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Abstract: The vast majority of existing sub-Nyquist sampling wideband spectrum sensing (WSS)
methods default to a sparse spectrum. However, research data suggests that in the near future,
the wideband spectrum will no longer be sparse. This article proposes a sub-Nyquist sampling
WSS algorithm that can adapt well to non-sparse spectrum scenarios. The algorithm continues to
implement the idea of our previously proposed “no reconstruction (NoR) of spectrum” algorithm,
thus having low computational complexity. The new one is actually an advanced version of the NoR
algorithm, so it is called AdNoR. The key to its advancement lies in the establishment of a folded
time-frequency (TF) spectrum model with the same special structure as in the fold spectrum model
of the NoR algorithm. For this purpose, we have designed a comprehensive sampling technique
which consists of multicoset sampling, digital fractional delay, and TF transform. It is verified by
simulation that the AdNoR algorithm maintains a good sensing performance with low computational
complexity in the non-sparse scenario.

Keywords: wideband spectrum sensing; non-sparse spectrum; folded time-frequency spectrum;
time-frequency subband classification

1. Introduction

Cognitive radio (CR) is a promising technology that will enable future wireless systems
to make efficient use of the spectrum resource. A key component of CR is spectrum
sensing. As future CR networks are planned to operate over a wide frequency range,
wideband spectrum sensing (WSS), which can quickly and reliably detect idle spectrum
in a wide band, is essential. Early Nyquist sampling-based WSS methods faced hardware
implementation challenges because high-speed analog-to-digital converters (ADCs) are
energy-intensive and too costly for practical systems. Because compressed sensing (CS) was
first applied to wideband spectrum sensing (WSS) [1], sub-Nyquist sampling-based WSS
methods have received a lot of attention from experts, and the development momentum
has been unstoppable. Some fairly classical CS-based methods, such as those non-convex
optimization-based [2] and greedy pursuit-based [3], although they are good solutions to
the problem of high Nyquist sampling rate for WSS, they require signal recovery, which
brings a large computational burden. To overcome the disadvantage of high computational
complexity of the CS-based method, some later works propose reconstructing the power
spectrum [4] or covariance matrix [5] of the wideband signal from sub-Nyquist samples
obtained by the multichannel sampling scheme. This class of methods are referred to
as compressive covariance sensing (CCS)-based methods, and such methods have the
additional advantage of not requiring a sparse prior [5]. Then, based on the idea of the
CCS-based method, we successively proposed a series of multichannel sampling scheme
based methods [6–9]. It is evident that we were forward looking in choosing our research
direction in the first place, because later in [10], a comparative study concludes that the
CCS-based method provides a more competitive alternative for reliable WSS.

Recent research on WSS methods takes more into account the practical applicability,
i.e., the algorithms are designed with more emphasis on incorporating practical application
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scenarios. For example, among some articles that study WSS methods, there are those
that consider the situation of severe wireless channel fading [11], the scenario of non-
contiguous wideband spectrum [12], and most interestingly, the scenario of electronic
warfare applications [13]. Yet there is a class of application scenarios for WSS that is rarely
addressed, namely, non-sparse wideband spectrum. Actually, there’s a reason for that. The
Institute of Wireless Broadband Mobile Communication of Beijing Jiaotong University has
measured the spectrum utilization in Beijing and found that the spectrum utilization in
the 698∼806 MHz is 21.29%, the spectrum utilization in the 850∼970 MHz is about 2.33%,
and the spectrum utilization in the 1000∼2000 MHz is less than 1% [14]. Another example
is that in aviation communication systems, the spectrum utilization of the air-ground
communication band is less than 12.5%, and the utilization of the Very High Frequency
(VHF) band (117.95∼137 MHz), which is used for air traffic control, is only 5% [15]. It can
be seen that the current wireless broadband communication spectrum is sparse in general.
However, over the next decade, mobile data traffic will grow approximately 1000 times, and
in future networks, it is expected that wireless systems should achieve a significant increase
of at least 10× to 1000× in capacity and spectral efficiency [16]. The above predictions imply
that in the near future, wideband spectrum will no longer be sparse. In fact, even now,
the increase in the number of electronic surveillance, radar and communication devices,
and the proliferation of wideband non-smooth signals, such as Gaussian pulses, frequency
stepping signals and linear FM signals make the received signal at a certain sensing time
no longer sparse, so that the sparsity dependent sub-Nyquist WSS method will not be
applied [17].

Despite the imminence of research on WSS in non-sparse scenarios, however, few
works have studied it. Some scholars once considered “what if spectrum is not sparse?”,
then a collaborative non-sparsity protection scheme that can efficiently identify spectrum
sensing failures was proposed [18]. Several others have proposed another method for
detecting whether the reconstruction process is unsuccessful due to the non-sparse spec-
trum in modulated wideband converter based WSS [19]. In [20], the authors claimed that
they have provided the first solution to the problem of WSS in the case of non-sparse sce-
nario, yet the wideband spectrum to be detected in their simulation experiments contains
only 16 subbands. The authors in [21] proposed a sparsity independent sub-Nyquist WSS
method on real-time TV white space. However, there are some shortcomings. First, prior
information on the number of channels and input spectrum utilization is needed; second, a
complex process containing three main blocks—signal permutation and filtering, spectrum
estimation and multi-channel joint detection, and exaggeratingly, the first block is divided
into another three additional steps; third, computational complexity is not truly reflected
because of incomplete calculation of the simulation runtime.

To enable simple and efficient sub-Nyquist WSS in the non-sparse scenario, we pro-
pose an algorithm with low computational complexity that does not require spectrum
reconstruction. The key, or contribution, of our algorithm is as follows.

(1) Algorithm Design: We extend our previous non-reconstruction (NoR) algorithm
idea [7] to propose an advanced version, namely AdNoR, due to the fact that the original
version requires the spectrum to be sparse. The AdNoR extends the sensing domain from
the frequency domain to the time-frequency (TF) domain, which also avoids spectrum
reconstruction but is free from sparsity constraints. We establish a folded TF spectrum
model that satisfies the special structure [7]. Based on which, we first pick out the active
aliased TF sub-channel that contains the active signal and then identify the exact location
of the active TF subband in the active aliased TF sub-channel.

(2) Modeling: In order to build the folded TF spectrum with particular structure, we
design a comprehensive sampling technique based on the multicoset sampling setting.
This technique is composed of multicoset sampling, digital fractional delay (DFD), and TF
transform. The technical difficulty lies in the incorporation of DFD, which is a functional
module that is back-performed after theoretical reasoning.



Sensors 2022, 22, 6295 3 of 11

(3) Simulation verification and analysis: Because CCS-based methods are not subject
to sparse restrictions, CCS-based methods are generally better adapted to non-sparse
scenarios than CS-based methods. So, we first choose an excellent representative of CCS-
based methods, the ADP algorithm [9], which has just been proposed in the last year and
motivated by practical applications, as a comparison algorithm. Furthermore, we choose
two additional algorithms for comparison. One is the orthogonal matching pursuit (OMP)
algorithm [3], a representative of CS-based methods, and the other is the NoR algorithm.
Experimental simulations and computational complexity analysis prove that when the
spectrum is not sparse, the AdNoR not only has much better detection performance than
the other three algorithms but also has a low computational complexity comparable to that
of the NoR and ADP algorithms.

In summary, the flow of the AdNoR algorithm is shown in Figure 1. First, a folded
TF spectrum model is established. This step is implemented by three functional modules:
multicoset sampling, DFD, and TF transform. This section will be covered in detail in
Section 2. Next is the algorithm design part. Based on the folded TF spectrum model,
we select the active aliased TF sub-channel who contains active signal with the help of
module “Aliased TF Sub-channel Detection”. Then, we identify the exact location of active
TF subband in the active aliased TF sub-channel by module “TF Subband Classification”.
This part will be described in detail in Section 3. Simulation results are presented and
analyzed in Section 4. We finally make the conclusion in Section 5.
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Figure 1. The diagram of the AdNoR algorithm.

2. Folded Time-Frequency Spectrum Model

Suppose that a wideband signal x(t) with Nyquist rate 1/T is to be sensed. It consists
of U consecutive non-overlapping subbands.

2.1. Multicoset Sampling and Digital Fractional Delay

As shown in Figure 1, we use the multicoset sampling scheme to acquire the signal
x(t). This sampling scheme uses M parallel A/D cosets (or branches) to sample the signal
uniformly at a declined rate 1/NT, where N is the down-sampling factor. Thus, sub-
Nyquist sampling can be satisfied by M < N. For the i-th coset, the sampling offset is set
to ciT(ci ∈ Z), and 0 6 c0 < c1 < · · · < cM−1 6 N − 1. Then, the sub-Nyquist sampled
signal sequence of the i-th coset is obtained:

x̃i[n] = x((nN + ci)T), i = 0, 1, · · · , M− 1 (1)

Equation (1) represents the function of module “Multicoset Sampling” in Figure 1.
Furthermore, (nN + ci)T, i = 0, 1, · · · , M− 1 in the figure represents the sampling time
point of the i-th coset.
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We assume that X(ω) is the Fourier transform of x(t) and is band-limited to [0, 2π/T].
So, we can write the Discrete Time Fourier Transform (DTFT) of x̃i[n] as [22]:

X̃i

(
ejωNT

)
=

1
NT

N−1

∑
l=0

e−jciT(ω−2πl/NT)X
(
ω− 2πl

/
NT
)

(2)

After multicoset sampling, we apply a digital fractional delay (DFD) before a time-
frequency (TF) transform. A reversed digital fractional delay of −ciT to x̃i[n] yields yi[n].
Furthermore, yi[n], i = 0, 1, · · · , M− 1 is the output of the “DFD” module in Figure 1. In
fact, the function of the “DFD” module is essentially to delay the samples for a correspond-
ing period of time before feeding them into the “TF Transform” module. In order to relate
the subsequent derivation of the formulae of the “TF Transform” module, we calculate the
DTFT of yi[n] as [22].

Yi

(
ejωNT

)
=

1
NT

N−1

∑
l=0

ej2πlci/N X
(
ω− 2πl

/
NT
)

(3)

2.2. Time-Frequency Transform

(1) TF Representation: We consider a Gabor-based time-frequency transform with the
TF atom of [23]

gp,k(t) = g(t− pτ0)ej2πkξ0t (4)

where g(t) denotes the window function. It is assumed to be normalized, ‖g‖2 = 1,
basically band-limited to ω ∈ [0, 2π/NT), and with the temporal support of t ∈ [0, NLT).
The parameters τ0 and ξ0 define the discrete TF lattice (τ, ξ) ∈

{
(pτ0, kξ0)

∣∣(p, k) ∈ Z2 } of
the TF transform. For analytical convenience, we let τ0 = PNT for some integer P and
ξ0 = 1/FNT for the integer F = U/N. Then, TF representations (or coefficients) of x(t)
can be given by:

sp,k =
〈

x(t), gp,k(t)
〉
=
∫ ∞

−∞
x(t)g∗(t− pτ0)e−j2πkt/NFTdt

= 1
2π

∫ 2π
0 X

(
ω + 2πk

/
NFT

)
G∗(ω)e−jωpPNTdω

(5)

where the last line is derived from the Plancherel formula. Based on the band-limited
assumption of g(t), this can be well approximated by:

sp,k ≈
1

2π

∫ 2π/NT

0
X
(
ω + 2πk

/
NFT

)
G∗(ω)e−jωpPNTdω (6)

(2) Sub-Nyquist TF Representation: Consider now the sub-Nyquist TF representation
for a single coset signal yi[n]. Because g(t) is basically bandlimited, the discrete time
sampled atoms can be used:

gp,k[n] = g(n− pP)ej2πkn/F (7)

Then, similar to the derivation of (5), the sub-Nyquist TF coefficients can be calcu-
lated as:

q(i)p,k =
〈

yi[n], gp,k[n]
〉
=

pP+L−1

∑
n=pP

yi[n]g∗[n− pP]e−j2πkn/F

=
1

2π

∫ 2π/NT

0
Yi
(
ω + 2πk

/
NFT

)
G∗(ω)e−jωpPNTdω

(8)

Let Gd
(
ejωNT) denote the DTFT of g[n], then we have:

Gd

(
ejωNT

)
=

1
NT

∞

∑
k=−∞

G
(
ω− 2πk

/
NT
)
≈ 1

NT
G(ω), 0 6 ω < 2π/NT (9)
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where the approximation is based on the basically band-limited assumption. From (9),
Equation (8) can be rewritten as:

q(i)p,k =
NT
2π

∫ 2π
NT

0
Yi

(
ej(ωNT+2πk/F)

)
G∗d
(

ejωNT
)

e−jωpPNTdω (10)

Furthermore, from (3), we can also have:

Yi

(
ej(ωNT+2πk/F)

)
=

1
NT

N−1

∑
l=0

ej2πlci/N X
(
ω + 2πk

/
NFT − 2πl

/
NT
)

(11)

Substitute (11) into (10), we obtain:

q(i)p,k ≈
1

2πNT

N−1

∑
l=0

∫ 2π/NT

0
ej2πlci/N ·X

(
ω + 2πk

/
NFT − 2πl

/
NT
)
G∗(ω)e−jωpPNTdω

≈ 1
NT

N−1

∑
l=0

ej2πlci/Nsp,k+lF

(12)

From (12), the sub-Nyquist TF representations can be rewritten as:
q(0)p,k

q(1)p,k
...

q(M−1)
p,k


︸ ︷︷ ︸

qp,k

=
1

NT


ej 2π

N c00 ej 2π
N c01 · · · ej 2π

N c0(N−1)

ej 2π
N c10 ej 2π

N c11 · · · ej 2π
N c1(N−1)

...
...

...
...

ej 2π
N cM−10 ej 2π

N cM−11 · · · ej 2π
N cM−1(N−1)


︸ ︷︷ ︸

C

·


sp,k+F0
sp,k+F1

...
sp,k+F(N−1)


︸ ︷︷ ︸

sp,k

k = 0, 1, · · · , F− 1

(13)

Furthermore, Equation (13) is the TF representations of the output of the “TF Trans-
form” module in Figure 1.

2.3. Model Display

Figure 2b is the virtual model display of (13), i.e., the folded time-frequency spectrum
model. Furthermore, Figure 2a shows the folded frequency spectrum obtained in the article
of our proposed NoR algorithm. It is easy to see that the folded TF spectrum is essentially
an extension of the folded frequency spectrum in the time domain.

In the figure, we use the transform representation of each subband to represent itself.
In Figure 2b, there are a total of NFP (i.e., UP) TF subbands, each of which is graphically
represented by a small box. For example, one of the small boxes sp,nF+k is essentially
the (p, nF + k)-th TF subband in the Nyquist TF lattice. In addition, there are a total
of FP aliased TF sub-channels, each represented by a cubic column. Furthermore, the
cubic column marked in gray q(i)p,k is essentially the (p, k)-th aliased TF sub-channel in
the sub-Nyquist TF lattice obtained at the i-th sampling coset. In Figure 2a, each cell
snF+k represents the (nF + k)-th of the U subbands. Furthermore, each planar column q(i)k
represents the k-th of the F aliased sub-channels obtained from the i-th sampling coset.

Moreover, the cell or box marked in yellow represents that this subband or TF subband
is occupied (active). Furthermore, we determine that the aliased sub-channel (or aliased TF
sub-channel) containing any active subband (or TF subband) is active and vice versa.
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Figure 2. (a) The virtual display of the folded spectrum of NoR algorithm. (b) The virtual display of
the folded TF spectrum of AdNoR algorithm.

3. AdNoR Algorithm

In this section, we introduce a special structure of the folded TF spectrum named
ADFS. Based on the ADFS structure, we first identify the active aliased TF sub-channels
and then find that dominant subband for each of them.

3.1. ADFS Structure

Definition 1. Approximate Disjoint Folded Subband (ADFS). We say that the folded TF spectrum
has an ADFS structure if each active aliased TF sub-channel is dominated only by a single active TF
subband, such that:

q(i)p,k ≈
1

NT
ej 2π

N ci lsp,k+Fl (14)

This structure is reflected in Figure 2b that there are no two or more small yellow boxes in a
cubic column at the same time.

The idea of our previously proposed NoR algorithm is based on the ADFS structure.
To ensure that ADFS holds, the NoR algorithm needs to satisfy the restriction that the
spectrum must be sparse, i.e., D � U, where D represents the number of active subbands.
The AdNoR algorithm is based on the same idea as the NoR algorithm but without the
restriction D � U. The reason is as follows. Based on the fact that the vast majority of
signals in wireless environments are non-smooth, even if the wideband spectrum is not
sparse, the sparsity condition is easily satisfied when expanded to the time-frequency
domain [17]. That is, no restriction of D � U is required and ADFS still holds with
high probability.

We illustrate the above features graphically in Figure 2. As in the folded spectrum
model of Figure 2a, a certain aliased sub-channel contains two active subbands, i.e., ADFS
is not valid. However, in Figure 2b, when these two active subbands are extended to the
TF domain, they are in different aliased TF sub-channels, i.e., ADFS holds in the folded
TF spectrum.

3.2. Aliased TF Sub-Channel Detection

Based on ADFS structure, the aliased TF sub-channel for each sampling coset should
have a similar magnitude, that is∥∥∥q(0)p,k

∥∥∥
2
≈
∥∥∥q(1)p,k

∥∥∥
2
≈ · · · ≈

∥∥∥q(M−1)
p,k

∥∥∥
2

(15)
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The test statistic of the aliased TF sub-channel detection is set to E
[
qp,k

]
=

M−1
∑

i=0

∥∥∥q(i)p,k

∥∥∥
2
.

Suppose that the active TF subband signals are independent and zero-mean and here is
additive white Gaussian noise with power spectrum density σ2. Next, a threshold value θ
should be chosen to achieve a constant false alarm rate. Because the strategy for calculating
the threshold value θ in the AdNoR algorithm is the same as that in the NoR algorithm, it
is not repeated here. When E

[
qp,k

]
> θ, we save the index of the active TF sub-channel

(p, k) to the set Ω, which will be used in the next subband classification.

3.3. TF Subband Classification

Once an aliased TF sub-channel is identified as active, it needs to be assigned to a
TF subband. We can consider this as a classification task. The optimal classification is
accomplished under the Gaussian noise assumption by maximizing the absolute inner

product between qp,k and the phase vector ρ(l) =
[
e−j2πc0

l
N , e−j2πc1

l
N , · · · , e−j2πcM−1

l
N

]T

for the (p, lF + k)-th TF subband:

l̂p,k = arg max
l

∣∣∣∣∣M−1

∑
i=0

q(i)p,ke−j2πci
l
N

∣∣∣∣∣
2

, k ∈ Ω, l = 0, 1, · · · , N − 1 (16)

Thus, the
(

p, l̂p,kF + k
)

-th TF subband is allocated as the active one in the correspond-

ing (p, k)-th active TF aliased sub-channel. So far, we can obtain that the
(

l̂p,kF + k
)

-th
subband is occupied in the original non-sparse wideband spectrum. In summary, the flow
of the AdNoR algorithm is shown in Algorithm 1.

Algorithm 1 AdNoR Decoder
1: for each aliased TF sub-channel do

2: Calculate E
[
qp,k

]
=

M−1
∑

i=0

∥∥∥q(i)p,k

∥∥∥
2

as the test statistic.

3: if E
[
qp,k

]
> θ then

4: the (p, k)-th aliased TF sub-channel is active;
5: for each TF subband who folds into the (p, k)-th aliased TF sub-channel do

6: Calculate a(l) =
∣∣∣∣M−1

∑
i=0

q(i)p,ke−j2πci
l
N

∣∣∣∣2.

7: end for
8: Choose l̂p,k = arg max

l
[a(l)].

9: the (l̂p,kF + k)-th subband is active.
10: end if
11: end for

3.4. Computational Complexity Analysis

We next analyze the computational complexity of the four algorithms: ADP, OMP,
NoR, and AdNoR. The computational complexity is measured by the number of complex
float point operations [24]. To create a fair comparison, we select parameters to ensure that
the four algorithms have the same number of monitored frequency subbands, compression
ratio, and total amount of samples.

For ADP algorithm, its computational complexity is [9]

CCADP = O
(

2FK + η1FNM + (η − η1)FNM2
)

(17)

In the above equation, K is the number of training data used in least squares support
vector machine (LS-SVM) based sub-channel detection scheme in the ADP. Furthermore,

η = 1−
(

1− D
U

)N
, η1 = C1

N ·DU
(

1− D
U

)N−1
.
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For the OMP algorithm, its computational complexity is [9]

CCOMP = O
(

DMNF2 +
3
2

D(D + 1)MF +
1
3

D(D + 1)(2D + 1)
)

(18)

For the NoR algorithm, its computational complexity is [9]

CCNoR = O(FM + DNM) (19)

The first part of the above equationO(FM) is the computational complexity of aliased
sub-channel detection, whereas the second part O(DNM) is the computational complexity
of the subband classification.

For the AdNoR algorithm, the extra computational effort compared to the NoR al-
gorithm is in the aliased sub-channel detection part. It needs to detect (P− 1)F more
aliased sub-channels than the NoR. As for the subband classification part, its computational
complexity is related to the number of active subbands D, the number of sampling cosets
M and the down-sampling factor N, and these three parameters are set the same in both
algorithms. Therefore, the computational complexity of AdNoR is

CCAdNoR = O(PFM + DNM) (20)

Due to the uncertainty of D in the non-sparse wideband spectrum scenario, it is not
convenient to compare the computational complexity of the four algorithms theoretically,
so simulation analysis is used to compare them. The details of the comparison are described
in the next chapter.

4. Simulation

To verify the excellent performance of AdNoR, we establish WSS experiments and
compare the performances of ADP, OMP, NoR, and AdNoR algorithms. A wideband
divided into U = FN = 360 subbands is used, with each subband having a width of
4 MHz. Furthermore, on each subband, there can be at most one primary user that sends
data. QPSK symbols are transmitted. For AdNoR, the Gabor transform chooses a Gaussian
window with a window length P, and P is also the number of Gabor coefficients in time.

(1) Sensing Performance versus Number of Active Subbands D: In the first experiment,
we set D = 5, 20, 40, 70, 110, 160, 220, and the down-sampling factor N = 8, the compres-
sion ratio N/M = 2, the number of Gabor coefficients in time P = 180, the false alarm
probability Pfa =0.01, and SNR= 10 dB. The number of training data used in the LS-SVM
based scheme in ADP is set as K = 150. For OMP, the appropriate measurement matrix
is chosen to obtain the sub-Nyquist samples based on compression ratio N/M = 2 and
total number of subbands U to ensure fairness, whereas for N,F are independent of OMP.
The sensing performances are presented in Figure 3. We can see that the advantage of the
detection performance of AdNoR over the other three algorithms becomes more obvious as
D increases. For OMP and NoR, the reason is that they are predicated on spectral sparsity.
For ADP, although it is not limited by sparsity, its detection performance degrades rapidly
when D > 70, i.e., roughly channel occupancy D

U > 20%.
(2) Sensing Performance versus Down-sampling Factor N: In the second experiment,

we set N = 8, 12, 18, N/M = 2, D = 50, P = 180, and Pfa = 0.01. In this experiment, we
discuss the effect of N on the performance of AdNoR. In Figure 4, we can see that the
AdNoR algorithm is significantly affected by N, and its performance is decreasing as N
increases. The reason is as follows: N, the down-sampling factor, is also the spectrum
folding factor (or degree), and it is easy to understand that as the folding degree increases,
the probability of the ADFS structure being satisfied decreases [7], which will directly affect
the accuracy of subband classification.
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Figure 3. Detection Probabilities of the four sensing algorithms with different number of active
subbands D = 5, 20, 40, 70, 110, 160, 220, and with U = 360, N = 8, N/M = 2, P = 180, SNR = 10 dB.
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Figure 4. Detection Probabilities of the AdNoR algorithm with different down-sampling factors
N=8, 12, 18, and with U=360, N/M=2, P=180, D=50.

(3) Computational Complexity Comparison: Figure 5 shows a comparison of the
computational complexity of the four algorithms drawn from the parameters of the first
experiment and Equations (17)–(20). We can see that with reasonable parameter settings,
there exists CCNoR < CCADP < CCAdNoR < CCOMP. The computational complexity of
AdNoR is slightly greater than that of ADP, with a difference of less than an order of
magnitude. Furthermore, as D increases, the computational complexity of AdNoR becomes
closer to that of the NoR algorithm, whereas the ratio of the complexity of OMP to that of
the other three algorithms becomes larger and larger.

(4) Comprehensive Evaluation of the AdNoR Algorithm: Considering Figures 3 and 5
together, when D = 220, the difference between the computational complexity of the
AdNoR algorithm and that of both the NoR and ADP is about one order of magnitude,
whereas its detection probability is much higher than that of the other three algorithms. It
can be seen that when D is large, i.e., the spectrum is not sparse, the AdNoR algorithm not
only has much better detection performance than the other three algorithms but also has a
low computational complexity comparable to that of both the NoR and ADP algorithms.
Furthermore, the large influence of N on the AdNoR algorithm, as reflected in Figure 4,
is not a problem. This is because a larger N means that the number M of sampling cosets
required is also higher, i.e., the hardware cost and energy consumption will be higher,
which is against the principle of practical applications. Therefore, for the AdNoR algorithm,
excellent detection performance can be obtained by choosing the N value that matches the



Sensors 2022, 22, 6295 10 of 11

actual application scenario. In summary, our AdNoR algorithm is very suitable for the
non-sparse scenario.

5 20 40 70 110 160 220
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Figure 5. Reduced Ratio of computational complexity of AdNoR against NoR, OMP, and ADP,
respectively, with parameters consistent with the first experiment.

5. Conclusions

In this article, we have proposed a computationally efficient sub-Nyquist rate WSS
algorithm in non-sparse scenario without spectrum reconstruction. The AdNoR algorithm
performs sensing on the aliased TF spectrum with the ADFS structure obtained by a com-
prehensive sampling technique. The sampling technique we designed consists of multicoset
sampling, digital fractional delay, and TF transform. After simulation performance verifica-
tion and computational complexity analysis, we make a comprehensive evaluation of the
AdNoR algorithm, which is very suitable for the non-sparse scenario.
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