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Abstract: Modern agriculture incorporated a portfolio of technologies to meet the current demand
for agricultural food production, in terms of both quality and quantity. In this technology-driven
farming era, this portfolio of technologies has aided farmers to overcome many of the challenges
associated with their farming activities by enabling precise and timely decision making on the basis
of data that are observed and subsequently converged. In this regard, Artificial Intelligence (AI)
holds a key place, whereby it can assist key stakeholders in making precise decisions regarding the
conditions on their farms. Machine Learning (ML), which is a branch of AI, enables systems to learn
and improve from their experience without explicitly being programmed, by imitating intelligent
behavior in solving tasks in a manner that requires low computational power. For the time being,
ML is involved in a variety of aspects of farming, assisting ranchers in making smarter decisions
on the basis of the observed data. In this study, we provide an overview of AI-driven precision
farming/agriculture with related work and then propose a novel cloud-based ML-powered crop
recommendation platform to assist farmers in deciding which crops need to be harvested based on a
variety of known parameters. Moreover, in this paper, we compare five predictive ML algorithms—
K-Nearest Neighbors (KNN), Decision Tree (DT), Random Forest (RF), Extreme Gradient Boosting
(XGBoost) and Support Vector Machine (SVM)—to identify the best-performing ML algorithm on
which to build our recommendation platform as a cloud-based service with the intention of offering
precision farming solutions that are free and open source, as will lead to the growth and adoption of
precision farming solutions in the long run.

Keywords: smart agriculture; artificial intelligence; machine learning; deep learning; Internet of
Things; IoT; cop recommendation; cloud computing

1. Introduction

Over the years, by means of human collaboration and with a human touch, traditional
agriculture has been transformed into a whole new form that offers greater advantages
for the survival of humans. Agriculture, which is considered to be the oldest and primary
industry in the world, provides foods and livestock that are needed to feed the world’s
population of billions [1]. Today, other than technology services and crude oil, the Gross
Domestic Products (GDPs) of many countries globally depend on the production of agricul-
tural goods, highlighting its necessity as a key industry. Over the years, with the adoption
of machinery and technology, most of the manual labor work in agriculture has been
replaced to a great extent, thus improving overall quality and efficiency, and encouraging
more people to participate in agriculture for their livelihood [2].

With the growth in urbanization, there will be a dramatic decrease in arable land in
the coming years, raising doubts as to whether it will be possible to meet the demand for
agricultural food production. On the other hand, according to the most recent studies, it
is evident that current agricultural food production needs to be increased by more than
70% by the year 2050 in order to feed the growing global population [1–3]. Thus, owing
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to various reasons, such as the decrease in arable land, the requirement of manual labor,
and the increasing capital costs, meeting the demand for agricultural food production is
increasingly becoming a significant challenge [3]. This results in a perfect gap for academia,
as well as research and development organizations, to find novel solutions that will make
it possible to increase the amount of quality harvest while requiring fewer resources, so
that these challenges can be overcome in the long run.

To date, with the aim of increasing the quality and the amount of the harvest, various
enabling technologies are being used that are powered by Information and Communication
Technologies (ICT), including the Internet of Things (IoT), AI, cloud computing, edge
computing, fog computing, and 5G communication technologies. The adoption of these
technologies has become a booming trend in recent years owing to the benefits they provide
to farmers. Furthermore, this fruitful collation of technologies has paved the way for the
development of smart agriculture, which describes the use of smarter technologies for
agriculture, with the aim of making farming tasks more efficient [3–5].

In the context of modern agriculture, the lack of proper planning, improper harvesting,
irregular irrigation, and unpredictable weather conditions such as floods and droughts
are the major concerns preventing farmers from meeting their goals, and these can be
ameliorated by using AI to assist farmers in making timely decisions [6,7]. At times, poor
outcomes in farming and broken expectations can lead to stress and discomfort for ranchers,
and may even lead to suicidal thoughts and eventually loss of lives, as is a reality in most
developing countries, including Sri Lanka, India, and Bangladesh [7–10]. Nevertheless, it
can also lead to social chaos and affect the economy of countries, as was clearly proved by
the economic and food crisis that occurred in Sri Lanka in 2022, with the decision taken to
ban the import of all chemical fertilizers into the country as a government policy [10,11].
On the whole, agricultural food production in recent years has faced immense challenges,
owing to supply chain and logistics issues arising during the COVID-19 global pandemic, a
deadly virus outbreak that is still prevalent [11]. Moreover, the current conflict in the Black
Sea region and the supply chain disruptions in the agricultural commodities market have
also increased the risk of food insecurity [10,11].

According to the United Nations Food and Agriculture Organization (FAO), nearly
33% of all food produced for human consumption is wasted every year owing to various
factors [9–11]. These losses can mainly be attributed to the choice of unsuitable crops, lack
of proper planning, changes in climate, weeds, pests, changes in government policy, etc.
Nevertheless, in recent years, there have been drastic climatic changes occurring owing to
global warming [12–15]. Among all these factors, the selection of unsuitable crops has a
great effect on the expectations of farmers, as it burns through the entirety of the resources
(such as the cost of seeds, fertilizers, etc.) [6–10,15–18] that have been spent on harvesting,
leading to even more disastrous consequences. Hence, it is indeed essential to prioritize
which crop should be harvested before carrying out land preparation, which can be highly
challenging to guess on the basis solely of the knowledge gained through traditional farm-
ing practices. With the advancement of technology, as mentioned above, novel technologies
have been applied in farming to improve the overall health condition of crops and aid
farmers throughout the farming process, from land preparation to the preparation of the
harvest for market. This portfolio of technologies is commonly known as precision farming
or precision agriculture, and is mainly governed by three key technologies: IoT, AI, and
agriculture robotics. AI, being a remarkable and revolutionizing technology that mimics
typical human thinking processes, aids in making timely and precise decisions that will
result in better yield and a higher-quality harvest. Thus, motivated by the manner in which
ML, which is a key founding technology of AI, can reshape traditional farming, in this study
we aim to present a cloud-hosted ML-powered crop recommendation platform for farmers,
so that farmers can have a better sense before commencement of harvesting regarding
which crop to harvest, thereby reducing the overall harvest wastage and resulting in better
yield and a higher-quality harvest in a timely manner. Thus, motivated by the manner in
which ML can assist in precision farming and how it can assist in making timely decisions
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regarding farming, below we present the key motivational factors behind carrying out
the research.

• Even though there have been recent studies on various ML applications in smart
agriculture, these have only provided a theoretical overview of the application and
only focus on experimental evaluations, not implementations.

• Most of the work carried out has been focused on and limited to publications, and
have not addressed the aspect of how these technologies can be offered to farmers for
free and as open-source solutions.

1.1. Contributions of the Study

As outlined above, with to the aim of aiding farmers in making precise and timely
decisions with respect to their farming process, the key contributions of this study can be
enumerated as follows.

• After the introduction, a quick overview of precision farming is offered, as it is the
primary focus of this study.

• The role of AI in precision farming is addressed, with a special emphasis on the
application of ML.

• To validate our work and differentiate it from the work of others, we provide a brief
comparison of recent related work, highlighting the key contributions and the main
application areas related to precision farming.

• We designed a cloud-based ML-driven crop recommendation platform and provide a
discussion on how to offer such technologies to farmers for free, with the intention of
encouraging researchers who are engaged in this area towards the invention of novel
solutions for revolutionizing agriculture.

1.2. Outline of the Study

The paper is organized as follows. Following the introduction, we provide a brief
overview of precision farming in Section 2, while also providing a brief overview of AI in
precision farming, mainly highlighting the ML aspects of AI. Further, in Section 3, a brief
literature review is provided, highlighting the latest research in the field, and differentiating
our work from theirs. Next, in Section 4, our research methodology is highlighted on the
basis of an experimental evaluation of our research, followed by a discussion. Finally, the
paper concludes with the conclusions derived through our research work.

2. Precision Farming

Precision farming, otherwise known as the precision agriculture, is the next big rev-
olution in agriculture. It aims to bring real-time information on farms and livestock to
the farmers as required, allowing them to make precise and timely decisions, resulting in
higher harvest and less wastage of scarce resources [12,19–22]. Predominantly, precision
farming is a collation of three main technologies: Artificial Intelligence (AI), agriculture
robotics, and Internet of Things (IoTs) [13], as depicted in Figure 1.

Figure 1. Three foundation technologies of precision farming.
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In precision farming, a variety of IoT sensors are used to gather various environmental
parameters related to farms and livestock, including soil fertilizer level, water requirements,
soil nutrient level, and health of animals [1–4,6–10,12–15]. The data collected by the various
sensors at the end nodes are sent to the cloud or remote servers through wired or wireless
communication media. At the cloud or server side, various data analytic methods are
utilized to infer useful meanings and interpretations from the data, which are then used to
make precise and accurate decisions. Accordingly, the system may order agriculture robots
to execute certain tasks in a timely manner. For better understanding, Figure 2 depicts
the overall steps in precision farming from the gathering of data from IoT sensors and
execution of tasks by agricultural robots, based on understandings of the analyzed data.
Additionally, these data, when analyzed and refined, may also offer valuable insights to
farmers, including with regard to the condition of crops, plant and animal diseases, and
weather conditions, as well as forecasting future conditions and predicting the crop yield,
with the aim of maximizing the overall efficiency of the farm [22–26].

Figure 2. Overall steps in precision farming.

At the present time, precision farming solutions are heavily used to increase produc-
tivity and maximize crop yield, and the entire crop cycle can benefit from the accurate
deployment of precision farming applications. According to Libelium [9], which designs
key IoT technological solutions for smart agriculture and other related IoT markets, the
total market value for precision agriculture solutions has now almost doubled with respect
to that in 2016. There are a lot of startup companies that have been established in recent
years that offer various commercial precision agricultural services, both hardware and
software solutions, especially in India, Australia, and New Zealand [11]. However, despite
the availability of many precision agricultural solutions, most farmers are still reluctant to
move forward with the technology, which hinders the digitalization progress of farming
for the betterment of humankind.

In precision farming, autonomous robots may perform a variety of tasks, and it is
evident that they can replace human laborers when performing most agricultural tasks,
such as land preparation, seeding, planting, and harvesting [9]. The autonomous devices
commonly used in precision agriculture can be mainly divided into two categories: fully
autonomous devices and semi-autonomous devices, such as Unmanned Aerial vehicles
(UAVs) and agriculture robots used for detecting plant diseases and weeds [10–13]. UAVs
hold a key place in precision agriculture, as they can gather a vast amount of data on a
large-scale farm within a very short period of time, making them an ideal solution for large-
scale framing. Moreover, aerial images taken from satellites can also be used in precision
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farming for identifying suitable land, plant diseases, predicting weather conditions, and
remote sensing applications [4,5,10–13].

Apart from crop condition monitoring and management, livestock management is
another important aspect of precision farming, where it can help in monitoring overall
health condition and real-time location of animals [13], and improve the productivity, wel-
fare, and reproductive behavior of animals throughout their life cycle. Various intelligent
sensors implanted internally and externally on animals and real-time cameras can assist in
making smarter decisions regarding underlying conditions and act accordingly in a timely
fashion [26–28].

Despite the slow adoption of precision farming solutions, the wide use of precision
farming solutions around the world can be mainly attributed to the power of AI, which is
backed by both ML and Deep Learning (DL), the two main pillars of AI. Nonetheless, the
availability of high-speed Internet, low-budget sensors, and efficient computational devices
has aided the wide dissemination of precision farming solutions at the present time [28–32].
Having provided a brief overview of precision farming, in the next subsection, we will
briefly discuss the use of AI in precision farming.

AI in Precision Farming

AI is a major technology of the 21st century, and it is used by most industries, including
in agriculture, surveillance, military, smart city, and healthcare, to make precise decisions
on the basis of the underlying conditions and to act accordingly. In general, AI provides
computational intelligence such that the machines can learn, understand, and respond
according to varying situations. AI can be further categorized into ML, DL, natural language
processing (NLP), computer vision, fuzzy logic, expert systems, and swarm intelligence (SI),
which are key subfields of AI [12]. As mentioned above, AI is currently applied in a variety
of aspects of human life, and even with smart mobile devices like Apple, Samsung, and
Microsoft, serving as human, friendly virtual assistants [4–8]. At the current time, according
to the latest studies, it is evident that, at the current growth rate of technology, AI is going
to change the world more than anything in the history of mankind [9,12,32–35]. Being
the key pillar of precision farming, AI is currently involved in many precision farming
applications, allowing farmers to act in a timely manner. On a typical farm, IoT sensors
and UAVs produce millions of data points in a single day, accumulating a large volume of
data, also referred to as big data [8,9]. In most cases, this big data will be transferred into
the cloud, and AI will be used to infer the meaning of this data [35–39].

In precision farming, the data captured from IoT sensors deployed in the field are
used to predict crop yield, other related natural weather conditions, and the occurrence of
disastrous situations with the help of AI, which will eventually help in meeting the current
demand for agricultural food production in the long run [40–42]. Hence, it is deemed
essential to embrace these precision farming solutions as much as possible. As the main
focus of this paper is to present how ML is involved in precision farming by developing
an ML-powered crop recommendation platform that can be used by farmers to determine
what crop should be harvested on the basis of the known environmental parameters, next,
we intend to focus more on the application sides of ML in precision farming, in order
to give a better holistic view of ML. In general, ML allows learning without needing to
be explicitly programmed, and mimics human problem-solving ability. ML acts as an
important decision-making tool in precision farming, and can be applied throughout the
entire growing and harvesting cycle. On the whole, this begins with crop prediction, soil
preparation and selection, water requirement prediction, crop yield prediction, and finally
agricultural robots pick up the harvest by determining the ripeness and the quality of fruits
through computer vision techniques [9,39–42].

Normally the process of ML can be broken down into three parts: data loading and
preprocessing, model building, and generalization, as shown in Figure 3. The data are
loaded in the form of a raw dataset; secondly, the data are preprocessed; and thirdly, the pre-
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dictive ML model is built using suitable ML algorithms. Finally, the generalization involves
predicting the output for inputs on which the ML algorithms have never trained before.

Figure 3. A typical machine learning process.

As of now, owing to the availability of powerful innovative algorithms, big data, and
fast Internet connections, ML applications have been widely used for solving a variety of
problems that humans often fail or need a lot of time to solve. On the other hand, DL, which
is a branch of ML, trained on much larger datasets or with higher volumes of big data,
can also be used to make intelligent decisions, the same as ML. ML can be further broken
down into three categories: supervised learning, unsupervised learning, and reinforcement
learning [1–4,6–10,12,13], as depicted in Figure 4.

Figure 4. Categories of ML algorithms with key examples.

Supervised learning is the process of learning or training with well-known labeled
data to classify outcomes or predict outcomes accurately [1–4]. As input, data is fed into
the model, and the weights are adjusted until the model is properly fitted, which happens
during the cross-validation phase. Further, the supervised learning algorithms used for
predicting the categorical values are known as classification algorithms, and the algorithms
that are used for predicting the numerical value are known as regression algorithms.
Unsupervised learning algorithms work with unlabeled data, in contrast to supervised
learning algorithms, and they are capable of discovering unknown objects by precisely
grouping similar objects [1–4]. On the other hand, the implementation of unsupervised
algorithms is quite difficult compared to supervised learning algorithms, as the main
objective of unsupervised algorithms is to extract hidden knowledge from the training
data. When it comes to reinforcement learning, it is a method based on rewarding desired
behaviors and punishing undesired behaviors. A reinforcement learning agent, in general,
is capable of perceiving and interpreting its surroundings, taking actions, and learning
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through trial and error [3–7]. For better understanding commonly used ML algorithms are
further described in Table 1, in the following.

Table 1. Machine learning algorithms.

Machine Learning Algorithm Description

Regression algorithms
Regression algorithms are supervised learning algorithms that use training data to predict the output numerical value

of unknown input. Some of the most frequent regression ML methods include simple and linear regression,
polynomial regression, and logistic regression [1,3,7,12].

Random Forest (RF)
RF is an ensemble learning methodology for classification and regression that works by constructing a jumble of

decision trees at training time and outputting the category that is the mode of the categories or mean prediction of the
individual trees [7,9,12].

Decision Tree (DT)
DT is a classification and regression algorithm that works with both categorical and continuous input and output

variables. It divides the data into two or more homogeneous sets or areas based on the independent variables’ most
significant splitter [1–4,7,12].

Support Vector Machine (SVM)
SVM is a classification and regression algorithm that creates multi-dimensional planes (boundaries) between data

points in the feature space [7]. The SVM predicts the output based on the training data separated into classes and SVM
is better suited to high-dimensional data with many predictor variables [1–3,12].

K-Nearest Neighbors (KNN) KNN is a supervised learning algorithm that divides a labeled dataset into classes depending on its outputs. As a
result, a new forthcoming item is given a class depending on its K nearest neighbors [3–7,9,12].

Naive Bayes (NB) A Naive Bayes classifier is a probabilistic machine learning model for classification problems. The Bayes theorem is
the foundation of the classifier [1–4,7,12].

Extreme Gradient Boosting (XGBoost) XGBoost is a regression and classification algorithm built on the principles of gradient boosting framework [1–7,9,12].

Clustering algorithms In contrast to supervised learning, clustering algorithms automatically uncover natural grouping in data and can only
interpret the input data and locate natural groups or clusters in feature space [7,9,12].

Supervised learning, unsupervised learning, and reinforcement learning techniques
are, taken together, used heavily in various industries, such as in agriculture, in combination
with IoT for data analytics. Furthermore, in precision farming, wireless sensor networks
(WSN) and IoT are widely combined with ML to quantify and understand the big data
generated from the sensing devices. As per the literature, ML applications in precision
farming can be mainly apportioned to four key categories—crop management, water
management, soil management, and livestock management—which are discussed in detail
in the following, and we intend to provide examples for these applications in the next
section, summarizing the latest research work.

• Applications for crop management

It is imperative that farmers have the information necessary to properly forecast
crop output and determine the means by which yield might be increased and how the
condition of crops can be managed throughout the entire crop cycle [13]. Temperature,
humidity, rainfall pattern, type and quality of the soil, fertilizer, and harvesting pattern
are the key driving factors that have a great impact on predicting the condition of the
crops and provide insight on how the harvest can be increased [1–4,10,13]. Nonetheless,
during the whole crop life cycle, farmers must pay close attention to the health of crops,
since pathogenic fungi, germs, and bacteria get their energy from the crops they grow on,
which ultimately affects the harvest as they feed on crops [11–13]. Thus, farmers stand to
lose a lot more money if the problem is not caught and fixed quickly [10]. When illnesses
are eliminated and crops are restored to their former functioning, farmers bear the bulk
of the costs in the form of pesticides, which in return have a negative consequence on
the surrounding environment [10–13]. In this regard, with the support offered by IoT
and enabling technologies, ML applications provide precise insights on what crop should
be planted according to the environmental conditions [1–5], predicting crop diseases
and pests [10–13], predicting the yield and forecasting the forthcoming environmental
conditions [1–4,6–9,13–17].

• Applications for water management

To compensate for rainfall shortages, fresh water is required for irrigation and the
delivery of nutrients for plant development, and agricultural activities around the world
use over 70% of the available freshwater [2–6]. This emphasizes the significance of the
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responsible management of water via the use of precision irrigation methods underpinned
by ML. Farmers are now dealing with a variety of irrigation issues such as over-irrigation,
under-irrigation, water depletion, floods, and so on; and with the adoption of ML and
IoT, higher crop yield can still be achieved, while simultaneously reducing the amount of
water that is used up in the cultivation process (e.g., adopting ML-powered drip irrigation
methods and sprinkler irrigation methods [11–13]).

• Applications for soil management

The forecast of soil attributes is the first and most significant step in the process of
farming, which often influences the selection of seeds and crops, preparation of land and
fertilizer, and manure selection [1–4,6–9]. As soil characteristics are directly related to the
geographical and climatic conditions of the area being utilized, this is an important factor
to consider before starting farming on the field. The major components of predicting soil
characteristics using ML include forecasting the nutrients in the soil [1–4], the humidity of
the soil surface [11–13], and the climatic conditions that will occur throughout the crop’s
lifetime [11–13].

• Applications for livestock management

Livestock production refers to the cultivation of domesticated animals (such as pigs,
cattle, sheep, and so on) for the purpose of providing commodities for human consumption
such as eggs, milk, and meat. Livestock production and management are dependent on
farming aspects of the animals, such as their health, food, nutrition, and behavior [12,13],
so that the livestock output can be maximized, and farmers can gain a higher profit. In the
current context, IoT, ML, and blockchain technologies are being widely explored to improve
livestock sustainability and for analysis of their chewing habits, eating patterns, and
movement patterns (e.g., standing, moving, drinking, and feeding habits) [11–13], which
indicate the amount of stress the animal is experiencing and, in turn, help in predicting
the vulnerability of livestock to disease, weight gain, and mortality. According to [12], ML-
powered weight forecasting systems are used for the evaluation before slaughter. According
to the findings of [5–9,11–13], with the support of precision arming solutions powered by
ML farmers have the ability to modify their livestock’s diet and living conditions in order
to facilitate better growth for the animals in terms of their health, behavior, and weight
gain, which will, in turn, improve the economic efficiency of livestock.

3. Literature Review on Precision Farming Applications

In recent years, with the adoption of ML in precision farming, several research works
have already been conducted in various aspects of agriculture. Thus, in order to give a
better overview and to differentiate our work from theirs, in the following we summarize
the latest research in a tabular form, in Table 2.

Table 2. Summary of the most recent studies with their contributions.

Reference Application Area/s ML Algorithm/s Used Research Contributions

Kumar et al. (2019) Crop management SVM, DT, Logistic
Regression (LR)

The authors introduced an ML-powered recommendation
system for identifying crop suitability and pest control.

Further, they found that among the ML algorithms they used,
SVM gave the best results as opposed to other algorithms.

Shinde et al. (2015) Crop management RF

The study proposed using data mining techniques to provide
recommendations for what crops to grow, crop rotation, and
fertilizer identification in the form of web-based and smart

mobile applications.

Mahir et al. (2008) Soil management Neural Network (NN)
Considering the various parameters of the soil the authors

presented a recommendation system for recommending what
kind of crop to harvest in certain types of soil.

Arooj et al. (2018) Soil management NB, DT, NN, SVM
The authors provided an empirical study on various data
mining classification algorithms to classify the datasets of

different regions based on the soil properties.
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Table 2. Cont.

Reference Application Area/s ML Algorithm/s Used Research Contributions

Rajak et al. (2017) Crop management and
soil management

SVM, Artificial Neural
Network (ANN)

The authors made a recommendation system to recommend
crops for farming sites based on the type of soil, where they
used data from a soil sampling lab to train their underlying

ML models.

Pudumalar et al. (2017) Crop management KNN, NB, RF
The authors proposed an ensemble model with a majority

voting technique to recommend
crops according to site-specific parameters.

Alam et al. (2020) Crop management RF
The authors presented a real-time computer vision-based

crop/weed detection system for variable-rate
agrochemical spraying.

Brunelli et al. (2019) Crop management NN

The authors presented a near-sensor neural network
algorithm that can automatically detect the Codling Moth in
apple orchids. Once the insect is detected, the system itself

performs classification and sends a real-time alert to
the farmers.

Tsouros et al. (2019) Crop management -
The authors summarized the data acquisition methods and
technologies for acquiring images in UAV-based precision

farming in their study and provided a comparison.

Treboux and
Genoud. (2019) Crop management DT, RF The authors presented the performance of ML algorithms

used in aerial image detection in precision farming.

Dimitriadis and
Goumopoulos. (2008) Water management NB, ZeroR, OneR, J48,

DecisionStump

ML techniques were used by the authors to automatically
extract new knowledge in the form of generalized decision

rules for the optimum management of natural resources such
as water in farming land.

Reddy et al. (2020) Water management DT
The authors proposed a real-time smart irrigation system
powered by the DT ML algorithm to alert ranchers in real

time about when to supply water to the field.

Junior et al. (2022) Crop management K-Means Clustering

To reduce the data congestion when overloading IoT data to
the cloud, the authors proposed an approach for collecting

and storing data in a fog-based smart agriculture
environment with different data reduction techniques.

Shukla et al. (2021) Crop management LR, KNN, SVM, RF, NN

The authors introduced an IoT and ML-powered platform
capable of monitoring the condition of crops and crop disease
detection. Moreover, the introduced system was also linked
with UAV, and through the multispectral images captured
through IoT integrated with UAV, the system was able to

detect the health of crops in the field.

Petropoulos et al. (2020) Crop management Support Vector Regression (SVR),
Random Forest Regression (RFR)

The authors proposed novel ML and DL techniques to predict
yield and plant growth variation in controlled greenhouse

environments. In this regard the authors have deployed
Recurrent Neural Network (RNN), using the Long

Short-Term Memory (LSTM) neuron model for the prediction
and they have presented a comparative study using SVR and

RFR ML models.

Agarwal and Tarar, (2021) Crop management,
Soil management SVM

The authors provided a novel AI model for predicting the
type of the crop to harvest based on the characteristics of the
soil and in that regard, they have used SVM as the ML model

and RNN and LSTM as DL algorithms.

Raja et al. (2018) Crop management Regression algorithms
The authors performed an experiment with past data to

predict the crop yield and price that a farmer can obtain from
his land using regression classification techniques.

Viviliya and
Vaidhehi. (2019) Crop management NB, J48, Association rule learning

The authors proposed a hybrid crop recommendation system
for recommending crops to South Indian states by

considering various environmental attributes.

Goap et al. (2018) Water management K-Means clustering, SVR

The authors presented a novel open-source technology-based
smart irrigation system that predicts irrigation requirements

for fields using a variety of environmental parameters, in
which they have came up with a novel algorithm for

this purpose.

Brock et al. (2018) Livestock management Self-organizing maps

The authors presented a new approach for classifying herd
types in livestock systems by combining expert knowledge
and a machine-learning algorithm known as self-organizing

maps (SOMs), which they applied practically to the cattle
sector in Ireland, in order to understand ongoing discussions

surrounding control and surveillance for endemic
cattle diseases.

Lee, M. (2018) Livestock management RF, Expectation maximization

This study proposed and implemented a system to analyze
3-axis acceleration data from IoT sensors and compared the

pattern-recognition performance of machine-learning
algorithms for three breeding cow behavioral patterns: estrus

start, peak estrus activities, and estrus finish.
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4. Materials and Methods

The first step involved in the design of our crop recommendation platform includes
preparing our crop recommendation dataset, which we took from Kaggle [22], and was
built by augmenting actual rainfall, climate, and fertilizer data available for India [22], and
secondly preprocessing the data for further analysis. Altogether, the dataset we employed
contained 2200 records and eight features. In the third step, we performed an exploratory
data analysis using the underlying data in the dataset, in order to understand the nature
of our data. The fourth step involved extracting the best features in order to build our
ML models using different classification ML algorithms including KNN, DT, RF, XGBoost,
and SVM algorithms. Once the model-building step was completed in the next step, we
evaluated the performance metrics of the models, and once the evaluation was complete,
we arranged the deployment of our best-performing model as a cloud-based web app on
the Google Cloud platform, making up our crop recommendation platform. To achieve a
better understanding, all steps involved in the design of our crop recommendation platform,
along with the high-level architecture of our proposed platform, are illustrated in Figure 5.

Figure 5. Steps involved in the design of the crop recommendation platform.

4.1. Dataset Preparation and Feature Selection

The features in the chosen crop recommendation dataset [22,23] included soil nitrogen
level (N), soil phosphorus level (P), soil potassium level (K), air temperature, air humidity,
soil pH level, rainfall, and crop label, which is a categorical variable (i.e., the type of crop).
The dataset contained 2200 records, and Table 3 depicts the statistical summary of our
dataset for better understanding. Further, in order to understand the true nature of our data
before dealing with predictive data analysis, we performed an exploratory data analysis.
In this regard, in order to understand what kind of data we were dealing with (range and
distribution), we analyzed the distribution of features as depicted in Figure 6. Next, we
plotted a correlation heatmap depicting the correlation matrix representing the correlation
between different features on the dataset, as shown in Figure 7. According to the correlation
heatmap, it is evident that there is only a strong positive correlation (correlation score close
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to 1) between a few of the features, with most of the features having a very weak correlation
or being negatively correlated (correlation score close to 0 or less than 0).

Table 3. Statistical summary of our dataset.

Statistics N P K Air Temperature Air Humidity Soil pH Rainfall

Entries 2200 2200 2200 2200 2200 2200 2200
Mean 50.55 53.36 48.14 25.61 71.48 6.47 103.50

Standard Deviation 36.91 32.98 50.64 5.06 22.26 0.77 54.95
Minimum 0.00 5.00 5.00 8.82 14.25 3.50 20.21
Maximum 140.00 145.00 205.00 43.67 99.98 9.93 298.56

Figure 6. Distribution of features in the dataset.

Figure 7. Correlation matrix showcasing correlation between different features of the dataset.

According to the features of the dataset, the soil N, P, and K values hold a key place,
from a biological perspective, as they act as the key macro-nutrients that plants feed on
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while they are growing. In general, the main contributions of these macro-nutrients can be
categorized as follows:

• N—Nitrogen is mostly responsible for the growth of leaves on the plant.
• P—Phosphorus is mostly responsible for development of flowers, fruits, and growth

of roots.
• K—Potassium is responsible for being able to perform the overall functions of the

plant correctly.

These macro-nutrients can be supplied through fertilizer, and depending on the N, P,
and K concentrations of the fertilizer, it will be better suited to different ranges of crops.
Furthermore, crops require large amounts of N, P, and K to grow and thrive, and plants
that are well fed are healthier and more productive. However, if farmers do not use
fertilizer, the soil may not provide enough nutrients for maximum growth [4]. Fertilizer
adds nutrients that the soil lacks, and understanding the NPK ratios that crops require
would thus assist farmers in achieving optimal plant development and yield by managing
fertilization. Hence, in this regard, and as depicted in Figure 8, we evaluated the N, P, and
K requirements for different types of crops in our dataset. Based on Figure 8, it is evident
that apples and grapes require a high potassium level compared to all other crops, based
on our data in the dataset.

Figure 8. Comparison of N, P, K requirements of different crops.

The rest of the features in the dataset include air temperature, air humidity, soil pH,
and rainfall. These features also aid in determining which crop to harvest, as soil pH
influences the availability of essential nutrients, bacteria, and toxic elements in the soil;
rainfall is essential for the survival of plants; the water requirements of plants may depend
on the type of the plants; and air temperature is essential for photosynthesis—when the
temperature rises, photosynthesis may also increase, and air humidity is essential for
plant transpiration, for example, when the humidity level is high or there is a lack of air
circulation, a plant cannot make water evaporate or draw nutrients from the soil, which
would eventually result in rotting of the plant. Taken together, all of these features play a
vital role in determining which crop to harvest. Further, when it comes to the crop type
that can be predicted based on the other available features, there were several categories
of crops, including rice, apple, chickpea, black gram, muskmelon, banana, pomegranate,
kidney beans, grapes, cotton, coffee, coconut, mango, papaya, orange, lentil, pigeon peas,
and moth beans.

4.2. Predictive Data Analysis

The Python programming language wasused to create our predictive ML models,
and in the dataset preparation stage, once the dataset was acquired, first, we imported
the necessary libraries from Python to perform the data preprocessing, such as NumPy
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for performing mathematical operations, Matplotlib for plotting the charts, Pandas for
dataset manipulation and the Scikit-learn library for predictive data analysis. Secondly, as
the dataset may contain some missing data that would hinder the performance of our ML
models, we searched for the missing values, which were handled successfully.

In the feature selection phase, we manually selected all features from the dataset for
N, P, K, air temperature, air humidity, soil pH level, and rainfall with the aim of choosing
the best crop to plant as all the features contribute equally to the growth of the crop in
a biological perspective. Then, to perform predictive data analysis, we chose N, P, K air
temperature, air humidity, soil pH level, and rainfall as our independent variables and crop
label as our dependent variable, which was the name of the crop type.

After choosing the dependent and independent variables, we split out the main dataset
into training and testing data sets, with a ratio of 70:30, to perform the predictive analysis.
Afterwards, five machine learning models (KNN, DT, RF, XGBoost and SVM) were adopted
to perform the predictive data analysis. Before training the models, we finalized the data
pre-processing stage, and during the splitting of the dataset into training and test datasets,
we randomly split the dataset with a training and test set ratio of 70 to 30 (70:30), as
described above. After splitting the dataset, we trained our ML models and we evaluated
Accuracy, Precision, Recall, and K-Fold cross-validation scores, which are based on four
types True Positive (TP), True Negative (TN), False Positive (FN), and False Negative (FN)
for all of the underlying ML algorithms we adopted. In terms of TP, TP is defined as cases
that are predicted to be positive, and which are actually positive. TN is defined as cases that
are predicted to be negative, and which are actually negative, while FP is when the cases
are predicted to be positive, but are actually negative. FN is when the cases are predicted
to be negative, and they are actually positive. For the five ML algorithms, we adopted the
following four key performance metrics for use to determine the classification performance,
including the K-Fold cross-validation score. Equation (1) is used to determine the accuracy,
which is based on the accurate and total samples. In general, an accuracy score suggests if a
model is being trained properly and how it will perform in general, but it does not provide
comprehensive information about how it will be applied to the underlying ML problem.

Accuracy = (TP + TN)/(TP + FP + FN + TN) (1)

Equation (2) measures the precision score, which measures the differential rate of the
classifier and presents the proportion of accurately predicted positive observations to all
expected positive observations.

Precision = TP/(TP + FP) (2)

Equation (3) measures the recall score which measures the ratio of TP over the total
number of true. In simple terms it measures the accurately predicted positive observations
for all observations in the actual class.

Recall = TP/(TP + FN) (3)

F1 score is an overall accuracy metric that combines precision and recall. A solid F1
score suggests that there are few FPs and few FNs, and that you are on the right track of
recognizing serious threats while avoiding false alarms.

F1 = (2 × Precision × Recall)/(Precision + Recall) (4)

Upon the successful completion of model training, the adopted underlying ML models
predicted what type of crop would be more suitable, and in the next subsection, we
highlight the predicting performance of ML algorithms we adopted for the design of our
recommendation platform using the best predicting algorithm.
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4.3. Experimental Results

In this section, the experimental results are discussed regarding the predicting perfor-
mance of ML algorithms we adopted. Table 4 demonstrates the accuracy, precision, recall,
F1, and 10-fold cross-validation scores we obtained for better comparison. Further, Figure 9
demonstrates the accuracy comparison of all ML models we have adopted.

Table 4. Accuracy, precision, recall, F1 and 10-fold cross validation scores.

Model Accuracy Score Precision Score Recall Score F1 Score K-Fold Cross Validation Score (K-10)

KNN 96.36% 97% 96% 96% 97%
DT 86.64% 82% 87% 83% 92%
RF 97.18% 97% 97% 97% 97.40%

XGBoost 95.62% 96% 96% 96% 96.31%
SVM 87.38% 87% 87% 87% 88.50%

Figure 9. Accuracy comparison of ML algorithms.

According to the results we obtained, it is evident that all ML algorithms adopted have
varying predicting capabilities in terms of predicting which crop is more suitable according
to the input data. In terms of accuracy, it is evident that RF performs the best, with a
score of 97.18%, as opposed to other predicting algorithms KNN (96.36%), DT (86.64%),
SVM (87.38%), and XGBoost (95.62%). According to the precision score, which measures
the proportion of positively predicted labels that are actually correct, both RF and KNN
perform equally well, with a score of 97%, whereas DT performs the worst, with a score of
82%. In terms of Recall score, which is about our ML model’s ability to correctly predict
the positives out of actual positives, yet again, RF performs with a score of 97%, whereas
DT and SVM both perform the worst, with a score of 87%. Next, as per the F1 score,
RF is highest, with a rate of 97%, whereas KNN is 96%, DT is 83%, XGBoost is 96% and
SVM is 87%.

To evaluate the generalizing capacity of the adopted ML models, we used K-Fold
cross-validation with the intention of estimating the overall performance of the models
with K = 10. In terms of K-Fold scores, it is clear that RF possesses the highest score of
97.40%. On the other hand, DT performs poorly, with a low score of 83%. Even though
accuracy is not a good score to measure the performance of an underlying ML model,
based on the other performance metrics such as precision, recall, F1 score, and 10-fold
cross-validation scores it is evident that RF, outperforms other ML models while predicting
which crop to harvest.

4.4. Implementation of the Crop Recommendation Platform

Based on the performance evaluation criteria outlined above, it is evident that RF
performs best among the ML algorithms adopted, in terms of predicting which crop to
harvest. Hence, for our crop recommendation platform, we intend to use RF to predict the
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most suitable crop, according to the input parameters submitted by the user, which include
N, P, K, air temperature, air humidity, soil pH level and rainfall. Once the best-performing
model has been selected, the model is separately serialized/saved for the design of the
crop recommendation platform using the Python pickle module as the next step. All steps
involved in the design and deployment of the crop recommendation platform are depicted
in Figure 10.

Figure 10. Steps involved in design and deployment of the crop recommendation platform.

For the design of the platform, we used Flask, which is a Python-based microframe-
work used for developing websites that allows developers to design Restful Application
Programming Interfaces (APIs) using the Python language in a convenient way. In this
regard, in order to design the web pages that the users are interacting with, we designed
the necessary web pages using HTML (Hypertext Markup Language), in an interactive way
using the JavaScript and CSS programming languages. Once the design was ready, we de-
ployed our system using the local Flask web server and tested its functionality, and whether
it was accepting user input with appropriate validations and giving the output as expected.
Once the local testing ha been performed, we deployed our local tested web app to Google
Cloud App Engine as a Platform as a Service (PAAS), in which the computing resources can
be upgraded at any time, guaranteeing almost 99.9% uptime and 24 × 7 convenient access
from any device. As per the demonstration purpose, we used their free tier service, which
is free of charge within specified monthly usage limits. Figures 11 and 12 showcase the
cloud-hosted fully functional recommendation platform.
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Figure 11. Cloud-hosted crop recommendation platform.

Figure 12. Cloud-hosted crop recommendation platform user documentation.
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4.5. Discussion

On the basis of the performance metrics we obtained during the training phase of
the ML models, it is evident that RF outperforms all of the other ML models we trained
in terms of all of the performance criteria we analyzed. Even though the dataset we used
for training contained 2200 entries, which is quite a small amount for training, in terms
of other performance criteria we evaluated (recall, precision etc.) apart from accuracy,
it is evident that RF performs better than the other models. Thus, we used RF as the
underlying ML model in our crop recommendation platform. Once the user has submitted
the necessary parameters, the system validates whether there are null values and whether
the values are within the validation ranges, before submitting the user’s input to the system
for further processing, where the system itself processes the inputs and predicts the most
suitable crop for planting on the basis of the input parameters, which is highly beneficial
for farmers before harvesting, allowing them to make precise decisions about what to
harvest, thus resulting in a higher return on investment with less loss. While designing
our recommendation platform, we assumed that farmers would obtain this information
by submitting parameters using the meteorological data already available and from the
widely available existing IoT precision farming solutions, some of which are highlighted
in Table 4. As the platform we designed is a cloud-based platform, anyone can access the
platform from anywhere at any time with any device, making the service highly convenient.
On the other hand, because the dataset we picked to develop our platform was based on
data from India, more data may be required from different geographic locations around the
world in order to offer our solution to everyone in the world, as crop growth varies from
that in India depending on the climate and the environment in other countries. However,
as the platform evolves, we may be able to aggregate more data from various regions
around the world, in which case users/farmers will be able to first select their geographic
location and enter the necessary parameters, after which the system will predict which crop
would be most suitable. As our study demonstrates the involvement of ML in the design
of precision farming solutions, this could pave the way for future researchers to design
real-time prediction systems in combination with IoT.

In general, with agriculture being such an important element of every economy, it is
critical to guarantee that even the smallest investment made in the agriculture sector are
taken care of, and choosing the best crop for harvesting is a key investment that guarantees
a higher-quality harvest. As a result, it is critical to verify that the correct crop has been
chosen for the land and according to the environmental context. With our proposed solution,
after applying some feature enhancements, such as with the incorporation of an inbuilt IoT
hardware set-up for accurate data gathering according to the specific geographic location,
and relying on more accurate data collected from different locations and in combination
with more parameters with the aid of IoT, it will be possible to offer this technology to
everyone, which would be highly beneficial for every farmer that is keen to move into
technology-driven precision farming. For the time being, there are a lot of organizations
that are engaged in designing precision farming solutions, and a lot of startup companies
are also being established that aim to expand the precision farming market and reach out
to more farmers. As we have reviewed, most of the available solutions are offered on a
subscription basis and are offered as cloud-based solutions; however, trial versions are
also available with limited features, with farmers needing to pay more to access additional
features. On the other hand, even though there are a lot of commercial solutions are there,
there are a few free and open-source (when software is open source, it grants users the right
to use, study, change and distribute the software and its source code to anyone and for any
purpose) precision farming solutions available that many peoples are not aware of, each
having different benefits. Thus, it is indeed essential that farmers are well aware of these
solutions, as they will allow them to use technology for free rather than investing higher
upfront costs for everything. For better understanding, the Table 5 showcases several of
the best available free and open-source precision farming solutions [43–48].
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Table 5. Free and open-source precision farming solutions.

Software Key Features Development Mode Web Link

AgroSense [44] Soil health tracking, overall
planning, and budgeting

OpenAPI (this makes the application
programming interface publicly
available to software developers)

https://agrosense.eu (accessed on
5 June 2022).

Tania [45] Planning and budgeting,
labor planning OpenAPI https://usetania.org (accessed on

5 June 2022).

farmOS [46]
Crop management, labor

management, order
management

OpenAPI https://farmos.org (accessed on
5 June 2022).

LiteFarm [47] Crop management OpenAPI https://www.litefarm.org (accessed on
5 June 2022).

Granular Insights (even though this is free,
it is not an open-source solution) [48]

Crop management, labor
management, order processing Cloud hosted https://granular.ag/granular-insights/

(accessed on 5 June 2022).

From our perspective, as we have discussed, free and open-source precision farming
solutions are still growing in the market, and there is still a long way to go, as they have to
compete with commercial solutions. On the other hand, most of the free and open-source
solutions are aided by a community of developers and other relevant stakeholders and
farmers, thus empowering the growth of open-source solutions, as any development issues
and doubts related to the integration of technology can be tackled with ease [49–51] with
the help of these communities. Therefore, the main work in our study, we proposed and
designed our crop recommendations platform while bearing this in mind.

According to the summarized table in Section 3, it can be noted that many researchers
have presented AI-powered solutions that are applicable to various aspects of agriculture,
such as for crop management and soil management. On the other hand, only a few research
works have been carried out in this area in recent years, and most of these works have been
focused on providing theoretical overviews and practical implementations. None of these
studies addressed or discussed how to offer these technologies for free and open source, or
how to reach out to a larger audience (farmers) with greater visibility. In contrast, in our
study, we demonstrated solutions to these problems, with a step-by-step explanation, and
provided an overview of how to offer these technologies for free by giving examples.

5. Conclusions

Agriculture, being the primary industry in the world, aids in feeding billions of people
all globally. With the involvement of technology, traditional agriculture has transformed
such that there is less manual labor, while still achieving better yield and a higher-quality
harvest. IoT-enabled smart sensors, underlying communication technologies, actuators,
satesatellite, UAV solutions, along with AI, are some of the major technological innovations
leveraged in the field of agriculture to reach the next level. This collation of fruitful tech-
nologies makes it possible to gather real-time data and make timely and precise decisions
without the need for human support, making farming more efficient. AI is the key found-
ing technology of precision agriculture, and resolves complex solutions without human
intervention, assisting farmers in making precise decisions regarding the underlying condi-
tion of their farms in a timely manner. Currently, most countries are moving towards the
adoption of precision farming practices, to take advantage of their immense benefits, such
as access to remote monitoring even during the time of the COVID-19 global pandemic,
reduced manual labor, and higher harvest. Thus, in this study, we demonstrated a novel
cloud-enabled ML-driven crop recommendation platform with a detailed explanation of
its step-by-step implementation. Nevertheless, we further provided a brief overview of
precision farming, as well as the use of AI in precision farming, summarizing the most
recent work carried out in this subject area.

At the present time, the precision farming market is expanding at a rapid rate, and
a variety of applications are already on the market. Most of the solutions on the market
are commercialized, although there is still free and open-source software available, which
many are not aware of. In this regard, we also provided a brief overview of the kinds of

https://agrosense.eu
https://usetania.org
https://farmos.org
https://www.litefarm.org
https://granular.ag/granular-insights/
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solutions already available, and what services they offer. As the key objective of this study
is to demonstrate the integration of ML into precision farming, as well as other enabling
technologies, like the cloud, we showcased all of the steps involved in designing a cloud-
hosted ML-powered crop recommendation platform that can help farmers in deciding
which crops to harvest according to the local environmental conditions. Furthermore, we
note that these technologies can be freely offered to everyone, and they should be backed
by support from communities who are like-minded groups of people interested in these
technologies and who have a mind to make this world a better place for everyone. By
doing so, we believe that these precision farming solutions and services can reach many
farmers, even farmers located in rural and remote areas, ultimately resulting in the growth
of precision farming, and allowing most of the challenges associated with feeding billions
of people all around the world to be overcome.
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