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Abstract: Person re-identification is essential to intelligent video analytics, whose results affect
downstream tasks such as behavior and event analysis. However, most existing models only consider
the accuracy, rather than the computational complexity, which is also an aspect to consider in practical
deployment. We note that self-attention is a powerful technique for representation learning. It can
work with convolution to learn more discriminative feature representations for re-identification. We
propose an improved multi-scale feature learning structure, DM-OSNet, with better performance
than the original OSNet. Our DM-OSNet replaces the 9× 9 convolutional stream in OSNet with
multi-head self-attention. To maintain model efficiency, we use double-layer multi-head self-attention
to reduce the computational complexity of the original multi-head self-attention. The computational
complexity is reduced from the original O((H ×W)2) to O(H ×W × G2). To further improve the
model performance, we use SpCL to perform unsupervised pre-training on the large-scale unlabeled
pedestrian dataset LUPerson. Finally, our DM-OSNet achieves an mAP of 87.36%, 78.26%, 72.96%,
and 57.13% on the Market1501, DukeMTMC-reID, CUHK03, and MSMT17 datasets.

Keywords: person re-identification; surveillance; attention

1. Introduction

People have been paying more attention to public safety in recent years. Driven
by practical significance, the number of surveillance cameras in life and production is
increasing. Researchers have extensively researched person re-identification (re-ID) under
intelligent surveillance systems for public safety.

Some biometric features, such as face and gait, are more recognizable than visual
appearance. Nevertheless, purely visual appearance is often more feasible due to the camera
resolution and actual processing complexity in natural open-world surveillance systems.

Person re-ID aims to determine a person’s identity from a given probe image by
calculating the similarity to the images in a given gallery (a set of candidates). Considering
the lighting, posture, and perspective changes, the same person can look very different on
different surveillance cameras. Moreover, different people will be very similar in some cases
under the influence of dress and body type. Therefore, the re-ID, with larger intra-class
and smaller inter-class variations, is more challenging than normal classification tasks.

Benefiting from the feature extraction capability of convolutional neural networks
(CNNs), re-ID research has been greatly developed. Some supervised learning methods
based on CNNs obtain good results [1–3]. Recently, the Transformer structure, which has
seen great success in natural language processing (NLP), has attracted more and more
scholars to study how to apply the Transformer structure in the 2D/3D structures of
vision data [4,5]. One method combines the local information capture ability of convolution
operation with the global relationship modeling ability of multi-head self-attention (MHSA).
Inspired by this, we introduce our double-layer multi-head self-attention (DL-MHSA)
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based on OsNet’s multi-scale feature dynamic fusion [6], which enables the network to
fuse features of different scales and global features. We call this network DM-OSNet.

In practical application scenarios, the large-scale unlabeled dataset LUPerson [7] has
been proposed, which greatly facilitates relevant person re-ID unsupervised learning and
domain adaptation learning [8,9]. Our improved network architecture will first perform
unsupervised learning on the unlabeled dataset LUPerson instead of pre-training on
ImageNet to improve model performance and generalization. To better fit the re-ID task,
we use SpCL [10] as an unsupervised learning method.

Our contributions are summarized as follows:

1. We propose DL-MHSA based on MHSA, which reduces the computational complexity
of MHSA with a small increase in the number of parameters. We replace the 9× 9
convolutional flow of OSNet with our DL-MHSA, which not only improves the model
performance, but also maintains the light weight of OSNet.

2. We use a large-scale unlabeled pedestrian dataset, LUPerson, instead of ImageNet
for pre-training. Given that it is an unlabeled dataset, we sort and filter it with the
help of the catastrophic forgetting score (CFS) [8] and, then, use SpCL to produce
pseudo-labels for pre-training. The pre-trained model using this approach is tuned on
the labeled dataset, and the model performance is further improved.

3. Our proposed method is comparable to most re-ID methods in the case of a lower
number of parameters and FLOPs. More importantly, it is lightweight enough to
facilitate deployments.

The other four sections of this paper are organized as follows. In “Related Work”, we
briefly describe relevant work in the field of re-ID. In the the “Methods” section, we explain
our proposed methodology. The experimental details, results, and analysis of these methods
are available in the “Experiments and Analysis of Results” section. The ”Conclusion”
section summarizes our study and provides an outlook for future research directions.

2. Related Work
2.1. Re-ID Based on Convolutional Neural Networks

Re-ID can be viewed as a kind of object classification problem. Some architectures for
object categorization [11–13] are widely used for re-ID because of their excellent feature
extraction capability. For example, in [14], the ID-discriminative embedding (IDE) uses
ResNet50 as the backbone network, treating each ID as a separate class. It is worth noting
that person re-ID differs from a standard classification task. First, most pedestrian images
are rectangular regions cropped from the results obtained by pedestrian detection algo-
rithms in different environments. Secondly, the pedestrian image itself is affected by the
acquisition environment and the performance of the detection algorithm. It may have mis-
alignment/occlusions problems. Finally, the re-ID tasks have common properties between
classes and large intra-class differences. There is a significant amount of work addressing
the re-ID task and designing some other methods that have advanced the development of
pedestrian re-ID step by step. Ref. [2] decomposes the human body into parts and calcu-
lates the feature representation of different parts, then calculates the similarity of different
parts separately. Ref. [3] used the pre-trained pose estimation model as a prior for the
whole model to provide more accurate guidance for the alignment of the parts. However,
more complex operations would increase the inference time. Some methods [3,15–17] use
feature-level fusion to enhance local feature learning. Some works [18,19] try to use seman-
tic segmentation to solve the background clutter problem. Compared with semantically
meaningful body part partitioning using external cues, the method represented by PCB [20]
uses a simple uniform partition strategy to directly horizontally divide region features,
which is more flexible. However, refined part pooling (RPP) is needed to improve the
performance. MGN [21] differs from previous global and local feature fusion approaches
by proposing an end-to-end multi-branch architecture to obtain global and partial features.
However, this architecture brings a large model size.
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Influenced by multi-stream architectures such as Inception [22,23] and ResNeXt [24],
some studies have also attempted to implement multi-stream aggregation in re-ID [6,25–30].
Ref. [25] draws on the ResNeXt structure and uses multiple factor modules in each block,
which are considered to extract helpful semantic information for re-ID. Because pedestrian
appearance differences are often subtle, more researchers [6,26–30] consider multi-scale
feature learning meaningful for the re-ID task. These studies use different scales in each
branch of the block to make the model adaptive in extracting features at different scales,
thus enhancing the model’s ability to perceive different localities.

In recent years, attention-based mechanisms for feature representation have also
received attention from researchers [31,32], which refers to making the network sponta-
neously find and learn information about regions of interest in images. The common
strategy to use attention in re-ID is integrating a separate stream of regional attention
into a deep convolutional re-ID model. Ref. [33] proposed joint pixel-level attention and
channel attention. Ref. [34] proposed a comparative attention network, CAN, to simulate
the human attention process. It repeatedly compares local parts of the human and pairs
them. ABD-net [35] introduces the attentive branch to the ResNet50 architecture, focusing
on channel aggregation and location awareness. SCAL [36] introduces additional super-
vised signals for attentional learning. By inserting a modified non-local attention module
into ResNet, SONA [37] attempts to capture both non-local [38] and local correlations.
Nevertheless, the non-local module is still computationally intensive. Ref. [39] introduces
an attention module to make the model focus more on the foreground region instead of
using an annotated mask.

2.2. Transformer in Visual Recognition

Transformer is a novel structure for extracting features using the self-attention mech-
anism [40]. Because of the powerful representation capabilities of Transformer and its
success in NLP, some recent studies are trying to apply the Transformer architecture to
the field of computer vision research. To use a pure Transformer on 2D images, ViT [4]
simulates the structure of human utterances by dividing the input image into multiple
patches projected into a vector. Some re-ID research work [41,42] uses the structure of the
pure Transformer borrowed from the ViT backbone. Some works use Transformer in the
CNN backbone to further aggregate features and information, such as AA-ResNet [43]
and BoTNet [44]. There are also attempts in re-ID research to exploit the advantages of
both the CNN and Transformer architectures. Ref. [45] uses Transformer on top of a CNN
backbone to fuse multi-layer features of pedestrian images. Ref. [46] uses Transformer to
obtain human part features in the CNN to discover the different human parts in occluded
person re-ID.

3. Methods

In this section, we first introduce DL-MHSA. Then, we introduce the improved OSNet
based on DL-MHSA. Finally, the pre-training method for the re-ID task using a large-scale
unlabeled dataset is presented. A schematic diagram of these methods we propose is
shown in Figure 1.

3.1. Double-Layer Multi-Head Self-Attention

MHSA is an important attention module in Transformer. MHSA first obtains the query
Q, the keyword K, and the value V by applying three sets of projections to the input feature
map X ∈ RH×W×C, where H, W, and C are the height, width, and feature dimension of
X. Then, we divide them into multiple parts, respectively. Each part of Q, K, and V and
the subsequent processing represents a head. Q, K, and V are mapped from the original C
dimension to the d = C

k dimension in each head, where k represents the number of heads.
We use Qi, Ki, and Vi to represent the required inputs in each head. The self-attention of
each head can be expressed as
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headi = SA(Qi, Ki, Vi) = softmax

(
QiKi

T
√

d

)
Vi (1)

Figure 1. Methods to improve the ability of the lightweight model to extract discriminative features.
One is to replace the convolution of the 9× 9 receptive field in the original bottleneck of OSNet with
our DL-MHSA. The other is to pre-train using a large-scale unlabeled pedestrian dataset.

Finally, the self-attention of multiple heads is stitched together to form a multi-head
self-attention. The simplified structure of the MHSA is presented in Figure 2a, and note
that we have omitted multiple heads here. The computational complexity of MHSA is
influenced by the values of H and W, considering the matrix multiplication operation of
the Equation (1). The time complexity of MHSA can be expressed as O((H ×W)2).
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(a) MHSA (b) DL-MHSA

Figure 2. MHSA: structure of multi-head self-attention. DL-MHSA: structure of double-layer multi-
head self-attention. T means matrix transpose.

To reduce the time and space complexity of MHSA, inspired by [47], we used a double-
layer MHSA. We first divide the input feature map X with a G× G size grid in the first
layer. By projecting the input X, we can obtain Qi, Ki, and Vi as

Qi, Ki, Vi ∈ R( H
G×

W
G )×(G×G)× C

k (2)

Applying Equation (1), we can obtain:

QiKT
i ∈ R( H

G×
W
G )×( H

G×
W
G )× C

k (3)

SA(Qi, Ki, Vi) ∈ R( H
G×

W
G )×(G×G)× C

k → SA(Qi, Ki, Vi) ∈ RH×W× C
k (4)

We can obtain the feature mapping for the first layer when each head is computed:

attention1 = F(head0, head1, ..., headk) + X (5)

In Equation (5), F(.) stands for connecting operations on multiple heads’ inputs.
In the second layer, we map attention1 to Q, K, and V as well, but only downsample

K and V by using average pooling with the kernel size and stride of G, as

Qi ∈ RH×W× C
k , Ki, Vi ∈ R( H

G×
W
G )× C

k (6)

QiKT
i ∈ R(H×W)( H

G×
W
G ) (7)

SA(Qi, Ki, Vi) ∈ RH×W× C
k (8)

We can obtain the final attention as

attention2 = F(head0, head1, ..., headk) + attention1 (9)

By the two-step operation, the computational complexity is decreased from the original
O((H ×W)2) to the present O(H ×W × G2) while still obtaining the self-attentiveness
of the input feature map. We show the simplified structure of DL-MHSA in Figure 2.
For clarity, we also show only one head.
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3.2. OSNet Adds Self-Attention Transformer Stream

OSNet is an omni-scale feature learning network specifically designed for the re-ID
task. It is achieved by designing a residual block consisting of multiple convolutional
streams, each detecting features at a certain scale and, then, performing dynamic multi-
scale feature fusion through a unified aggregation gate.

OSNet obtains different receptive field sizes by stacking multiple 3× 3 convolutions
in each convolutional stream. For example, two 3× 3 convolutions are used to achieve a
5× 5 convolution field. In the original OSNet, the 3× 3, 5× 5, 7× 7, and 9× 9 fields are
aggregated in the residual block.

A part of the previous work added multiple branches on OSNet [48,49] to improve the
model performance. Among these added branches, there must be a global branch, which
shows the importance of global information for the re-ID task. The CNN-based model is
more concerned with aggregating local information because it is not easy to obtain global
information. In order to obtain global information, convolutional networks need to stack
convolutional layers. Transformer-based models, in contrast, have the innate ability to
acquire global information. A simple change in BoTNet [44], replacing the spatial 3 × 3
convolution layer with MHSA in the bottleneck blocks of ResNet, leads to an inspiring
performance improvement. Inspired by this, we tried to integrate MHSA in the bottleneck
of an OSNet so that it can gain the ability to integrate global information.

The main structure of OSNet’s residual bottleneck consists of a residual block of
extended dimensionality and a unified aggregation gate. The residual block perceives
multiscale features by multiple parallel convolutional streams of different receptive fields.
Then, the unified aggregation gate aggregates features to capture a wide range of scales.
We found that the convolutional streams in the residual block can be easily extended and
replaced. Moreover, because there is a unified aggregation gate to provide a fine-grained
fusion of input features, it is feasible to replace the convolutional stream that perceives the
local receptive field with the self-attention stream that extracts global information about
the features.

The self-attention module uses a weighted averaging operation based on the input
feature context compared to the convolution operation. The attention module can focus on
different regions adaptively and capture more features. In this paper, we propose to replace
the convolutional stream with a 9× 9 receptive field by a double-layer MHSA to capture
the long-range dependencies and global information, as shown in Figure 3. Suppose the
input feature map to our improved bottleneck is x and the residual of the bottleneck is x̃.
The acquisition of x̃ can be expressed as:

x̃ =
3

∑
t=1

G
(

Ft(x)
)
� Ft(x) + G(H(x))� H(x) (10)

where Ft represents the convolutional stream with a receptive field of (2t + 1)(2t + 1).
G represents the processing of features by the unified aggregation gate. � denotes the
Hadamard product. H stands for our proposed double-layer multi-headed self-attention.
Note that Equation (10) ignores the 1× 1 convolution operation for clarity. Specific experi-
ments can be found in the “Ablation Experiments Using DL-MHSA in Different Locations”
sub-section under the “Experiments and Analysis of Results” section.
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Figure 3. The bottleneck of DM-OSNet. The bottleneck aggregates the global self-attention stream
and local feature stream.

3.3. Large-Scale Unlabeled Dataset for Pre-Training

LUPerson is the largest unlabeled dataset, with 4 million unlabeled pedestrian images
and over 200,000 people. It was obtained by cropping pedestrians from videos. The
previously proposed pedestrian re-ID networks are pre-trained on ImageNet, which is
unsuitable for the person re-ID task because there is a huge domain gap between the dataset
used for pedestrian re-ID and ImageNet. Our network uses LUPerson for the re-ID task
pre-training. However, the original LUPerson dataset is too large, and there are some
low-quality pedestrian pictures; see Figure 4. Moreover, because the data were collected
from videos uploaded on video sites, although the scenes are rich, LUPerson has a domain
gap with the dataset we often use. As pre-trained unlabeled data, LUPerosn is as close as
possible to the downstream task, i.e., our supervised learning. To reduce the domain gap
between the unlabeled and labeled datasets, we used the CFS to filter the LUPerson dataset.
Figure 5 shows the outcome of the dataset sorted by the CFS in descending order. As can
be seen, the lower the CFS ranking of the image, the worse the quality is. We chose the
top 50% of the sorted images as our pre-trained unlabeled dataset according to the setting
of [8]. The advantage of doing so is reducing the domain gap between the pre-trained
and subsequently tuned datasets. Furthermore, this reduces the unlabeled dataset’s scale
without weakening the pre-training operation’s performance. Moreover, using subsets
saves pre-training time and cost.

Figure 4. The LUPerson dataset contains low-quality pedestrian images.
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Figure 5. CFS sorts the LUPerson dataset. The percentages represent the position of these images in
the sorted dataset.

We chose SpCL as the unsupervised method. SpCL is a pseudo-label-based method
for unsupervised domain adaptation. We used LUPerson as the target domain data and
did not use any labeled dataset as the source domain to pre-train our proposed network.

The model is pre-trained using SpCL for the unlabeled dataset, as shown in Figure 6.
SpCL uses hybrid memory to store instance features and divides the features into cluster
features and un-clustered features. The cluster centroid of each cluster is obtained by the
mean of the features in each cluster. The cluster centroid and un-clustered features jointly
supervise the training model by unified contrastive loss. Hybrid memory is initialized at
the beginning of the iteration and dynamically updated in each iteration.

Figure 6. Schematic diagram of model pre-training. The training images are first encoded as instance
features and stored in the memory. Subsequently, they are clustered and further processed into
information that can be supervised for model training.
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4. Experiments and Analysis of Results
4.1. Datasets and Evaluation Protocol

Datasets: We used four labeled datasets and one unlabeled dataset in our experiments.
Among them, LUPerson is the unlabeled dataset used for pre-training. Market1501 [50],
DukeMTMC-reID [51], CUHK03 [52], and MSMT17 [53] are labeled datasets used to show
the efficacy of our proposed method experimentally.

LUPerson contains 4,180,243 images of pedestrians cropped from videos uploaded on
video sites, with over 200k pedestrian appearances. All images are street videos from cities
in different countries, and image names are coded by country, city, video, and frame rate.

Market1501, DukeMTMC-reID, CUHK03, and MSMT17 were collected from campuses.
The first three are relatively similar regarding the number of pedestrian identities, with both
having more than 1000 pedestrian identities. However, Market501 and DukeMTMC-reID
have nearly three-times the total number of pedestrian pictures as CUHK03.

The original CUHk03 paper used a single-shot setting protocol, i.e., only one image per
pedestrian in the gallery. We refer to the paper [54] and used a new training/testing protocol.
The new protocol reorganizes the data in a format similar to Market1501, containing 767
and 700 pedestrian identities in the training and test sets, respectively. This makes it
possible to have multiple images per pedestrian in the gallery, which is more suitable for
real applications. Moreover, in the original protocol, the testing process had to be repeated
20 times. Using the new protocol avoids such repetition.

The number of pedestrian identities and pictures for MSMT17 exceeds Market1501 and
CUHK03 by a large margin, with 126,441 pedestrian images and 4101 pedestrian identities,
making it the largest labeled pedestrian dataset available. The details of each dataset are
shown in Table 1.

Table 1. Statistics and comparison of the datasets. CUHK(D) represents the pedestrian bounding
box obtained by the pedestrian detector. CUHK(L) represents the pedestrian bounding box obtained
by manual labeling.

Datasets Label
Images ID

Total Train Query Gallery Total Train Query Gallery

Market1501 labeled 32,668 12,936 3368 15,913 1501 751 750 751
DukeMTMC-

reID labeled 36,411 16,522 2228 17,661 1852 702 702 1110

CUHK03(D) labeled 14,097 7365 1400 5332 1467 767 700 700
CUHK03(L) labeled 14,096 7368 1400 5328 1467 767 700 700

MSMT17 labeled 126,441 30,248 11,659 82,161 4101 1041 3060 3060
LUPerson unlabeled 4,180,243 - - - 46,260 - - -

Evaluation metrics: In our experiments, we used two evaluation metrics. One was
the cumulative matching characteristics (CMCs). The CMC compares the similarity of all
images in the query with all images in the gallery and sorts them separately. In the CMC,
rank-n represents the hit rate of sorting the first n results that contain the correct label.
The rank-n only considers the hit rate and does not provide a comprehensive assessment of
the performance of the re-ID algorithm. The other was the mean average precision (mAP).
Compared with rank-n, the mAP indicates the extent to which the correct images in the
query results are ranked in front of the sorted list, which can better evaluate the algorithm.

4.2. Implementation Details

In our experiments, we set the size of all pedestrian images to 256× 128. Our model
was trained with a single NVIDIA 3090 GPU and pre-trained with 4 NVIDIA 3090 GPUs.
Our implementation code refers to FastReID [55], and some experimental configurations
followed the basic settings of this toolbox. For pre-training, we trained 30 epochs on
the unlabeled dataset using SpCL. In the pre-training process, we set the learning rate to
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3.5× 10−4, the decay rate to 0.1, and the step size of the decay learning rate to 10 epochs.
Since we used 4 GPUs for pre-training, our batch size per GPU was 16. In the subsequent
tuning training, we trained the model for 120 epochs. During training, the base learning rate
was 3.5× 10−4 after 2000 iterations of warm-up. Then, the learning rate was maintained at
3.5× 10−4 until 50 epochs. From 50 to 100 epochs, the learning rate decreased to 3.5× 10−5.
Finally, the learning rate decayed to 3.5× 10−6 after 100 epochs until the end of training.
In the training phase, the batch size was set to 64. Here, we empirically set the grid size in
the first layer of DL-MHSA to 8× 8. In the second layer of DL-MHSA, an average pooling
with a kernel size and a step size of 8 was used.

4.3. Ablation Experiments Using DL-MHSA in Different Locations

OSNet stacks two bottlenecks in the second, third, and fourth convolutional layer
(conv2, conv3, and conv4). Moreover, each bottleneck aggregates four convolutional streams.
We replaced the convolutional stream with the maximum receptive field in the bottleneck
with our proposed DL-MHSA. However, is this replacement effective? Which convolutional
layer is it best to replace the bottleneck with DL-MHSA added? We performed an ablation
study of the replacement design to answer these questions; see Table 2.

Table 2. Ablation study on the replacement design in DM-OSNet. Bold indicates the best result on
the dataset. [0,0,0] represents the original OSNet.

Method
Market1501 DukeMTMC-reID CUHK03(D) CUHK03(L) MSMT17

mAP rank-1 mAP rank-1 mAP rank-1 mAP rank mAP rank-1

[0,0,0] 84.9 94.8 73.5 88.6 67.8 72.3 - - 52.9 78.7

[1,0,0] 86.76 95.26 76.87 89.45 68.81 71.50 71.56 74.00 55.96 80.25
[0,1,0] 86.68 95.01 76.65 89.54 68.90 71.20 70.73 72.71 55.29 80.03
[0,0,1] 86.42 95.06 76.58 89.68 69.09 71.36 70.86 73.57 54.03 79.26
[1,1,0] 86.07 94.83 75.87 88.7 67.79 70.57 70.43 72.57 54.47 79.71
[1,0,1] 85.57 94.12 75.38 88.24 69.02 71.93 70.47 72.86 54.17 79.38
[0,1,1] 85.42 94.18 75.21 88.73 68.11 70.57 71.12 73.64 53.45 78.78
[1,1,1] 84.93 93.88 75.03 87.75 66.90 68.70 69.89 71.79 52.23 77.37

The baseline OSNet is represented in the experiments using [0, 0, 0] because DL-
MHSA does not replace the 9× 9 receptive fields in conv2, conv3, and conv4. To verify the
effectiveness of the proposed DL-MHSA, we first replaced the 9× 9 convolutional stream
of conv2, conv3, and conv4, respectively. This substitution is denoted by [1, 0, 0], [0, 1, 0],
and [0, 0, 1]. Then, we replaced the 9× 9 convolutional streams in the two convolutional
layers of the baseline with DL-MHSA. Finally, we replaced all 9× 9 convolutional streams
in all three convolutional layers with DL-MHSA.

Experimental results demonstrated that replacing the 9× 9 convolutional stream in
conv2, conv3, and conv4 brings performance gains to the model with DL-MHSA. However,
this improvement is not obvious in higher layers of the model. Even on the MSMT17
dataset, the model’s performance significantly degrades when the 9× 9 convolutional
stream of conv4 is replaced. The performance degradation when using DL-MHSA at higher
layers is due to the reduction in the feature mapping size. When the input image size is
256× 128, the feature mapping size in conv2, conv3, and con4 is 64× 32, 32× 16, and 16× 8.
The higher the layer, the smaller the feature mapping size. MHSA itself is sensitive to the
feature size, especially when we used DL-MHSA. We need to divide the feature mapping in
the first layer and downsample the feature mapping in the second layer, which aggravates
the size sensitivity of the network. The ablation experiments also demonstrated that using
multiple DL-MHSA does not result in stacked performance gains for the model, especially
when DL-MHSA is used in conv4. Considering the ablation experimental results, we
subsequently used the [1, 0, 0] configuration for our DM-OSNet, i.e., instead of the 9× 9
convolutional flow in conv2 for DL-MHSA.
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4.4. Comparison of Different Pre-Training Methods

We used both the ResNet50 and OSNet models to verify that pre-training the model
using the large-scale unlabeled pedestrian dataset LUPerson is more beneficial for the
re-ID task than ImageNet. For ImageNet, we used supervised training so that the model
initially learns the ability to classify images. For LUPerson, we used SpCL for unsupervised
learning. Both models were pre-trained, followed by 120 epochs of supervised learning on
three datasets (Market1501, DukeMTMC-reID, CUHK03, and MSMT17). Table 3 shows the
results of the model performance evaluation.

Table 3. Pre-training with the LUPerosn dataset and ImageNet for comparison.

Models
Pre-Training Market1501 DukeMTMC-reID CUHK03(D) CUHK03(L) MSMT17

Methods Data mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

ResNet50 Supervised ImageNet 81.95 92.55 72.66 83.80 63.11 65.07 65.83 67.79 44.39 68.73
SpCL LUPerson 83.23 93.17 76.00 86.12 65.71 67.14 68.23 69.07 47.62 71.28

OSNet Supervised ImageNet 84.9 94.8 73.5 88.6 67.8 72.3 - - 52.9 78.7
SpCL LUPerson 86.16 95.1 76.62 88.29 68.99 71.67 70.87 72.86 55.78 80.23

From Table 3, we can see that after pre-training with LUPerosn, the mAP of ResNet50
on Market1501 was 1.28% higher than with ImageNet. Similarly, it was 2.6% higher on the
CUHK03(D) dataset, 3.34% higher on DukeMTMC-reID, and 3.23% higher on MSMT17.
When we switched to the original OSNet, the LUPerson pre-training improved by 1.26%,
3.12%, 1.19%, and 2.88% on the four datasets. These mAP precision improvements allowed
us to demonstrate the effectiveness of LUPerson pre-training.

4.5. Comparison with Other Methods

Figure 7 demonstrates the two main advantages of DM-OSNet over OSNet through
the attentional activation map. The first is that the model focuses on a larger area. See
the first row of Figure 7. Second, the model focuses on more areas. See the second row of
Figure 7. We believe this is due to the global information focus brought by DL-MHSA and
the better model performance from pre-training on the large-scale unlabeled dataset.

Figure 7. Activation maps of OSNet and DM-OSNet. From left to right are the input image, the acti-
vation map of OSNet, and the activation map of DM-OSNet.

Table 4 shows the comparison of our proposed method with other methods. Our
method has better or similar performance compared with other methods. It is worth noting
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that DM-OSNet does not add much to the OSNet baseline regarding the number of param-
eters and FLOPs. DM-OSNet has a smaller model size and computational requirements
than other model backbones (see Figure 8).

Table 4. The results of comparing the performance of our method with other methods on four
generic datasets. The red and blue colored fonts in the table represent the best and second-best of
these results, respectively.

Method
Market1501 DukeMTMC-reID CUHK03(D) CUHK03(L) MSMT17

mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

PCB [20] 81.6 93.8 69.2 83.3 57.5 63.7 - - 40.4 68.2
AANet [56] 83.4 93.9 74.3 87.7 - - - - - -
DGNet [57] 86.0 94.8 74.8 86.6 - - - - 52.3 77.2
OSNet [6] 84.9 94.8 73.5 88.6 67.8 72.3 - - 52.9 78.7

Auto-ReID [58] 85.1 94.5 - - 69.3 73.0 73.0 77.9 52.5 78.2
BDB [59] 86.7 95.3 76.0 89.0 69.3 72.8 71.7 73.6 - -

IANet [60] 83.1 94.4 73.4 87.1 - - - - 46.8 75.5
CAMA [61] 84.5 94.7 72.9 85.8 64.2 66.6 66.5 70.1 - -
MHN [62] 85.0 95.1 77.2 89.1 65.4 71.7 72.4 77.2 - -
SCAL [36] 89.3 95.8 79.6 89.0 68.6 71.1 72.3 74.8 - -
MGN [21] 86.9 95.7 78.4 88.7 66.8 66.0 68.0 67.4 52.1 76.9

OSNet+DL-MHSA 86.76 95.26 76.87 89.45 68.81 71.50 71.56 74.00 55.96 80.25
OSNet++LUperson 86.16 95.1 76.62 88.29 68.99 71.57 70.87 72.86 55.78 80.23

OSNet+DL-MHSA+LUperson
(DM-OSNet) 87.36 95.61 78.26 89.18 70.59 73.0 72.96 74.57 57.13 80.96

Figure 8. Parameter count and FLOP comparison. Params represent the number of model parameters.
flops represents the number of floating point operations required by the model.

Figure 9 shows the rank-10 visualization results of our proposed method on the
Market1501 dataset. Our method is more robust than the baseline to different camera
angles of pedestrians because of the inclusion of global information, such as the pedestrian
front image query in Figure 9a and the pedestrian back image query in Figure 9b. They both
obtained correct matches for pedestrian side shots. Because we used a feature extraction
approach that fuses global and local information, our method still has good discriminative
power when the pedestrian images are vastly different from different angles (The back
of the pedestrian top in Figure 9c is solid black. However, the front is painted with a
large pattern).



Sensors 2022, 22, 6293 13 of 16

(a) Re-recognition of frontal pedestrian image.

(b) Re-recognition of backside pedestrian image.

(c) The result of a query on pictures of pedestrians with dramatically different front and back
appearances.

Figure 9. The rank-10 sorting of the query images. In each subfigure, the query image is shown on
the left. The subfigure’s upper right and lower right areas display the query results for OSNet and
DM-OSNet. Red and blue bounding boxes mark correct and incorrect matches, respectively.

5. Conclusions

In this paper, we proposed DL-MHSA, which reduces the computational complexity of
MHSA through a two-layer structure, but retains the global information focus capability of
MHSA. We tried to apply this structure to the lightweight pedestrian re-ID network OSNet
to improve the model performance while keeping the model as lightweight as possible.
To this end, we proposed DM-OSNet, which was experimentally validated to perform
better than the original baseline on four datasets, Market1501, DukeMTMC-reID, CUHK03,
and MSMT17. We explored pre-training the pedestrian re-identification network to improve
the model performance using the large-scale unlabeled dataset LUPerson and the domain-
adaptive learning method SpCL. By sorting the LUPerson dataset by the CFS and selecting
unlabeled images with high scores, we reduced the dataset size while optimizing the dataset
quality. SpCL for unsupervised learning allowed our lightweight model to converge better
and improved the performance. We plan to further explore the application of lightweight
networks in realistic surveillance scenarios and enhance performance.
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