normal).

Pneumonia, Fibrosis,
Mass

CNN (DenseNet)
Sensitivity 65%.

Specificity 94%. AUC
0.609

Baltruschat
et al., 2019 [99]

NIH Chest X-ray14
dataset [15]

Multi-label lung’s
pathology classification

CNN (ResNet-50) and
data acquisiton AUC 0.822.

Bassi et al., 2020 [100]

NIH Chest X-rays
dataset [15], COVID-19
Image Data Collection

[18], CheXpert
database [21]

Classification X-ray
images as COVID-19,

pneumonia and normal

DNN (DenseNet) and
output neuron keeping Test accuracies of 100%.

Wang et al., 2020 [101]

COVID-19 Image Data
Collection [18],

COVID-19 Chest X-ray
Dataset, Actualmed

COVID-19 Chest X-ray
Dataset Initiative [16],

COVID-19
Radiography Database
[27], RSNA Pneumonia

Detection
Challenge [28]

COVID-19 COVID-Net

Test accuracy 93.3%.
Sensitivity for

COVID-19 cases:
91.0%.

Vaid et al., 2020 [102]

COVID-19 image data
collection [30], NIH

Chest X-rays
dataset [15]

COVID-19 CNN (VGG-19) Very high accuracy of
96.3%.

Nayak et al., 2021 [103]

COVID-19 data image
collection [26], NIH

Chest X-rays
dataset [15]

COVID-19 detection

Different CNN models
(VGG-16, Inception-V3,

ResNet-34,
MobileNetV2, AlexNet,
GoogleNet, ResNet-50,

and SqueezeNet)

Accuracy of 98.33% (for
ResNet-34).

Chakravarthy et al.,
2019 [104]

Lung Image Database
Consortium
(LIDC) [32]

Lung cancer detection PNN Classification accuracy
of 90%.

Among the all available online databases, the one used most often was created by
Wang et al. [15,105]. This is not surprising considering it contains over 100,000 X-ray
scans of over 30,000 unique patients. The available scans present lung diseases such as:
pneumonia, edema, fibrosis, nodule mass and others. Each scan was tagged based on the
radiologists’ opinion, which ensures high reliability (>90%).

Over the past two years, there has been an emergence of many publicly available
databases dedicated to COVID-19. The largest one for today is COVID-Net Open Source
Initiative [29,101]. The database contains over 16,000 positive COVID-19 scans from over
2800 patients and it is constantly growing.
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Table 2. Articles included in the review associated with brain damage.

Study Disease Form Complications/Manifestations

Young et al., 2020 [1] Creutzfeldt–Jakob disease Case report

Neurologic status progressed to
mutism, right hemiplegia,

spontaneous multifocal myoclonus,
somnolence and agitation. He died

2 months after symptom onset.

Pimentel et al., 2022 [106]

Creutzfeldt–Jakob Disease,
Rapidly Progressive

Alzheimer’s Disease, and
Frontotemporal Dementia

Report of Three Cases

Probable sporadic CJD. He died of
sepsis, secondary to bacterial

pneumonia 4 months after the
symptom onset.

Pellinen et al., 2020 [107] Remote ischemic stroke,
epilepsy, brain disorders

Research electronic data
capture [108]

In the absence of prior epilepsy or
brain injury, seizures were rare.

Canham et al., 2020 [109] Epilepsy, stroke 10 cases The presence of focal disturbances or
irritative abnormalities.

Louis et al., 2020 [110] Epilepsy, stroke 22 cases
COVID-19-positive patients who

were encephalopathic had a variety
of epileptiform abnormalities on EEG.

Pastor et al., 2020 [111] Stroke 20 cases

Some severely affected COVID-19
patients develop an encephalopathy

with specific EEG features, with
spectral and connectivity alterations,

and raw tracings appear nearly
physiological.

Ciolac et al., 2021 [112] Creutzfeldt–Jakob Disease Case report

The case of an elderly female patient
with sporadic CJD that exhibited

clinical deterioration with the
emergence of seizures and

radiological neurodegenerative
progression following an infection

with SARS-CoV-2 and severe
COVID-19.

Galanopoulou et al.,
2020 [2]

Epilepsy, Other neurological
disorders

26 Ceribell EEGs, 4 routine
and 7continuous EEG

studies

Among COVID-19-positive vs.
COVID-19-negative patients,
respectively, were new onset

encephalopathy (68.2% vs. 33.3%)
and seizure-like events (14/22, 63.6%;

2/6, 33.3%), even among patients
without prior history of seizures

(11/17, 64.7%; 2/6, 33.3%). Sporadic
epileptiform discharges (EDs) were

present in 40.9% of
COVID-19-positive and 16.7% of

COVID-19-negative patients.

Petrescu et al., 2020 [113] Stroke, Epilepsy

Patients with positive PCR
for SARS-CoV-2 between 25
March 2020 and 6 May 2020
in the University Hospital of

Bicêtre, 36 COVID-19
patients

The main indications were confusion
or fluctuating alertness for 23 (57.5%)

and delayed awakening after
stopping sedation in ICU in six (15%).
EEGs were normal to mildly altered
in 23 (57.5%) contrary to the 42.5%

where EEG alterations were moderate
in four (10%), severe in eight (20%)

and critical in five (12.5%).
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Table 2. Cont.

Study Disease Form Complications/Manifestations

Kubota et al., 2021 [114] Epilepsy Encephalopathy

12 studies with 308 patients
fulfilled the eligibility

criteria for inclusion in the
meta-analysis

The proportion of abnormal
background activity in patients with

COVID-19 was high (96.1%).

Antony and Haneef,
2020 [115] Encephalopathy, Epilepsy

Available data was analyzed
from 617 patients with EEG

findings reported in
84 studies.

Frontal findings are frequent and
have been proposed as a biomarker

for COVID-19 encephalopathy.

Roberto et al., 2020 [116] COVID-19 patients 177 COVID-19 patients
COVID-19 patients may frequently

manifest with abnormal EEG
particularly in severe cases.

The biggest problem appears when searching for databases containing alternatives for X-
ray imaging methods, such as magnetic resonance imaging (MRI) and computed tomography
(CT). The only publicly accessible CT database found is the LIDC—The Lung Image Database
Consortium [32]. It consists of diagnostic and lung cancer screening thoracic CT scans with
marked-up annotated lesions. The database contains over 244,000 DICOM images. The
image annotation process was performed by four experienced thoracic radiologists.

In 2022, still one of the most frequently described, analyzed and discussed respiratory
diseases is COVID-19. Even mild forms of COVID-19 can present sustained neurocognitive
deficits [117,118]. In this time, the relationship between neurodegenerative diseases and
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is yet to be fully clari-
fied [106]. Cognitive decline is observed before, during and after infection. Observed
symptoms may include: Alzheimer disease (AD) (Holmes et al., 2009), Parkinson disease
(PD) [119], multiple system atrophy [120], frontotemporal dementia (FD) [121], progressive
supranuclear palsy, primary progressive aphasia and stroke. EEGs are one of the most
common diagnostic methods used in neuroradiology. It is a complementary test that
provides important information for diagnosis. In particular, EEGs can be used to assess
encephalopathy, epileptogenicity and any focal abnormalities in patients with COVID-19.
Some studies successfully described EEG findings in patients with COVID-19 [2,111].

5. Discussion
5.1. Diagnosis of Chronic Obstructive Pulmonary Disease

Even before COVID-19, on a smaller scale, they had begun to deal with algorithms
that were trained to recognize various lung diseases. In particular, they were concerned
with the detection of cancer, tumors or, for example, obstructive pulmonary disease. The
prevalence of chronic obstructive pulmonary disease (COPD) or brain injuries was higher
in COVID-19 patients with concomitant chronic conditions such as dyslipidemia, diabetes
and hypertension kidney disease [122]. The algorithms that have been created, and the
databases that have been collected, are a good source of more and newer algorithms that
make it possible to predict not only COVID-19, but also to perform analyses in a wider range.
It is worth pointing out that chronic obstructive pulmonary disease remains undiagnosed
in many people. Hence, opportunities for the diagnosis of chronic obstructive pulmonary
disease are being sought in other procedures. Lancet Digital Health has published a paper
in which a neural network model was used to diagnose chronic obstructive pulmonary
disease on the basis of images from low-emission computed tomography of the chest. To
create three models of neural networks, data from the PanCan study were used, which
concerned the possibility of screening lung cancer in people with a long history of smoking.
Then, 2153 computed tomography scans obtained from the ECLIPSE study (observational
study of patients with chronic obstructive pulmonary disease) were used for validation.
The neural network with the best diagnostic value obtained an AUROC equal to 0.89.
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Using this network, the data from the ECLIPSE study yielded an AUROC of 0.99, a positive
predictive value of 0.85 and a negative predictive value of 0.76 [123]. By applying this
approach more widely, it could be possible to diagnose more chronic obstructive pulmonary
disease in people who undergo a detailed pulmonary nodule diagnosis.

5.2. Brain Damage Complications Arising Directly or Indirectly from COVID-19 Pneumonia

The disease that has provided a new breed of coronavirus as severe as the severe acute
respiratory syndrome coronavirus 2 is COVID-19. It has affected more than 170 mil people
in more than 217 countries with a progressive and still ongoing increase in the number
of people infected and inefficient diagnosis treatment. The consequence of all that is a
new more efficient approach presented as deep learning/DL and machine learning/ML,
assisting medical professionals in prompt and efficient approaches. In this review paper,
we classified previous studies into specific uptown data AI approaches and techniques and
databases/datasets established and extracted from previous studies aiming to achieve the
possible prediction of COVID-19 and correlation of involved lung and brain damage [59,60].

It seems to be that one of the basic directions of ML development in healthcare will
be the development of learning algorithms for subsequent disease entities. The system
implementation process is not fast.

It is now a common fact that SARS-CoV-2 infection can damage many organs other
than the lungs. The most troubling and complicated is damage to the brain. Symptoms
such as brain fog, fatigue and depression may be mild or pretty severe. Many studies and
scientists implicate that treatment of those with long term brain injuries will strain the
healthcare system for years to come. Understanding, defining the origin and treatment of
COVID-19-related brain injury is a high priority for medical science. Because the studies
evaluated patients who became sick with COVID-19 before vaccines were widely available,
it is not clear if this issue damage happens among vaccinated people, therefore experts
are hopeful vaccines would offer some protection against neurological damage, as they do
help reduce the risk of other types of tissue damage. One of the first studies looked at more
than 400 people aged between 51 and 81 who were positive for COVID-19 from the U.K.
Biobank study. The MRI scans taken prior to infection were compared to those taken an
average of five months after infection. COVID-19 brain-related abnormalities were found
in a study that investigated brain changes in 785 participants of the U.K. Biobank study
(aged 51–81 years), who were imaged twice using magnetic resonance imaging, including
401 cases who tested positive for infection with SARS-CoV-2 between their two scans with
141 days on average separating their diagnosis and the second scan, as well as 384 controls.
The availability of pre-infection imaging data reduces the likelihood of pre-existing risk
factors being misinterpreted as disease effects, which is very important. Their findings
showed interesting results such as greater reduction in grey matter thickness and tissue
contrast in the orbitofrontal cortex and parahippocampal gyrus, greater changes in markers
of tissue damage in regions that are functionally connected to the primary olfactory cortex
and a greater reduction in global brain size in the SARS-CoV-2 cases. The participants
who were infected with SARS-CoV-2 also showed on average a greater cognitive decline
between the two time points. Importantly, these imaging and cognitive longitudinal effects
were still observed after excluding the 15 patients who had been hospitalized. These mainly
limbic brain imaging results may be the in vivo hallmarks of a degenerative spread of
the disease through olfactory pathways, of neuroinflammatory events or of the loss of
sensory input due to anosmia. Whether this deleterious effect can be partially reversed,
or whether these effects will persist in the long term, remains to be investigated with
additional follow-up [52]. Researchers from the University of Oxford found that even
people with mild COVID-19 symptoms had signs of slightly reduced brain size and subtle
tissue damage, especially in the region of the brain associated with sense of smell. The
fact that this study demonstrates a loss in brain volume over several months is concerning
and could imply accelerated brain aging. Olfaction, as a sense of smell, presents a crucial
indicator related to several feedback processes such as the unconscious response to the
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molecular sampling of the environment, which is very complicated, as along with the
anatomical substrates that allow them. The pathway starts from highly specific odor
receptors located on the roof of the nasal cavity. From that point, the stimuli converge in the
olfactory bulb and through a multitude of projections toward the amygdala, septal nuclei,
pre-pyriform cortex, entorhinal cortex, hippocampus and the subiculum, thalamus and
the frontal cortex provide a unique dynamic system [124]. The olfactory bulb presents a
neuroanatomical substrate constantly exposed to the external environment’s diverse impact,
therefore, it is considered an immune organ that prevents the invasion of viruses into the
CNS [52]. Its dysfunction may be considered as a predisposing factor to a worse treatment
outcome in respiratory virus infections when this immunological function is impaired or
disrupted as a result of aging or some pathological processes like SARS-CoV-2. Another
investigation that studied 64 people, some of whom had been hospitalized with COVID-19,
and others who had not been hospitalized but later experienced long-haul symptoms,
showed the presence of damaged neurons and glial cells as fundamental cells in the brain.
The study found evidence of brain inflammation that correlated with symptoms of anxiety
reported by long-haul COVID-19 patients. It was reported that about a third of people with
COVID-19 developed some form of long-COVID-19 symptoms and many of them were
neurological and psychiatric symptoms such as decreased memory, headache and dizziness.
It was predicted that COVID-19-related neurological symptoms could become even more
prevalent in the decade to come [125]. As previously mentioned, cognitive and neurological
symptoms are common in people with long or prolonged COVID-19, and the symptoms can
be debilitating for those affected. While growing evidence suggests that the SARS-CoV-2
virus causes damage to the central nervous system, the underlying mechanisms are not
well understood. There is a term, brain fog, which explains the impact that this virus
induces on cognitive functions. Some researchers are using the condition “neuro-COVID
Trusted Source” to describe this presentation of the disease [126–128]. An experimental
study in primates reported that SARS-CoV-2 infection causes brain inflammation and
even cell death, apoptosis among other forms of brain injury [129]. There are also studies
showing parallels of the effect of SARS-CoV-2 infection on the brains of primates with
studies carried out on human autopsies on human brains of people who had died from
COVID-19, but the inability to distinguish between the damage caused specifically by
the virus and other factors is a limitation of this research [130]. There has been growing
interest in electroencephalographic (EEG) data mining related to COVID-19 aiming to define
specific-features EEG of encephalopathy in COVID-19. EEGs were and are most commonly
ordered for an altered level of consciousness, as a nonspecific neurologic manifestation. The
findings in one of the conducted studies refer to amplitude of background <20 µV at 93% of
“acute EEG,” versus only 21.4% of “follow-up EEG”, which was ‘caught’ when the average
voltage went from 12.33 ± 5.09 µV in the acute EEGs to 32.8 ± 20.13 µV in the follow-up
EEGs. Moreover, a total of 60% of acute EEGs showed intermittent focal rhythmic activity
and there was no statistical significance in the correlation between voltage of acute EEG
and clinical status, which had no relation to neurological pathological condition, including
respiratory conditions that corelate to the EEG findings. Additionally, it was reported that
the most common finding in COVID-19 was a nonspecific diffuse slowing EEG pattern.
Highly distinctive low voltage EEG was noted, describing the low prevalence of epileptic
activity with highly specific hypoxic mechanisms [131]. Another EEG-conducted study
observed generalized background slowing in all patients and generalized epileptiform
discharges with triphasic morphology in three patients, with focal electrographic seizures
observed in one patient with a history of focal epilepsy and in another patient with no
such history. Not that it is a novelty fact, but we can declare that pre-existing epilepsy
can be a potential risk factor for COVID-19-associated neurological manifestations. Also
five of eight patients who underwent EEG experienced a fatal outcome of infection in this
investigation [132]. In the literature, there are large numbers of meta-analyses, reviews
and case reports on neurological involvement in patients with COVID-19. Helms et al.
found that the mean age of COVID-19 patients with neurological symptoms who were
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hospitalized in the intensive care unit (ICU) was 62 years, and that 75% of them were
male. Additionally, it was reported that 82% of the patients hospitalized in the ICU had
neurological manifestations, with the most common symptom being delirium [133]. It
was noted in many investigations conducted on patients hospitalized in the ICU that the
most common comorbidities are cardiovascular diseases and respiratory diseases among
patients with neurological symptoms. Additionally, a study conducted showed that the
most common chronic diseases among COVID-19 patients were hypertension (51.6%),
previous ischemic stroke (37%), coronary artery disease (37%) and dementia (27.9%). In
the study by Mao et al., it was reported that the rate of developing neurological symptoms
was higher among patients with severe disease, as in our study data [134]. Headache
and dizziness are common among COVID-19 patients with a frequency of headache in
COVID-19 between 3 and 12.1% in one study, while 27% in another study. Dizziness was
observed in 8% of COVID-19 patients [135]. Additionally, nine patients (5.8%) with a
resistant headache and nine patients (5.8%) with persistent dizziness had consultations
with the neurology department [136]. A very small number of retrospective studies have
reported seizures in COVID-19 patients, with incidence ranging from 0.5 to 1.4%. All types
of seizures have been reported in COVID-19 patients [137].

The most common radiological findings were cerebrocerebellar atrophy and diffuse
ischemic gliotic areas, which were detected in 40.3% of MRI and 50.4% of CT examina-
tions in a study conducted by Helmes et al. and Kandemir et al., who reported that the
most common neuroimaging finding in COVID-19 patients was bilateral signal changes in
FLAIR in MRI. Electromiography was performed on eight patients. Acute-onset ascending
paraparesis was observed in one patient, tetraparesis in two patients and hypoesthesia in
five patients. Although the rates of ischemic cerebrovascular disease (CVD) in COVID-19
patients are variable, researchers generally detected lower rates compared with the litera-
ture, perhaps due to the fact that the anticoagulant treatment was started as soon as the
disease was detected in the patients with COVID-19 pneumonia. Thrombocytosis increased
the risk of ischemia, which was expected, and high D-dimer, fibrinogen and CRP levels
increased the risk of stroke in patients with concurrent COVID-19 and acute ischemic CVD.
In a cohort study conducted, 96 patients who experienced vascular events associated with
proinflammatory coagulopathy were found to have high CRP, D-dimer and ferritin levels.
This situation was thought to have been due to endothelial dysfunction [138,139].

5.3. ML Application, Significance of the Issue

The use of AI is becoming more and more common. The pandemic has resulted in
a lot of solutions that are beginning to be implemented in medical facilities. In 2022, ML
applied at work [140] presented a new approach as a possible approach to gain deeper
insights into the genetic information derived from target sequencing, to identify recurrent
genetic patterns and improve the understanding of complex diseases. It is also worth
presenting an example of the application of deep learning in healthcare. It is concerned
with predicting the outcome of a heart transplant. The analyzers used data from the UNOS
(United Network for Organ Sharing) register. They included over 27,000 patient records
(2009–2011). Additionally, in this case, the deep learning model turned out to be a better
tool for predicting short-term mortality than the aforementioned logistic regression. The
results of this model have been made public in the form of an online tool that can be used
to match recipient and donor [141]. The machine learning approach is at the top of the list
of the research priorities related to the COVID-19 pandemic. The clinical complexity of
COVID-19 ranges from asymptomatic cases to severe pneumonia [142], whose progres-
sion to respiratory failure is difficult to predict with a high degree of uncertainty both in
the progression of the patient’s health status and in the speed at which patients develop
respiratory failure requiring mechanical ventilation [143,144]. There is a need to create
the ML model which would show a potential to produce predictive patterns that can be
applied to assist and improve clinical decisions for a broad variety of outcomes [145,146].
One was created and used in response to the COVID-19 emergency [147,148]. A statistical
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learning model was created to assist clinicians in forecasting patients with COVID-19 who
develop respiratory failure requiring mechanical ventilation with a reliable 48 h prediction
of moderate to severe respiratory failure, with an accuracy of 84% that minimizes the
FN rate. The level of performance of the model is in line with other ML tools used in
different areas of medicine [149,150] and it is very useful in the COVID-19 clinical context
where disease progression remains unpredictable both in the early virologic and in the late
inflammatory phase. There are different models of machine learning constructed to follow
a clinically oriented variables choice in acute respiratory infection. One of the first models
was based on 31 variables that were collected from signs and symptoms assuming subopti-
mal prediction accuracy. Adding biomarkers including respiratory variables significantly
increased the forecasting and predicting capacity of the model, but the best performance
was observed in the boosted mixed model with approximately 20 variables, which from
the clinician’s perspective may be difficult to obtain in routine hospital practice. What our
approach offers in support to the decision-making process is a simple interpretation of
the predictions. Moderate to severe respiratory failure was chosen as an outcome, being
the most relevant time point in the natural history of severe COVID-19 pneumonia. At
a clinical level, it represents the so-called “respiratory crush”, which marks acute lung
injury and leads to mechanical ventilation in the ICU. At a public health level, this ma-
chine learning model might be helpful in optimizing scarce resources like ventilators and
ICU beds. A few clinical risk scores have been developed and validated to predict the
occurrence of critical illness in hospitalized patients with COVID-19, which were used
at the time of the patient’s admission and included either the neutrophil/lymphocyte
ratio or ten clinical variables including radiological diagnostic findings in order to predict
critical illness and its possible outcome using a traditional statistical approach to gener-
ate a prediction algorithm [151,152]. There was also a ML model that used only three
biomarkers in patients with COVID-19 [153]. It is important to add that COVID-19 does not
affect only the respiratory system, but also the liver, kidneys, stomach, heart and central
nervous system, defining it as multisystemic and therefore the limited number of param-
eters may not be sufficient to predict worsening in these patients. In order to investigate
cognitive, EEG and MRI features in COVID-19 survivors up to 10 months after hospital
discharge, the investigators used brain MRI at baseline. By using eLORETA, regional EEG
densities and linear lagged connectivity were calculated and total brain and white matter
hyperintensities were measured. The results showed that COVID-19 patients exhibited
interrelated cognitive, EEG and MRI abnormalities 2 months after hospital discharge and
cognitive and EEG findings improved at 10 months. Additionally, dysgeusia and hyposmia
during acute COVID-19 were related with increased vulnerability in memory functions
over time [154]. There is presumable impact of the lung–brain axis in the development
of COVID-19 pneumonia and associated respiratory failure, highlighting clinical, neuro-
physiological and neuropathological evidence of SARS-CoV-2 neurotropism. The crucial
role of the lung–brain axis explains the sensory inputs from the respiratory tract, which
project to the central nervous system through cranial nerves, which carry special sensations
from the nasal cavity through the cranial olfactory nerve. Additionally, the trigeminal
nerve transmits the somatic sensations from the upper respiratory mucosa, large airways
by glossopharyngeal nerve and the lungs by the vagus nerve. The glossopharyngeal nerve
transports inputs from the carotid bulb, which is crucial for gas exchange and breathing
regulation. Afferent signals from there project on the nucleus of the tractus solitarius in
the pontomedullary region of the brainstem, allowing close monitoring of the respiratory
function and potential noxious stimuli. Anatomically spoken, some neuronal populations
related to the tractus solitaries belong to the dorsal respiratory group, which correspond to
peripheral chemoreceptors, lung mechanisms, tissue damage and additional alteration of
the dorsal respiratory group function comes through the pontine respiratory cell group and
higher cortical structures. The dorsal respiratory group transmits impulses to the ventral
respiratory group and the Pre-Bötzinger Complex and is responsible for the spontaneous
rhythmic pattern of respiration [61]. Neurotropism of SARS-CoV-2 to the brainstem, where
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the vital functions are situated, followed by the constant neuroinflammatory innate response
is already described with the involvement of the olfactory bulb and the pontomedullary
region. All this can be defined as anatomical substrate and clinically correlates or predicts
the disease severity and survival. Furthermore, prolonged damage may affect the recovery
of COVID-19 patients, leading to persistent symptoms and eventually low quality of life.
Further investigations about the role of the brainstem in COVID-19 are needed to improve
diagnostic assessment and prompt research for new therapeutic strategies. The situation
about SARS-CoV-2 and its related disease, correlated with brain damage and pulmonary
disease, has posed a huge threat to the global population with millions of deaths and the
creation of enormous social and healthcare pressure, therefore further investigations about
consequences should be performed.

5.4. Dynamic Development of Techniques and Today’s Challenges

For distinguishing the infection of COVID-19 from non-COVID-19 groups, there
are ten commonly used well-known convolutional neural networks: AlexNet, VGG-16,
VGG-19, SqueezeNet, Xception, MobileNet-V2, ResNet-18, GoogleNet, ResNet-50 and
ResNet-101.

The databases and algorithms that have been used to create better and more accurate
algorithms are summarized in Table 3. Most of the works found are based on exactly the
same data, and the authors have not seen the databases growing significantly in the last
quarter. Depending on the type of data, their quality and quantity, one can distinguish
between the techniques most commonly used in MRI, CT and X-ray. For COVID-19
classification from CT images, there is a conventional neural network [155], which is the
current state-of-the-art for image classification [156,157]. In routine clinical practice using
CT images, all those mentioned have achieved good performance, considering ResNet-101
could distinguish COVID-19 from non-COVID-19 cases with an AUC of 0.994 (sensitivity,
100%; specificity, 99.02%; accuracy, 99.51%) [158].

Vaid et al. showed how important access to open databases is. Using COVID-19
image data collection [26,159], they developed a deep learning model architecture based
on a VGG-19 classifier [102]. Their COVID-19 detection model offers a very high accuracy
of 96.3%. Nayak et al., by using COVID-19 data image collection [26] and NIH Chest
X-rays dataset [15] databases, evaluated the effectiveness of eight pre-trained convolutional
neural network models such as AlexNet, VGG-16, GoogleNet, MobileNet-V2, SqueezeNet,
ResNet-34, ResNet-50 and Inception-V3 for the classification of COVID-19 from normal
cases [103]. The best performance was obtained by ResNet-34 with an accuracy of 98.33%.
Wang et al. used four different open databases: COVID-19 Image Data Collection [18],
COVID-19 Chest X-ray Dataset, Actualmed COVID-19 Chest X-ray Dataset Initiative [16],
COVID-19 Radiography Database [27] and RSNA Pneumonia Detection Challenge [28] to
create COVID-Net, a deep convolutional neural network design, tailored for the detection
of COVID-19 cases from chest X-ray images, which is open source and available to the
general public [101]. COVID-Net achieved a very good accuracy of 93.3%. All of the above
confirm the importance of creating open databases and free tools in the development of
AI technology. It would not be possible if not for the common effort of many groups
of scientists, who put a lot of time into the preparation and proper validation of image
data, and were ready to share their results, which certainly contributed to the support of
healthcare in the severe period of the COVID-19 pandemic.

Neural networks are used in many fields such as neuroimaging, medicine, biology,
medical informatics or biomedical engineering and the latest ones focus on connections,
brain–lung, lung–heart and heart–brain correlations [60,156,158]. Loey et al. [160], to
identify NCOV-19 in chest X-ray images, have introduced a generative adversarial networks
(GAN)-related deep transfer learning model. GAN was presented because of the robustness
of the projected technique, which has been used for the screening of drugs with the help of
text data [161]. The development of GAN was fast and impressive [162,163], resulting in
an accuracy of 82.91%, and adequate performance in ResNet50. Muhammad et al. [164]
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presented a combined CNN-BiLSTM and experimental results, which demonstrate state-
of-the-art focus on performance on three COVID-19 databases. Algorithm development
in the period since the pandemic began has been very dynamic. It is not clear exactly
when it was initiated that there are brain–lung correlations [165–167]. As soon as the
first reports appeared, further algorithms occurred, allowing to expand the diagnosis,
prediction, selection and presentation of the correlations in question. Unfortunately, at this
point, the authors have not identified a database, with open access, that deals directly with
brain–lung correlations [52]. From a technical point of view, despite the latest literature and
the most up-to-date results, the authors are unable to reproduce most of the experiments
because the databases have not been made available, or there is no open access to them. It
should be noted that there is a great need to publish more databases, or parts of the data,
which would accelerate the development of existing ready-made solutions.

Table 3. Algorithms used in the process of dynamic development of AI techniques.

Study Data Algorithm Applied

Liang et al., 2020 [151] Retrospective cohort of patients with
COVID-19 from 575 hospitals

Estimate of the risk that a hospitalized
patient with COVID-19 will develop

critical illness

Vente et al., 2022 [156]
COVID-19 (iCTCF) dataset, e.g.,
4001 positive CT, 9979 negative

CT [168–170]

Comparing the performance of a
variety of popular 2D and 3D CNN

architectures

Ali Abbasian Ardakani et al., 2020 [171]

1020 CT slices from 108 patients with
laboratory-proven COVID-19 (the

COVID-19 group) and 86 patients with
other atypical and viral pneumonia

diseases (the non-COVID-19 group) were
included [172]

Were used to distinguish infection of
COVID-19 from non-COVID-19 groups:
AlexNet, VGG-16, VGG-19, SqueezeNet,
GoogleNet, MobileNet-V2, ResNet-18,
ResNet-50, ResNet-101 and Xception

Nayak et al., 2021 [103] COVID-19 data image collection [26] and
NIH Chest X-rays dataset [15] databases

Evaluating the effectiveness of eight
pre-trained convolutional neural

network models such as AlexNet [173],
VGG-16, GoogleNet, MobileNet-V2,

SqueezeNet, Res-Net-34, ResNet-50 and
Inception-V3

Wang, 2020 [101]

COVID-19 Image Data Collection [174],
COVID-19 Chest X-ray Dataset, Actualmed
COVID-19 Chest X-ray Dataset Initiative
[175], COVID-19 Radiography Database
[176] and RSNA Pneumonia Detection

Challenge [177]

Creating COVID-Net, a deep
convolutional neural network design

Loey et al., 2020 [160] 742 CT images [178–181]
Introduced a generative adversarial

networks (GAN)-related deep transfer
learning model

Muhammad et al., 2022 [164] 500 no-findings and 500 pneumonia class
frontal chest X-ray images [179–185] Presented a combined CNN-BiLSTM

Ucar et al., 2020 [186] 5232 chest X-ray images from children [101] COVIDiagnosis-Net
Bayes-SqueezeNet

Apostolopoulos et al., 2020 [187] A collection of X-ray images from Cohen
(1427 X-ray images) [159,177,188,189] The pretrained CNNs

Li and Zhu 2020 [190] Chest X-ray8 dataset (108,948 lung disease
cases) [177] DenseNet

Wang and Wong 2020 [101] 13,975 CXR images across 13,870 patient
cases [21,26,27,176,177,191,192] Tailored CNN
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Table 3. Cont.

Study Data Algorithm Applied

Chowdhury et al., 2020 [192]

Muhammed [164]

1. SIRM COVID-19 database [193]
2. Novel Corona Virus 2019 Dataset [18]
3. COVID-19 Chest imaging at thread

reader C. Imaging, This is a Thread of
COVID-19 CXR (All SARS-CoV-2
PCR+) From my Hospital (Spain). I
Hope it Could Help [194]

4. RSNA-Pneumonia-Detection-
Challenge [105]

5. Chest X-ray Images (pneumonia):
[174,195]

Sg-SqueezeNet

Ozturk et al., 2020 [174] 127 X-ray images [159,188] DarkCovidNet

While there is no doubt that AI is an important aspect of diagnostic imaging, you
will also find expert voices, such as Alexander Selvikvåg Lundervold of the University of
Applied Sciences of Western Norway in Bergen, Norway, who say that imaging is not the
right way to go. First, physical signs of disease may not show up in scans until some time
after infection, making it not very useful as an early diagnosis. Second, there is still not
enough training data available, so it is difficult to assess the accuracy of such studies. Most
image recognition systems—including those trained on medical images—are adapted to
models first trained on ImageNet.

6. Summary and Conclusions

Access to open databases appears to be a priority at this time. The review identified
more than a dozen databases concerning lung diseases, COVID-19 and brain damage
that provide a good basis for working on new or existing algorithms. Databases contain-
ing descriptions and X-ray, CT or MRI images of patients during and immediately after
“COVID-19” are already relatively well described, and available to users.

There are not many EEG databases that contain specific pathologies or diseases, in par-
ticular, considering tests of patients after COVID-19, who experience various neurological
problems and require rehabilitation.

Some researchers presented findings showing a strong correlation between brain-
related abnormalities and COVID-19, but future larger datasets with imaging-pathologic
correlation may help better in understanding the common mechanisms of brain and lung
injury and existing correlations.

To sum up, the use of machine learning forecasting algorithms increases the chances
of, among others, early detection and diagnosis of diseases and threats to patients’ health
or supports making clinical decisions and planning preventive measures. Such activities
allow patients to maintain their physical and intellectual fitness for longer and improve
their quality of life. When comparing the costs of prophylaxis and the costs of restorative
medicine, it is worth looking for good ML solutions, the widespread use of which may also
have a beneficial effect on the financial condition of the healthcare system. The analysis of
the examples cited shows that using the full potential of ML depends largely on the size of
the historical data sets, their updating, as well as the quality of the data they contain.

Nowadays, solutions can represent a possible starting point of a predictive tool for
personalized medicine and advanced diagnostic applications. The results obtained by algo-
rithms based on artificial intelligence show that it can improve the process of diagnosing
patients, mainly thanks to supplementing the knowledge and experience of doctors.
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