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Abstract: This study describes the Computing Platforms (CPs) and the hardware reliability issues of
Unmanned Aerial Vehicles (UAVs), or drones, which recently attracted significant attention in mission
and safety-critical applications demanding a failure-free operation. While the rapid development
of the UAV technologies was recently reviewed by survey reports focusing on the architecture, cost,
energy efficiency, communication, and civil application aspects, the computing platforms’ reliability
perspective was overlooked. Moreover, due to the rising complexity and diversity of today’s UAV
CPs, their reliability is becoming a prominent issue demanding up-to-date solutions tailored to the
UAV specifics. The objective of this work is to address this gap, focusing on the hardware reliability
aspect. This research studies the UAV CPs deployed for representative applications, specific fault
and failure modes, and existing approaches for reliability assessment and enhancement in CPs for
failure-free UAV operation. This study indicates how faults and failures occur in the various system
layers of UAVs and analyzes open challenges. We advocate a concept of a cross-layer reliability model
tailored to UAVs’ onboard intelligence and identify directions for future research in this area.

Keywords: unmanned aerial vehicles; computing platforms; fault analysis; failure modes; cross-layer
reliability; fault-resilience

1. Introduction

Due to the recent unprecedented advances in Unmanned Aerial Vehicles (UAVs) or drones,
their application has become widespread in public and industrial sectors. Now, drones
are used in many areas such as the deployment of wireless networks, product shipping
and delivery, precision agriculture, object detection and tracking, border surveillance
and monitoring, remote sensing and environmental monitoring, traffic control, and earth
mapping [1–3]. For instance, recent business insider news reported that the UAV service
market size was expected to rise from $4.4 billion in 2018 to $63.6 billion by 2025 and
consumer UAV shipments to 29 million in 2021 [4].

At present, the UAV technology is prevalent in many mission- and safety-critical
applications. E.g., in Search and Rescue (SAR) operations of aftermath disasters, UAVs
are employed to seek people who fall in distress or imminent danger [5]. Emergency public
safety operations often need the deployment of wireless networks by multiple UAVs at
a swarm level. Utilizing UAVs, it is now possible to release humans in inspection and
maintenance of dangerous works in the industry, such as power grids, high-power boilers,
mines [6]. For these types of mission- and safety-critical applications, multiple UAVs at a
swarm level require communication between drones by establishing a wireless network
that enables collaborative computing, e.g., by computing tasks offloading [7].

The reliability of these mission- and safety-critical applications is inherently connected
to the correct service of the UAV system, which consists of several Functional Modules
(FMs) such as Flight Control Computer (FCC), Communication Module (COM), Global
Positioning System (GPS) module, and different Computation Intensive Payload (CIP)
modules for machine learning (ML) methods e.g., Neural Network Accelerator (NNA).
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These FMs are directly controlled and governed by the Computing Platform (CP) onboard
the UAV. On the hardware (HW) side, the CP of a UAV can be built of a Micro-controller
(µC), Field Programmable Gate Arrays (FPGAs), Microprocessor (µP), application-specific
Commercial-Off-The-Shelf (COTS) electronic components, etc.

Failures of UAVs such as position and altitude, crashes with obstacles, and target
identification, may happen during the UAV operations due to the soft and hard errors in
the CP as well as faults in other parts of the UAV system, such as sensors, actuators, motors
employed by the FMs. The consequences may be even catastrophic if failures of UAVs
occur in mission- and safety-critical applications. In the scope of this work, we advocate the
paradigm of the cross-layer approach of reliability assessment and enhancement discussed
in [8,9]. Cross-layer reliability (CLR) of a cyber-physical system implies a holistic approach to
modeling, detecting, isolation, and recovery of faults originating at each layer and propagat-
ing through the other layers of a system. Here, depending on a particular implementation,
the system layers may involve the underlying computing HW (processors, accelerators)
and their components, the embedded software (SW) and the operating system (OS), the
complete single device, and the System of Systems (SoS) performing the application.

Careful consideration of the reliability attribute is essential in designing the complex
fault-resilient CP of UAVs for failure-free operation in mission- and safety-critical applications.
To tackle the challenges, cross-layer fault-resilience is currently becoming a potential
solution for such a computing system [9]. Most of the UAV survey articles cover various
FMs, such as FCC, CIP, and the communication part [6,10,11], and others focus on the
different CPs employed in several applications [12,13]. While the reliability problem is
currently starting to pose a significant issue, it is only briefly mentioned in a small number
of survey works [14,15]. Only in the review [15], the CP and reliability issues were reported;
however, the authors limited their discussion to COTS and overlooked the complete
system’s reliability. In this survey paper, we fill this gap by studying recent research on
both CP used in various FMs and the reliability issues in a cross-layer manner of the UAV
system. Furthermore, we highlight the reliability challenges and fault-resilience techniques
for failure-free UAV operations. The main contributions of this paper are as follows:

1. We present an overview and analysis of state-of-the-art computing platforms for UAVs;
2. We analyze the reliability challenges and recent fault-resilience techniques for failure-

free UAV operation;
3. We outline the concept of the cross-layer reliability model for UAV computing platforms.

The overall structure of this survey work is depicted in Figure 1. At the beginning of
this paper, we mention the related work in Section 2 and explore the CPs used in several
FMs of UAVs, such as FCC, object detection and tracking, image processing with NNA,
and COM in Section 3. Then we discuss reliability assessment studies in Section 4, where
we look at various fault and failure modes in UAV systems. Section 5 is dedicated to a
review of existing reliability-enhancement strategies. This section also outlines important
challenges for developing fault-resilient UAV systems. We present a CLR model for a UAV
system to address the reliability challenges and further research direction in this arena in
Section 6. In Section 7, we draw the final conclusions.
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Figure 1. The overall structure of this survey.
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2. Related Works

In this section, we introduce recent survey papers on UAVs in terms of various
applications, computing platforms, and related challenges. Then we show the analysis of
these reviews and the research gaps that require further attention.

The security, privacy, and safety aspects of civilian drones are investigated in paper [6]
in which the authors have measured the vulnerabilities of various security-related attacks
such as the insertion of malicious activities, and the crashing of the drone. They have
analyzed the security requirements of the drone and surveyed existing works in which they
offered solutions to such vulnerabilities. However, their analysis is only limited to security-
related issues in the cases when attackers send malicious information to the flight control
or ground control system via the data link to take control over the drone. Interestingly,
security and reliability as extra functional aspects of a complex computing system may
have mutual dependencies as studied in survey [16]. While security is a critical issue for
UAV systems, it is out of the explicit focus of this survey.

In another survey paper [10], the authors comprehensively reviewed UAVs in many
civil applications and highlighted the challenges such as charging, collision avoidance,
swarming, and security-related in the various subsystems of the UAVs. They have discussed
recent technologies such as cloud computing, ML, wireless communication, and image
processing used in many UAV applications, for instance, rescue, remote-sensing, precision
agriculture, monitoring, surveillance, wireless coverage, etc. Similar to [6], that survey does
not take into account the reliability issues in UAV applications. However, both security and
reliability problems are considered in [14]. The authors have highlighted several challenges
and solutions in Neural Network (NN) based Artificial Intelligence (AI) systems, such as
energy efficiency, security, and reliability. They focused only on the image processing use
cases and did not consider other applications for the UAVs. However, none of the above
three survey papers [6,10,14] focused on the CP of UAVs in their discussion.

In a survey work [15], the publicly available open-source CP of UAVs and simulators
are mentioned including features of functionality, reliability, fault tolerance, and endurance.
Although the paper [15] mostly presented the fault-tolerant open-source CP based on µC
unit, for several UAVs FMs such as COM, sensors, and actuators, they did not consider
the issues of reliability across the layers. The usage of FPGAs-based CP in a UAV is
demonstrated in the paper [12]. The authors presented the use of FPGAs in various UAV
applications such as navigation, object tracking, and critical mission tasks. They included
research works that utilized COTS and FPGAs as CP in various sub-modules of UAVs such
as flight control, main controller, communication subsystem, and various payloads. That
work advocates the use of FPGAs to perform a variety of computing-intensive tasks, such
as object detection and tracking, obstacle avoidance, and so on. However, the authors did
not focus on any reliability in their survey analysis.

In papers [11,13], the authors introduced Deep Learning (DL) with Convolutional
Neural Networks (CNNs) and other ML methods as the CIP in several UAV applications.
They discussed the CNN in the ML context and algorithms used in many applications for
UAVs such as feature extraction, planning, and motion control. Ref. [11] presented the DL
algorithms that consider how to avoid collisions of autonomous UAVs and also presented
several DL architectural platforms. The authors also included DL-based operations of the
UAV subsystems such as propeller, control system, sensing, positioning, communications,
power, storage, and identification. Although the surveys [11,13] studied the timely topic
of CIP for several UAV subsystems and applications, they did not consider the reliability
issues. Table 1 summarizes recent related surveys on UAV applications and demonstrates
the novelty of our survey in this work (the last row in the table) compared to the state-of-
the-art.
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Table 1. Comparison of recent related works.

Paper Contributions
Functional Modules Computing Platforms Dependability

Ref.FCC CIP COM FPGA µC COTS
Reliability

CLR
Security and safety 7 7 3 7 7 7 3 7 7 [6]
Challenges for civil applications 7 3 3 7 7 7 7 7 7 [10]
Image processing NN and reliability 7 3 7 7 7 7 3 3 3 [14]
COTS and simulator 3 7 3 7 3 3 3 3 7 [15]
Survey of FPGA application 3 3 3 3 7 7 7 7 7 [12]
UAV subsystems 3 3 3 3 3 3 7 7 7 [13]
General purposes and algorithms 7 3 7 7 7 7 7 7 7 [11]
CP and reliability aspect 3 3 3 3 3 3 3 3 3 Prop.

3. UAV Computing Platforms

In this section, we discuss the CP used for the FMs of UAVs in several applications. In
general, UAVs can be categorized by using construction and altitude. Depending on the
construction, UAVs are either fixed-wing or rotary-wing. While most commercial UAVs
are rotary-wing types, fixed-wing UAVs are used for very high-speed operations and can
carry much heavier payloads. On the other hand, rotary-wing UAVs can fly at low speeds
and has outstanding mobility. The latter type of UAV became popular for many potential
applications. In terms of altitude, UAVs also can be found as high-altitude platforms which
are deployed for long-endurance surveillance and can fly at altitudes above 17 km and
remain almost stationary. Low-altitude UAVs, on the other hand, are designed to move
quickly at an altitude of a couple of meters up to a few kilometers [2].

Generally, a UAV is a part of an Unmanned Aerial System (UAS). The following
subsystems are the main parts of a regular UAS.

Ground Control Station:

The ground control station acts as the central control unit of the overall UAS, where
all the data (video, command, and telemetry) received from the UAV is analyzed and
monitored for further decision-making. For smaller UAV applications, communication
over a range of up to several kilometers often uses a remote-control system. Satellite
systems may be involved in extreme UAV operations where the ground station is located
thousands of kilometers from the UAV work zone [17]. Recently, autonomous UAVs
or autonomous swarms of UAVs were proposed that may operate in the field without
continuous communication with the GCS.

UAV Communication Link:

Data-link or COM is a part of UAVs that provides duplex communication with the
ground control station and other UAVs. To safely and reliably operate the UAV, a stable
communication system is an important requirement. The COM is mainly composed
of a transmitter, receiver, antenna, modulator, etc. Recently the fifth-generation (5G)
communication, both the 5G base station-based and device-to-device (side-link) protocols,
becomes widely used for this purpose.
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UAV Sensor and Actuator:

UAV sensors can be broadly categorized as critical sensors for Inertial Measurement
Units (IMUs) and navigation and tracking sensors for route planning and object detec-
tion [12]. The critical sensors such as accelerometer, gyroscope, magnetometer, compass,
ultrasound height, and pressure sensors are mainly used for flight control to measure the
altitude and rotational axis. Image sensors such as video cameras (monocular or stereo),
Light Detection and Ranging (Lidar), Radio Detection and Ranging (Radar), and lasers are
employed to capture videos and images in path planning and object (stationary or moving)
detection. Motors and associated electronics drive circuits act as actuators in UAVs.

UAV Computing Platforms:

Similar to other embedded systems, a UAV needs a CP as a processing system that
retrieves data from payloads and other sub-modules. The processed information is then
delivered to the actuator and ground station or another UAV to operate the UAV success-
fully. Most of the CPs of commercial and civil UAVs are µC- or COTS-based embedded
systems. However, modern UAVs are performing complex image processing and real-time
object detection with the help of ML, DL, and other types of mathematical algorithms.
UAVs deployed for applications implying computation-intensive processing use high-
speed multi- and many-core processor systems, Graphical Processing Units (GPUs), FP-
GAs, All Programmable Systems-on-Chip (APSoCs), SoC-FPGA, to process their complex
tasks efficiently.

In the following subsection, we will explore CP used for FMs of UAVs in high-level
and low-level applications.

3.1. Flight Control Computer

The Flight Control Computer (FCC) of FMs plays a significant role in keeping the
UAVs in a specific position and returning to the base station properly. If the FCC does
not function accurately, there may be a chance of an accident or failing the mission. FCC
monitors UAV states continuously through various critical and navigation sensors. The
FCC can be sorted by low- and high-level flight control operation [12]. In low-level, basic
flight control operations, such as motor control, UAV stability, and processing sensor
data are performed. FCC is often engaged in high-level applications such as autonomous
navigation, path planning, stereo vision, simultaneous localization, and mapping that make
UAVs autonomous. In high-level operations, FCC requires high processing power where
an OS is running over HW/SW co-design to implement complex navigation and object
detection algorithms. The modern CP such as SoC-FPGA itself can perform both high
and low-level operations we denoted them in this paper as hybrid-level, although it also
requires the help of other computing devices in critical applications.

3.1.1. Low-Level FCC

SoC-FPGA: Low-level FCC FMs such as IMU core, receiver IP cores for pulse-width
modulation signal, and Proportional Integral Derivative (PID) controllers were designed
and developed on a single SoC-FPGA-based CP in work [18]. In work [19], the authors
proposed four techniques in designing the controller of the FCC considering low power,
fast response, and less volume for FPGA- or Digital Signal Processor (DSP)-based small
UAVs. Research work in [20], presented a secured operation for FCC FM by using µC and
FPGA combinedly. µC controls all sensors and generates the signals for controlling the
UAV motors. FPGA handles the data encryption and decryption task before sending data
to the UAV’s motor and radio systems.

µC-based FCC: Using several low-cost sensors such as an IMUs and a Lidar, the research
work [21] implemented an µC-based FCC FM for the small rotary-wing UAVs to estimate
the position of the UAV and its distance from an obstacle or a landing field. Employing
several low-cost sensors such as a 10-DOF micro-electro-mechanical system IMU and a
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Lidar, research work [22] applied the µC-based FCC FM for small rotary-wing UAVs to
determine the location of the UAV and its distance from an obstacle or the landing surface.

3.1.2. High-Level FCC

SoC-FPGA for Algorithm Implementation: The authors in work [23] presented
SW/HW co-design framework for UAV returning by proposing an improved region-based
Kanade-Lucas-Tomasi tracking algorithm. They also improved the hardware acceleration
architecture by integrating parallelism and improving resource utilization for FCC FM in
the SoC-FPGA-based CP. In the study [24], the authors developed real-time processing sys-
tems such as mean subtraction, windowing, finite impulse response filtering, decimation,
and spectral estimation via Fast Fourier Transform (FFT). Their implementation results
using similar SoC-FPGA CP achieved real-time 3-dimensional detection of local UAV traffic
at a range of 1000 m. Similar work is presented by [25] where additional processing system
for frequency modulated continuous wave phased array Radar utilizing SoC-FPGA for
autonomous navigation to identify nearby aircraft such as small UAVs up to 350 m and
bigger aircraft up to 800 m. On that CP, DSP algorithms were also employed, including
parallel FFT, cross-correlation, and beam-forming. In work [26], the CORDIC, EKF, and
PID-Fuzzy algorithms were integrated with the FCC platform to create a real-time Guid-
ance, Navigation, and Contro (GNC) system on an FPGA to read data from IMU sensors.
After processing the payload data, FPGA-based CP generates navigation commands as
Pulse width Modulation to actuator and servo motors.

µC-based High-level FCC: A decision-making algorithm based on fuzzy logic was
demonstrated in [27] using the Arduino Uno µC CP for controlling the IMU of autonomous
UAVs. They used an IMU algorithm to predict the parameters of inclination, lateral,
and bending angles in flight, which allows the UAV to navigate fast and avoid obstacles.
Another study [28] employed an µC-based CP with an embedded flight map containing
flight information and constraints on the cargo carried and the flying mode.

3.1.3. Hybrid-Level FCC

SoC-FPGA-based Hybrid-level FCC: A model-based HW/SW co-design was proposed
in [29] for implementing both high and low-level FCC FMs, where they represented and
compared four possible boards to implement such operations. In noisy environments,
such as where it is cloudy or under trees, the GPS signals are so weak that UAV faces
difficulty in tracking and localization. To tackle these real-time challenges, the work in [30]
implemented a real-time vision-based navigation system based on the AprilTag algorithm
using the SoC-FPGA CP to perform real-time pose estimation, tracking, and localization
in GPS-denied environments. In another similar work [31], the authors presented an
approximate adder design focused on error-tolerant size, weight, and power for intensive
UAV imaging applications such as 2-dimensional Discrete Cosine Transform, airborne
self-localization, and moving object tracking algorithms.

µC-based Hybrid-level FCC: The basic FCC operations such as dynamic modeling,
control system design, model-in-the-loop, and hardware-in-the-loop of an unmanned
helicopter were implemented using a novel Linux-based flight control system built on
Raspberry Pi board in work [32]. In [33], the authors focused on implementing an au-
tonomous source-seeking application using Deep Reinforcement Learning on µC-based CP
for nano quadcopters. They tested their proposed method using open-source CrazyFile
nano quadcopters and found it to be 70% more efficient in source seeking. Using a similar
µC-based CP and open-source CrazyFile nano quadcopters, the work in [34] provided
an onboard HW/SW autonomous visual navigation system utilizing a CNN-based DL
network.

Table 2 shows the list of research works and their implemented FCC FM along with
applications. From this table, we can observe that SoC-FPGA platforms are utilized in most
of the cases for conducting both high- and low-level operations.
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Table 2. List of research works and their implemented FCC FMs.

CP Devices Sensors/Actuators Applications Ref.

FP
G

A

Xilinx Zynq SoC

C, L, R, IMU Payload data processing [18]
GPS Navigation [23]
R Flight computation [24]
C Estimation, tracking, localization [30]

Xilinx Artix7, Virtex-V, Cyclone II IMU Flight control computing [19]
Xilinx Virtex-7 C Moving target detection [31]
Xilinx Virtex-7, ZED Board, Raspberry Pi C, L, R, IMU Flight and payload computing [25,29]
Intel DE0 nano FPGA C, L, R, IMU Flight and payload computing [26]

µC

Arduino Uno IMU Flight and navigation [27,33]
PIC 32 IMU Flight and navigation control [28,29]

Cortex-M4 IMU On-board flight control [34]
R, L Flight controller [21]

Arduino Mega 2560 L, IMU Flight and navigation control [22]
Arduino Mega IMU Flight computing [20,32]

R = Radar, L = Lidar, C = Camera

3.2. Computation Intensive Payload

In this section, we discuss representative CIP FMs of UAVs such as object detection,
tracking, image processing, and NNA applications.

3.2.1. Object Detection, Tracking, and Environment Monitoring

SoC-FPGA-based Detection: In work [35], an infrared image processing system was
implemented using combined computing platforms of FPGA and DSP for image acquisition,
tracking, and matching algorithms. Terrain classification is important for an emergency
landing, aerial mapping, decision making, and cooperation between UAVs in autonomous
navigation systems. Using three algorithms (Gray-Level Co-Occurrence Matrix, Gray-Level
Run Length Matrix, and Flow), the research [36] provided a complete solution for terrain
classification in differentiating among the four terrain types (water, vegetation, asphalt,
and sand). Their proposed solution developed on the FPGA achieved a 95.14% success rate
in train classification using the OpenCV library. Another challenge of UAVs in the SAR
operation is the moving target detection. The authors of [37,38] included speed estimates and
object segmentation algorithms to identify real-time moving objects using an area-based
image registration method in the SoC-FPGA-based CP.

µC-based Detection: In work [39], a moving target detection system was implemented
while considering avoiding obstacles robustly in heterogeneous swarm of UAVs. Employ-
ing µC-based hybrid controllers, they implemented target seeking and obstacle avoidance
calculations separately in a distributed UAV swarm architecture. Similar research work
in [40] presented resource-limited platforms using µC and GPU for AI-based object detec-
tion and tracking. A CNN algorithm is incorporated where an object tracking algorithm
is tailored based on a Gain-Scheduled PID controller to follow the detected object under
variable speed.

Sometimes, UAVs are used in safety operations to monitor the surroundings as environ-
ment monitoring. For instance, authors in work [41] mounted the toxic gas detection sensor
array on the IoT-based UAV architecture to monitor the air quality in the given environment.
They used µC-based controllers to connect the air sensors and to monitor the sensor data. In
a rescue operation using a UAV, people or face recognition is another challenging task that
requires a real-time complex processing system. A face detection and recognition system
utilizing µC-based CP can identify disastrous people on the ground with high accuracy. In
research work [42], authors used the Haar cascade classifier algorithm with OpenCV library
in their model and reported that they achieved a 98% True Positive rate for 1.5 m height
using the Haar cascade classifier algorithm with OpenCV library in the design. Similar
work in [43], the authors used a CNN algorithm for the classification and obtained 100%
accuracy with a distance of object 1–4 m in detecting victims of natural disasters. Table 3
shows the different CPs used in various object detection and tracking applications of UAVs.



Sensors 2022, 22, 6286 8 of 25

Table 3. Computing platforms used in object detection and tracking applications.

CP Devices Sensors Applications Ref.

FP
G

A

Spartan-3A DSP XC3SD1800A

Camera

Terrain classification [36]
Intel i5 CPU, an Nvidia GTX1070 GPU Target tracking and recognition [37]
Cyclone III, TMS320C6657 DSP Image acquisition [35]
Xilinx Ultrascale+ MPSoC Realtime moving target detection [38]

µC

ATMEGA 328 Gas detector Environment monitor [41]
ARM Cortex M4, NVIDIA Jetson TX2

Camera

Object detection and tracking [40]

Raspberry Pi
Face detection and recognition [42]
Disaster people recognition [43]
Target detection, obstacles avoidance [39]

3.2.2. Neural Network Accelerator

In this subsection, we discuss several representative CPs used as an NNA FM. NNA
is, actually, a special processor designed for an artificial NN-based ML workload.

FPGA as an NNA: In computer vision tasks such as image classification or segmentation,
video analysis, and CNN-related DL algorithms are used intensively in many applications.
However, the CNN model is challenging to implement in a resource-constrained UAV due
to model complexity and costly computing procedures. Many researchers are now employ-
ing FPGA-based hardware accelerators to tackle this issue efficiently [44–47]. In the research
work in [44], the author proposed a scalable FPGA-based CNN hardware accelerator for
embedded systems based on an 8-bit fixed-point approximation of a hardware-friendly
CNN model with the OpenCL framework and obtained 1.9× energy efficiency compared
to previous work. Similar works [45,46] described FPGA-based hardware accelerators for
implementing depthwise CNN. These research works also achieved better performance
than CPU and GPU in object detection. The authors used coarse-grained and fine-grained
parallel computing optimization methodologies to improve computational speed and
throughput in an FPGA-based CNN accelerator.

A multi-sensory fusion technique using infrared and visible light based on CNN for
UAV surveillance operations was presented in work [48]. In this study, they built an
image fusion approach on two widely used HW accelerators: Zedboard (ARM + FPGA)
and NVIDIA TX1 (ARM + GPU), and evaluated the performance, finding that FPGA-
based platforms outperform GPU-based platforms. An automated navigation system
utilizing both IMU sensors and image processing was employed to estimate the UAV
location discussed in the work [49]. They developed a hybrid computing architecture
consisting of FPGA, CPU, and µC for carrying out the implementation and data fusion
process. In work [50], another multi-sensory fusion task was demonstrated in an energy-
efficient way using the Spiking NN on the FPGA-based platform. Their proposed hardware
implementation achieved an accuracy of 99.7%.

The research in [51] achieved higher performances using Zynq FPGA over the con-
ventional GPU as an accelerator to implement CNN-based image processing for real-time
object detection scenarios. To address the issue of the Quality of Experience (QoE), the
authors developed an FPGA-based architecture called SCYLLA [52]. SCYLLA offers a
novel reconfiguration-based profile generation technique that generates a pool of FPGA
design and Deep Neural Network (DNN) model profiles with different QoE performances.
They reported that SCYLLA reduces the processing latency by 11.9× and saves 71.5× of
the energy consumption compared to the CPU-based solution. Recently, the You-Only-
Look-Once (YOLO) method, a fast and accurate DNN architecture, explored new concepts
in real-time multi-object recognition. The authors of [53] investigated the performance of
several SoC-FPGA platforms in real-time object detection and recognition on the YOLO
network. A Tiny YOLOv2 was designed in [54] for the real-time object detection for CNN-
based implementation using FPGAs where they achieved 3.19× better than the GPU for
the performance-power efficiency. Similarly, in [55], a YOLOv2 NNA was developed on
the FPGA platform by designing an accelerator memory access module. Their evaluation
proved that the implemented design performs better balance speed and accuracy compared
with similar research results.



Sensors 2022, 22, 6286 9 of 25

Table 4 shows several representative FPGA-based CPs used as accelerators in NNA
applications for the UAVs.

Table 4. The summary of FPGA-based NNAs used in UAVs.

CP Devices Sensors Applications Ref.

So
C

-F
PG

A

Xilinx Spartan-6, Raspberry Pi IMU, Camera Autonomous navigation by data fusion [49]
Xilinx Pynq-Z1 GPS Object detection, SAR [47]

Xilinx Zedboard, NVIDIA TX1 Infrared and
visual Object detection by Image fusion [48]

Xilinx FPGA Laser, Radar Cropland monitoring [50]
Xilinx ZCU102 FPGA

Camera

Vehicle counting [52]

Zynq Ultra Scale Road object recognition, [51]
Vision-based navigation by YOLO [53]

Arria 10 FPGA, Intel core I5 CPU Target detection [46]
Intel Cyclone V FPGA Image classification [44]
Xilinx Virtex7 xc7vx690 Object detection, SAR [45]
Digilent NetFPGA-SUME FPGA Object detector by YOLOV2 [54]
Xilinx KU115 Target detection by YOLOV2 [55]

3.3. Communication Module

SoC-FPGA-based COM: The authors in work [56], presented an FPGA-based Channel
Emulator for Non-Stationary Multiple Input Multiple Output (MIMO) Fading Channels
required for UAV communication system. They developed several COMs such as a delay
module, fading generation, an interpolator for a 2 × 2 MIMO channel implemented in a
single FPGA CP which achieved a good performance. A data link terminal controlling
several UAVs dynamically was implemented effectively on the FPGA CP in [57] which
focused on digital zero-IF signal processing unit design and hardware implementation
process. The interleaver module is an important component in the transmitter and receiver
module for stable UAV communication. The research work [58] implemented that module
on the FPGA CP using LUT RAM. The authors, in work [59], designed an agile digital
Software Defined Radio (SDR) system in the SoC-FPGA for the UAV target application.
The COMs such as Global Navigation Satellite System, GSM, and WiFi were tested and
evaluated on that SoC-FPGA-based CP. In another similar work [60], the authors presented
a downlink and uplink high-speed communication in a rapidly changing propagation
environment for short-range UAVs. They implemented their proposed design in the SDR
system using FPGA and µC.

In [61], the authors proposed a security architecture that uses for UAV reliable com-
munication and evaluated COM on the FPGA CP involving the transmission of bitstreams
between the UAV and ground station. Similar reliable communication between the UAV
and ground control station was built in research work [62] using µC-based CP for a UAV
communication system to evaluate the single-carrier Frequency Division Multiplexing
(FDM) modulation technique.

An extensive study was performed to investigate the performance enhancement in
the UAV-assisted networks for the 5G and beyond 5G wireless communication system [63].
The UAV-assisted networks for 5G wireless communication systems can be a promising
solution to deploy emergency wireless communication networks to restore connectivity
in post-disaster areas. A model for 5G communication networks was developed for post-
disaster wireless networks considering FPGA as the implementation unit of a reconfigurable
intelligent reflecting surface to find an optimal power allocation [64,65].

Table 5 represents several CPs used for COMs for the UAVs.
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Table 5. Computing platforms used in UAV communication module

CP Devices Communication Technology COM Ref.

FP
G

A

Xilinx Virtex-7 MIMO Non-stationary channel model [56]

Xilinx Artix-7 TDMA Datalink terminal [57]
Spreading, jamming Variable feedback controller [61]

Xilinx Zynq OFDM, CDM SDR system [59]
OFDM, MIMO SDR system [60]

– Interleaving Interleaver module [58]
– 5G wireless communication Intelligent reflecting surface [64,65]

µC ArduPilot Mega Single-carrier FDM, OFDM Datalink terminal [62]

3.4. Layers of the UAV Computing Platform

We can conclude that CP is the heart of the UAV system; it controls all sub-systems of
the UAV. Based on the above analysis of the CPs used in different UAV applications, we can
illustrate a comprehensive layered representation of UAV systems and its subsystems in
Figure 2 assuming a swarm intelligent application. The lower layer of the figure represents
the UAV edge node, where, in the IoT terms, edge computing is performed considerably
reducing time delay and energy consumption when performing a complex task such as
real-time object detection [66,67]. The middle layer of this figure represents the UAV swarm
intelligence at the fog level, where multiple UAV systems (edge nodes) collaboratively
perform real-time complex computing tasks that require offloading technology for the
edge UAV to reduce the energy consumption, latency, and throughput [68–70]. Efficient
communication between multiple UAVs also needs a resource allocation mechanism that
can be applied in the UAV networks to maximize the efficiency of the UAV systems [71,72].
The wireless communication networks of UAVs could also be affected by potential cyber-
attacks as mentioned [73,74]. Finally, the ground station at the cloud level controls the
overall UAV systems by receiving and transmitting the signal. The focus of this survey
work is on the CP which is the core processing part for the edge computing of the UAV
system as shown in the lower part of the figure. The correct operation of a UAV system is
strongly intertwined with the CP’s hardware reliability, necessitating the use of a cross-layer
fault-tolerant management system and keeping care of all of the subsystems indicated in
the figure. The hardware reliability evaluation for UAVs is discussed in the next section.
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Figure 2. Basic overview of UAV system.

4. Fault and Failure Modes in UAV System

In this section, we discuss hardware faults in UAV CPs and their effects on UAV
systems studied in in recent research works. We have included a total of 12 research papers
in our survey for the fault and failure analysis. The papers are listed in Table 6, highlighting
fault and the failure modes in different scenarios, CPs, and UAV applications. In our survey
work, we categorize the faults shown in the first column of Table 6 based on the paper [75].

In [76–81], the authors presented Bayesian Network (BN)-based health management
approaches to continuously monitor sensors, software, and hardware components for the
detection and diagnosis of UAV failures caused by the environment artifacts. They have
analyzed the UAV failures due to GPS and battery usage profiles, HW/SW failures due to
the effects of weather disturbance and UAV crashes with birds or other UAVs.

Actuator and sensor faults play an important role in bridging control commands and
actual control effects. Actuator faults, such as getting stuck, partial loss of effectiveness,
and control surface impairments cause the mission failure and collision in the cooperative
UAVs, discussed in work [82]. The research in [83], also analyses actuator faults along
with a gyroscope sensor fault, using simulation. They reported that the roll, yaw rate,
and side-slip angle were significantly affected due to the fault of the sensors and actuator.
In [84], three-axis accelerometer faults are described where several failures such as step,
ramp, and oscillatory were analyzed in the altitude estimation performance. They also
investigated the sensitivity of the attitude estimation performance when varying the error
magnitude. In [85], the real-time data from the gyroscope sensor were analyzed where roll
rate was monitored to observe the effect of UAV position and altitude due to faulty data.
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Table 6. Summary of fault and failure modes in UAVs.

Faults Failure Modes and Effects Computing
Platforms Sensors/Actuators Applications Ref.

Navigation sensors,
(Software, Hardware)

UAV accurate position fail,
crashes with obstacles

Xilinx FPGA SoC
(ZED Board) GPS, Battery Critical mission [76,81]

Actuators gain, bias
faults (Hardware)

Degradation of actuator
effectiveness, collide with UAVs – Actuator Control multiple

UAVs [82]

Sensors and actuator’s
partial loss (Hardware)

Changed the value of roll angle,
yaw rate, sideslip angle ZAGI UAV Gyroscope, Actuator Safety mission [83]

Actuator faults
(Hardware)

Altitude estimation failure of
step, ramp, and oscillatory error KARI EAV-3 Accelerometer, IMU High altitude mission [84]

Sensors (Hardware) Affect the stabilization of the
UAV altitude and position Zynq 7000 Gyroscope Object detection [85]

Navigation sensors,
(Hardware) UAV altitude and position failure TopXGun Robotics GPS, Altimeter, IMU Navigation [86]

Soft and Hard Error, Chip
(Permanent, Transient)

The vibration of motor,
accelerometer become violent,

system crash
FPGA, µC Motor, Accelerometer SAR mission [87,88]

SEU (Transient) Erroneous output, decrease
accuracy, classification failure FPGA CNN accelerator Identify and classify

the objects [89]

SEU (Transient)
Image classification error, system

crash, vulnerable to
operating system

Pynq Z2 FPGA CNN accelerator Image classification [90]

Navigation sensors
(Hardware)

Error in angular velocity and
acceleration causes high risk

of failure
µC Accelerometer, Gyro,

Magnetometer, GPS Navigation [91]

The authors of [86] mentioned three types of UAV navigation sensor faults (in GPS,
IMU), such as point, contextual, and collective that cause the UAV positioning errors.
The main reasons for these faults happen actually when the UAV is moving different
operational environment. To observe the effect of the error propagation in the inertial
navigation system, the work in [91] proposed two models that evaluate overall system
reliability, probabilities of particular failures such as accelerators, gyroscope, temperature,
and pressure sensors, memory, GPS, etc., which also identify critical components.

To control the accelerometer and motor of the UAV, FPGA is often used as a decision-
making controller which is highly susceptible to transient and permanent faults, addressed
in [87,88]. These faults significantly increase the vibration of the accelerometer and motor
of the UAV. FPGA-based CNN accelerator is used in the UAV for object identification and
classification task. Radiation-induced soft errors, such as Single Event Upsets (SEU), cause
bit flipping in the registers of the implemented CNN accelerators that produce incorrect
results and high misclassification rates. In [89], the authors investigated the effects of
radiation-induced error on the SRAM-based FPGA where the NN was mounted. Injecting
faults such as emulating SEU in the FPGA-based SoC, the effect in CNN was analyzed
and found that not all errors need to be considered. Few of them were found tolerable,
while others contribute to the overall accuracy drop leading to system failure. In a similar
work [90], the authors analyzed the SEU effects by injecting fault and exposing neutron
beam on the FPGA-based NN accelerator and identified system crashes, misclassification
of images, and vulnerable OS functionalities.

Analysis of the Fault and Failure Modes of UAVs

Figure 3 depicts the assessment of several UAV faults and failures documented in the
previous subsection. The majority of research focuses on faults in several sensors such as
altimeters, GPS, and IMU. In many situations, navigation faults in the IMU sensors are also
mentioned, along with other sensor types of faults such as GPS and altimeters. Soft errors
or transient faults are becoming other sources of many UAV system failures, particularly
in the UAV CP, as outlined in Figure 3. In addition to these faults, research studies have
looked into other defects in the actuator, motor, and battery subsystems.
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Figure 3. Fault and failure modes analysis taxonomy.

In the failure analysis, most of the research works highlighted UAV collisions,
position, and altitude mode. Due to soft- and hard-errors, UAVs often fail in target
identification problems.

We have highlighted another interesting finding from our survey work depicted also
in Figure 3 that the majority of the UAV research utilized SoC-FPGA-based CP for the fault
and failure assessment. µC and commercially available UAV platforms are also observed
for fault and failure analysis.

5. Reliability Enhancement in UAV System

As discussed in the previous section, the CPs control numerous UAV functional
sub-modules. An error causing UAV failure may happen at any of the sub-modules due
to faults discussed in the previous section. We analysed in total of 29 research papers
(including 12 fault and failure analysis papers) in our reliability survey. The papers are
listed in Table 7 highlighting several fault-tolerant techniques in different scenarios of the
UAV systems. In our survey, the following approaches are found in the recent works for
designing the fault-tolerant CP of UAVs in terms of methodology, modeling, and algorithms
for reliability enhancement.

Bayesian Networks:

BN are stochastic modeling techniques extensively used to represent and analyze
complex systems. In works [77,78], authors presented BN-based health management
networks to continuously monitor sensors, software, and hardware components for the
detection and diagnosis of UAV failure. Further, they extended their BN-based health
management by including an embedded Decision-Making module for UAV mission [76,79].
In another similar work [80,81], the authors incorporated Markov Decision Process with the
BN-based model for Failure Mode and Effect Analysis table to evaluate different types of
modules. They demonstrated a case study for a target tracking mission that their proposed
model can provide Quality of Service (QoS) in missions in hazardous environments.

Markov Chains Model:

Markov Chains Model (MCM) is also another probabilistic model that recently has
received much attention in the reliability and safety domain in UAV applications. Ref. [92]
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provided fault-tolerant models based on MCM for the flight control and navigation system.
In addition, they also proposed a reliability synthesis method that allows quickly making
rational choices for fault-tolerant systems to meet the required level. Another research
work [91] proposed MCM based on designing the flight control system for IMU, in which
the authors initially created a system modeling language model and then transformed
it into a Dual-Graph Error Propagation Model. Finally, the MCM model was used to
evaluate the system dependability matrices. Both soft and hard faults should be taken
into consideration when designing fault-tolerant computing architecture, as described in
the study [87]. The authors included soft errors such as SEUs and hard faults such as
permanent fault models based on MCM and implemented the fault-tolerant re-configurable
architecture on the FPGA- and MC-based CP. In addition, Principal Component Analysis
(PCA) is used to classify a UAV’s health conditions based on the accelerometer data. Similar
research [88] also investigated both soft and hard faults in a more extended way in terms of
reliability, power consumption, and system weight when Continuous Time MCM is used to
estimate reliability. They included Dynamic Partial Reconfiguration (DPR) for the recovery
cases when faced with soft or hard errors and chip failures.

Kalman Filter:

Kalman filter, also known as linear quadratic estimation, is an algorithm that has nu-
merous applications such as guidance and navigation, vehicle control, specifically aircraft,
and UAVs. In [84], a robust dynamic model-based estimator was proposed to estimate the
states and faults of the three-axis accelerometer using the Kalman filter algorithm. The
authors of [86] mentioned a fast and accurate fault detection technique for onboard naviga-
tion sensor faults. They employed a Kalman filter to estimate real-time model-free residual
analysis and a data-driven Adaptive Neuron Fuzzy Inference System to build a reliable
fault detection system. The failures of sensors and actuators for UAVs were investigated in
a fault-tolerant flight control system using an adaptive Kalman filter [83]. Their proposed
design also can isolate the sensors when found any fault. Ref. [93] achieved optimization
at the collaborative position of the faulty UAVs due to GPS faults by employing extended
Kalman filters.

Automata:

In [94], the authors presented a novel framework based on statistical model checking
with composed Priced Timed Automata for the reliability analysis of UAV. To measure
the reliability of UAV-UAV communication, several Automata models are introduced
for the communication modules such as UAV’s transmitter, receiver, data exchange, and
replacement model. A comparable DPR design strategy for UAVs for reliable autonomous
management was reported in work [95] using the Automata model.

Neural Network:

In the previous section, we have seen many applications of the NN model in the image
processing for the object detection and path planning task of autonomous UAVs. Now,
we will discuss how the NN model can also contribute to making the UAV fault-tolerant.
In [96], the authors reported a fault diagnostic system based on a hybrid feature model and
DL to monitor the sensor’s fault. In a similar work [85], a DL-based fault diagnostic system
was also reported considering real-time fault detection and employing a PCA technique
to improve computing efficiency in the DNN implementation. In another work in [97],
an improved algorithm was proposed for fault-tolerant IMU considering the reduction of
redundant information processing in the NN operation. In [89], the authors investigated the
effects of radiation-induced error on the SRAM-based FPGA, where the NN was mounted.
They reported that their proposed quantized CNN layer is 39% less sensitive to radiation.
A similar quantized CNN method analyzed the impact of SEU on the reliability of the
proposed CNN on the FPGA-based CP that includes a Triple Modular Redundancy module
in [90].
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Table 7. Summary of reliability enhancement in UAV system .

Approach Safety and Reliability
Enhancement Application Sensors/Actuator/Module Computing

Platforms Ref.

Decision making including
failure management Critical mission GPS, Battery Xilinx SoC-FPGA

(ZED Board) [76,80]

Ba
ye

si
an

ne
tw

or
k Decision making failure

management Critical mission GPS, Battery Xilinx FPGA SoC
(ZED Board) [78]

Decision making failure
management Critical mission GPS, Battery Xilinx FPGA SoC

(ZED Board) [79]

Embedded health
management

Critical mission
computing Accelerometer Xilinx ZED FPGA [77]

Fault detection, isolation,
and recovery Critical mission GPS, Battery Xilinx Zynq FPGA [81]

Reliability synthesis for
flight computer Navigation FCC – [92]

M
C

M Fault-tolerant architecture SAR mission Motor, Accelerometer FPGA, µC [87,88]
fault-tolerant inertial

navigation system Navigation IMU µC [91]

Re-configurable
fault-tolerant control Safety mission Actuator – [83]

K
al

m
an Fault-tolerant accelerometer High altitude mission Accelerometer KARI EAV-3 [84]

Fault-tolerant
cooperative system Navigation GPS, Radar, IMU – [93]

Sensor and navigation
fault detection Navigation IMU – [86]

A
ut

om
at

a Resource management for
safety purposes Video tracking Camera Xilinx FPGA ARM,

Neon processor [95]

Statistical framework
for SEU UAV communication COM – [94]

N
eu

ra
ln

et
w

or
k Fault detection for sensors Navigation GPS, IMU Ultra-Stick 25e UAV
simulation model [96]

Reliable CNN for FPGA CNN accelerator Accelerator Xilinx Zynq FPGA [89]
Decision making

failure management General FCC Xilinx Zynq FPGA [85]

Analysis SEU General On-chip Pynq Z2 FPGA [90]
Fault-tolerant

neural network Mission IMU FPGA, µC [97]

Fuzzy logic Fault-tolerant quadcopter SAR mission FCC FPGA, µC [98]

Tracking algorithm Failure detection
and identification Visual inspection Camera Odroid U3 [99]

Polygonal linear
consecutive Mission reliability Mission Node-based – [100]

Cooperative control
model

Fault-tolerant for
cooperative drone

Control multiple
UAVs Actuator – [82]

Model-free control Algorithmic optimization
Controlling in
unstructured
environments

Underactuated
manipulator – [101]

Event-triggered Resource optimization Networked control
systems Actuator – [102,103]

Unified modeling Automatic testing platform Real-time fight
simulation FCC Pixhawk autopilot [104]

Other Techniques:

Here, let us consider other research works that focus on different methods for de-
veloping reliable CP for UAVs. Another fault-tolerant cooperative control was designed
in work [82] for the safety of multiple UAVs based on sliding mode techniques where
they investigated the scenarios involving actuator faults. In the paper [101], the authors
addressed the model-free intelligent and adaptive control approaches that can also handle
the failures and faults in the presence of various parametric and non-parametric uncertain-
ties. An event-triggered control is another effective control solution that can be used for
saving limited computation burden, battery power, and control cost of electrical devices
for UAV reliability enhancement as reported in [102,103]. A cooperative virtual sensor was
established for vision-based fault detection and identification in multiple UAV applications,
as discussed in [99]. Another fault-tolerant FC considering both SEU and total chip failure
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was developed in work [98]. In addition, an obstacle avoidance system has been established
using Fuzzy logic and investigated its performance through MATLAB tools. In work [100],
the authors investigated Mission reliability modeling for UAV swarms using the polygonal
linear consecutive system that analyzed the performance in terms of different reliability
and the structure optimization of UAV swarms. An automated test platform based on a
unified modeling method was presented and developed as a real-time simulation plat-
form by employing automatic code generation and an FPGA-based hardware-in-the-loop
simulation method [104].

5.1. Analysis of Reliability Enhancement

Figure 4 depicts a summary of many reliability enhancement techniques utilized in
the development of fault-tolerant UAV systems. For designing fault-tolerant to different
problems such as sensor and actuator errors, Bayesian and Markov chain-based models
are employed in the majority of instances. Many research employed the Kalman filtering
method to construct fault tolerance tracking and guided navigation systems. The DPR
approach has also been employed in the in-field resilience enhancement methods in a
CNN-based accelerator for reliable object recognition and classification tasks to deal with
soft- and hardware error problems.

Figure 4 also shows CP used for the reliability analysis where SoC-FPGA is used
in most of the cases, similar to the fault analysis stated in the preceding section. Finally,
we may deduce from the foregoing observations of reliability improvement works that
it is critical to managing the faults in all layers of the UAV system when constructing a
fault-tolerant UAV system.
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Figure 4. UAV computing platform reliability enhancement taxonomy.

5.2. Challenges in Reliability Enhancement of UAV

It is clearly observed in the previous section that faults or errors may occur at several
layers in the UAV system. From Figure 5, we summarize various layers in the UAV system
to mimic the possibilities of fault occurrence scenarios based on the recent research analysis
described in the previous section. The reliability threats for computing platforms are mainly
due to radiation-induced faults such as SEUs (soft errors) and hardware permanent errors,
e.g., the ones due to the nanoelectronics aging phenomenon [87–89]. Another important
threat may happen in the sensors and actuator layers due to the electro-mechanical fault
and harsh environment [86,91]. A UAV system may face system failure due to the effect of
any of the above two failures or both. For instance, due to any of these faults, the UAV may
send the wrong information to the GCS or other UAVs, UAVs unexpectedly fall in the civil
area or collide with other objects (UAVs, obstacles, etc.). In the case of multiple UAV swarm
intelligence, these scenarios eventually may cause mission failure as SoS failure [10,39]. As
a result, we require a UAV system “health” management that continuously monitors and
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analyzes faults and escaped errors, isolates or mitigates them, and maintains the mission
operational continuously even when individual system components fail. We have identified
the key challenges in developing reliability enhancement of UAV in the HW perspective:

Nanoscale implementation technology:

The current technological shrinking tendency of the devices makes UAV CPs highly
error-prone. The new, non-validated technologies and complex architectures imply a
variety of possible hardware-originated faults that may manifest themselves in each of the
layers shown in Figure 5. Such faults propagate across the system layers and cause masked
or non-masked (escaped) errors along the way.

Chip-level hardware architectures:

Another point of concern is UAV hardware architecture that presently includes
General-Purpose GPUs, many-core processors, APSoCs, Tensor Processing Units (TPUs),
Intelligence Processing Units, and SoC-FPGAs, etc., for the processing of CIP at the UAV
edge node discussed in Section 3. This scenario raises several important issues, includ-
ing HW/SW design complexity, adequate knowledge of their response to possible faults,
and effective new fault models. Secondly, detection and possibly tolerating faults should
be identified, taking into account that they should be cost-effective and have a shorter
time-to-market.

Complex architecture of UAV computing:

The intelligent UAVs deployed for computing-intensive applications imply a highly
complex distribution of computing tasks within a single UAV or event collaborative com-
puting hierarchical SOS architectures in the case of UAV swarms, as shown in Figure 2.
Currently, there is no established comprehensive reliability modeling methodology support-
ing the distribution of computing in a holistic manner. Specifically, collaborative computing
in a swarm of UAVs needs optimized solutions in constrained resource utilization for
real-time applications.

Autonomy requirements of UAV:

UAVs still do not have complete autonomy. Most of them are semi-autonomy levels,
in which several UAV flight functions, such as collision avoidance, object detection and
tracking, run autonomously using AI. More research is needed to develop the decision-
making capabilities of UAVs. Safety- and mission-critical inspections for autonomous UAVs
have certain limitations, such as weather, accessibility, weight, and regulations. Similarly,
autonomous fault detection capability, in-field failure analysis, adaptive to a fault, and
resource allocation are significant attributes in developing an autonomous UAV.

Constrained resources of a mobile device:

Another challenge to the reliability of UAV systems is the accurate assessment and
management of the limited resources, such as battery power, the slacks of real-time exe-
cution time, etc. for the reliability overheads, i.e., the redundancy for the fault tolerance.
The solutions should be capable of efficiently and dynamically managing the system-level
performance and priorities in runtime.

Standards:

The International Organisation for Standardisation (ISO), ISO TC20/SC16 [105] speci-
fies several requirements in the field of UAS, including classification, design, manufacture,
operation (including maintenance), safety, and traffic management of UAS operations.
Many standards are still under development, such as test methods for civil multi-copter
UAS, guidelines for UAV testing/design of accelerated life cycle testing for UAS, and test
methods for flight stability of multi-copter UAS in challenging environments.
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6. Cross-Layer Reliability of UAV Computing Platforms

To tackle the challenges of establishing reliability for UAV computing platforms,
cross-layer reliability approaches similar to [8,9] is a promising solution.

Figure 6 shows the overall concept of a cross-layer reliability model for the UAV
CP. This hierarchical CLR model integrates several heterogeneous self-health awareness
parts Figure 6a. We have seen in the previous section that failures may happen at the
different layers of the UAV system. The CLR model considers the faults from the lower
layers of CP (HW, embedded SW) up to the SoS layer. This approach aims at the ability of
the UAV system at each of the layers to comprehend and maintain its health by monitoring
the fault-related information, as well as adapting to any dynamic changes when the fault
occurs at any layer. This health information is then propagated to the higher layer to adapt
the specified operations, thus preventing failures and disastrous consequences.
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Figure 6. Cross-layer reliability model. (a) Cross-layer reliability modeling at different layers of UAV
system. (b) System architecture of reliable UAV edge node, computing platforms, and on-chip health
monitoring system.

The CLR model is depicted more elaborately from the chip to the system level than as
simple in Figure 6b. Depending on the system complexity, the health monitoring system
in the CP architecture can be implemented within a single SoC [76] or expanded over
several hierarchical layers in a large system [30,31]. The hierarchical levels in the complex
system may require several devices (µP, µC, SoC-FPGA, GPU, TPU, etc.) located on one or
more PCBs (see 1 in Figure 6b). The embedded (on-chip) instruments or monitors access
the health data from several sensors, internal and external, using e.g., IJTAG [106] (see
2 in Figure 6b) and convey the health information to the local controller called Health

Management (HM) as an on-chip self-health monitoring system. According to the fault and
resource management at various sub-modules, the device can include many embedded
instruments or/and HM controllers or system-level controllers.

To improve the resiliency of the UAV edge node against the reliability threats such
as aging, soft or hard error, effective mitigation techniques are required. Thus, the local
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embedded controller reports the health status to the central higher controller in the hier-
archy. Fault monitoring and resilience, which includes fault or error detection, analysis,
classification, and decision or fault handling, can be carried out in the on-chip or off-chip
embedded SW (see 3 in Figure 6b).

The HM is an SoC [76,107] that contains several on-chip sensors for in-field health
monitoring such as aging, temperature, voltage, soft/hard error, and other sub-modules
(payloads, sensors, and actuators) of UAVs (see 4 in Figure 6b). Built-in-Self-Test can also
be created by employing embedded instruments connected to the IJTAG network to monitor
on-chip health [108]. Health information from UAV sub-modules can be accessed through
conventional ports (I2C, CAN, UART, etc.) and an extended IJTAG network [109]. The
Decision Manager (DM) in the embedded SW acts as a virtual (processing system) sensor or
actuator [110] that makes decisions based on indirect measurements of abstract conditions,
contexts, inferences, or estimations from on-chip sensors or external sensors in the UAV
sub-modules (see 5 in Figure 6b). This DM network is a software/hardware co-design that
acts as a virtual actuation and can predictably influence system design objectives such as
performance, power, and reliability, as well as system QoS [111]. By incorporating current
techniques such as Bayesian Network, Markov Model, Kalman Filtering, and CNN, the
reliable HM model can be mapped as stated in the previous section [76,89,104,112].

It is worthwhile to consider the performance of the UAV mission and QoS firmly when
integrating the aforementioned CLR model into the UAV system. Resource optimization
and self-awareness attributes are valuable requirements when designing an energy-efficient
reliability model for a specific UAV application.

7. Conclusions

With technological development, UAVs can perform many tasks such as object de-
tection and tracking, product delivery, agriculture and environmental monitoring, which
demand reliable operation. This paper represents the research results of UAV computing
platforms such as SoC FPGA, ASIC, GPU, µC, along with their FMs used in these applica-
tions. Both CP and sensors/actuators in the FMs encounter faults that cause UAV failures
such as crashes with obstacles, position, altitude, incorrect classification, etc. Defects in one
module of a UAV may induce errors in another module. Owing to the heterogeneous sys-
tem architecture of UAVs, constraints, technology, and different standards, it is challenging
to build a fault-tolerant CP when considering the faults holistically.

Recent fault-tolerant techniques focus on either sensor/actuator faults or on-chip
defects. Considering the effect of these faults in all sub-modules of UAVs on health
monitoring requires careful attention for reliable operation. UAVs must be capable of
self-adapting to defects and faults in safety-critical applications. Obtaining CLR and
self-awareness for UAV CP by integrating all health information is essential for scientific
research in developing fault-tolerant CP for UAVs.
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Abbreviations

The following abbreviations are used in this article:

APSoC All Programmable System-on-Chip
AI Artificial intelligence
BN Bayesian Network
CIP Computation-Intensive Payload
CLR Cross-layer Reliability
CNN Convolutional Neural Network
COM Communication Module
COTS Commercial-Off-The-Shelf
CP Computing Platform
DL Deep Learning
DM Decision Manager
DNN Deep Neural Network
DPR Dynamic Partial Reconfiguration
DSP Digital Signal Processor
FCC Flight Control Computer
FDM Frequency Division Multiplexing
FFT Fast Fourier Transform
5G Fifth-Generation
FM Functional Module
FPGA Field-Programmable Gate Array
GNC Guidance Navigation and Control
GPS Global Positioning System
GPU Graphical Processing Unit
HM Health Management
HW Hardware
IMU Inertial Measurement Unit
ISO International Organisation for Standardisation
Lidar Light Detection and Ranging
MCM Markov Chains Model
MIMO Multiple-Input Multiple-Output
ML Machine Learning
µC Micro-Controller
µP Microprocessor
NN Neural Network
NNA Neural Network Accelerator
OS Operating System
PCA Principal Component Analysis
PID Proportional Integral Derivative
QoE Quality of Experience
QoS Quality of Service
Radar Radio Detection and Ranging
SAR Search and Rescue
SDR Software-Defined Radio
SEU Single-Event Upset
SoC System-on-Chip
SoS Systems of Systems
SW Software
TPU Tensor Processing Unit
UAS Unmanned Aerial System
UAV Unmanned Aerial Vehicle
YOLO You Only Look Once
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