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Abstract: The real-time, continuity, and accuracy of blast furnace stockline information are of great
significance in reducing energy consumption and improving smelting efficiency. However, the
traditional mechanical measurement method has the problem of measuring point discontinuity,
while the radar measurement method exhibits problems such as weak anti-interference ability, low
accuracy, and poor stability. Therefore, a high-dimensional, spatial feature stockline detection method
based on the maximum likelihood radial basis function model (MLRBFM) and structural dynamic
self-optimization RBF neural network (SDSO-RBFNN) is proposed. Firstly, the discrete time series
joint partition method is used to extract the time dimension periodic features of the blast furnace
stockline. Based on MLRBFM, the high-dimensional spatial features of the stockline are then obtained.
Finally, an SDSO-RBFNN is constructed based on an eigen orthogonal matrix and a right triangular
matrix decomposition (QR) direct clustering algorithm with spatial–temporal features as input,
so as to obtain continuous, high-precision stockline information. Both the simulation results and
industrial validation indicate that the proposed method can provide real-time and accurate stockline
information, and has great practical value for industrial production.

Keywords: blast furnace; stockline detection; mechanical probe; radar probe; high-dimensional
spatial features

1. Introduction

In the iron and steel industry, energy saving and emission reduction are the main
challenges. In steel production, the ironmaking process consumes more than 70% of
the energy and emits most of the CO2 [1]. The blast furnace stockline is a key control
parameter in the ironmaking process. Accurate and continuous real-time blast furnace
stockline information is the key to adjusting the blast furnace production process, achieving
precise control of blast furnace material charging, and stabilizing blast furnace working
conditions [2]. A blast furnace is a typical black box and a large metallurgical reactor [3].
The environment in the furnace is extremely harsh, with the features of high temperature,
high pressure, closed, and dusty, etc. [4]. It is very difficult to accurately measure the
blast furnace stockline in real time without interruption [5]. At present, mechanical probes
and radar probes are common tools for stockline detection [6]. The mechanical probe
method is to use a steel wire rope to lower the heavy hammer to the blast furnace burden
surface, and measure the length of the steel wire rope through the winch to obtain the
stockline information. The contact-type stockline measurement method has high accuracy
and stability [7], but there are defects, such as a lengthy measurement cycle, the inability
to continuously measure, and being unable to perform any work during the blast furnace
material feeding period [8]. As another important piece of measuring equipment for the
blast furnace stockline, the radar probe receives the directional radar wave reflected from
the material surface, processes it with the time-of-flight (TOF) algorithm, and measures
the stockline information in real-time. This method is widely used due to its advantages
of non-contact, high penetration, and real-time performance [9]. However, because the
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smelting environment in the blast furnace is extremely harsh [10], the high-speed airflow
and high concentration of dust in the furnace often interfere with the radar directional
echo signal, which makes the measurement accuracy fluctuate, and have poor stability and
low reliability [11]. Therefore, overcoming the defects of the two methods for stockline
measurement and using the advantages of the two methods, so as to obtain the stockline
detection data continuously and with high precision in real-time, is a scientific problem
that requires solving urgently.

In order to improve the stability of the traditional mechanical probe and enhance
its adaptability to abnormal working conditions, Ma et al. proposed a closed-loop speed
control method, which realized anti-flip control by changing the anti-flip torque in the
variable torque control, so as to realize the uniform motion of the mechanical probe weight
hammer, and ensure the stability and accuracy of the process [12]. Liu proposed a new
encoder–decoder architecture composed of a convolutional neural network (CNN) and a
long-term and short-term memory (LSTM) network. This architecture suppressed the noise
interference in the measurement of the mechanical probe. Based on an LSTM network,
a large number of historical measurement data were modeled, and the model was used
to predict the unmeasured material sites of a mechanical probe to solve the problem of
discontinuous measurement [13]. Although the above research improves the reliability
and accuracy of measuring the stockline with a mechanical probe, it cannot realize high-
precision and continuous real-time measurement with a mechanical probe. In the research
of measuring a blast furnace stockline with a radar probe, Wang based on the learning-based
key points estimation (KP-BSP) method, reconstructed the key points in the BSP image
of a radar probe, and proposed the key-points-based connected region noise reduction
(KP-CRNR) algorithm to eliminate the influence of noise, improve the signal-to-noise ratio
of the radar signal, and the measurement accuracy of the radar probe [14]. An improved
solid-state radar measurement and signal processing method were proposed in [15], and a
special phase-controlled radar was designed, which adopted the improved FM continuous
wave measurement principle, and combined the intelligent time-varying threshold signal
processing method to synchronously improve the real-time performance and accuracy of
stockline measurement. Yu improved the three-dimensional synthetic aperture radar (SAR)
imaging method of a blast furnace stockline based on a range migration algorithm (RMA),
and increased the imaging speed and imaging quality by adding raw data down-sampling,
targeting feature extraction, frequency domain zero filling, and other operations [16]. Xiu
adopted a threshold segmentation method based on bandwidth variance iteration to remove
noise, and an energy center of gravity method based on weighted sampling to sharpen the
peak ridge, which improved the accuracy of the swing radar measurement of blast furnace
stockline data [17]. The above methods were breakthroughs in radar probe principle design
and data processing algorithms, which provide technical support for radar imaging of the
whole blast furnace charge surface, and are of great significance for fine control of blast
furnaces [18]. However, the problems of low measurement accuracy, large fluctuation,
and the instability of the radar probe ruler have not been solved [19]. At present, more
researchers are focused on building an intelligent model based on the detection data of the
stockline collected by two probes through a deep network, which integrates the advantages
of two measuring instruments, and realizes high-precision, continuous soft-sensing of the
stockline. For example, in [20], Chen et al. proposed the dynamic self-growing RBFNN,
based on the data distribution features of a radar probe, which combines the advantages
of two probes online in real-time, improves the accuracy of stockline measurement on the
premise of ensuring the continuity of stockline measurement, and has certain practical
value. In [21], Chen et al. extracted the spatiotemporal features of radar probe data, and
based on the fast clustering algorithm of feature vector space, constructed the efficient
structure self-tuning RBFNN, and realized the fusion measurement of two kinds of probe.

The above-mentioned detection methods realize the fusion measurement of radar
probe data and mechanical probe data. However, it is difficult to extract the spatial
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distribution parameters of a radar probe, and the clustering results are greatly affected by
the initial value, which still needs to be solved.

For this reason, a real-time online measurement method for the blast furnace stockline,
based on high-dimensional spatial features, is proposed. Figure 1 shows the research
framework. Firstly, the discrete time series joint partition method is used to divide the joint
period of radar and mechanical probe data. Then, aiming at the high-order, non-linear
features of radar probe data space in a period, a maximum likelihood radial basis function
model modeling method is proposed, which fully excavates the internal structure of the
radar probe data and extracts the high-dimensional spatial features. On this basis, taking
the high-dimensional spatial features and periodic features of the radar probe as inputs,
based on the proposed QR decomposition direct clustering algorithm, a structural dynamic
self-optimization RBF neural network is constructed. By integrating the advantages of
mechanical probes and radar probes, the real-time continuous and high-precision detection
of stockline information is obtained.
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Figure 1. Research framework of the blast furnace stockline detection.

The remainder of the paper is organized as follows: In Section 2, the high-dimensional
spatial features extraction of radar data, based on the maximum likelihood radial basis
function model, is described. In Section 3, a structural dynamic self-optimizing RBF neural
network, based on feature QR decomposition and a direct clustering algorithm, is proposed
for the real-time, high-precision detection of a blast furnace stockline. In Section 4, the
simulation and industrial verification results are given. Section 5 is the conclusion.

2. High-Dimensional Spatial Feature Extraction
2.1. Data Analysis and Material Charging Cycle Division

In the process of blast furnace material charging, the iron ore and coke are unloaded
to the blast furnace burden surface in batches through the rotary chute. According to the
material charging technology, the material charging process is usually divided into the
material feeding period and the material charging idle period (abbreviated as idle period),
in which the material feeding period lasts about 1.5–2 min and the idle period lasts about
1.5–4 min. Under normal working conditions, the duration of a complete material charging
cycle of blast furnace is usually controlled within 3–6 min. Figure 2 shows the stockline
information (the height of stockline) obtained by radar and mechanical probes, which
shows that the change in stockline exhibits periodic features. The stockline decreases with
the increase in burden surface in the material feeding period, while the stockline increases
with the decrease in burden surface in the idle period. As shown in Figure 2, it is also
found that the sampling process of the stockline by the mechanical probe is discrete. It is



Sensors 2022, 22, 6245 4 of 24

only sampled once in the idle period of each material charging cycle, while the sampling
of the stockline by the radar probe is once every 10 s, which leads to the sampling data of
the two probes being asynchronous, and it is difficult to match them. Therefore, a sliding
window data processing method is presented, as shown in Figure 3. A window with
width N is used to map radar data with the mechanical probe data. N can be determined
according to the degree of correlation between the two detected data. Through the sliding
operation, the matching problem of the infinite dimensional data of the two detection
methods is transformed into the corresponding problem of N data in one window, which
lays a foundation for the deep mining of the internal relationship between the two detection
data and real-time accurate measurement of stockline.
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where p  is the number of radar sampling data, t  is the stockline detection time, and l is 
the charge surface detection height. In the same way, the finite set of time series of 
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Figure 2. Stockline information detected by mechanical probe and radar probe.
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Considering that the material charging operation of a blast furnace is carried out
periodically, the high-precision periodic division of the radar and mechanical probe data
is the key to mining the internal relationship between the data of the two probes and
extracting the high-dimensional spatial features of blast furnace stockline change. Setting
the radar probe data as a finite set of time series is described as:

R = {(t1, l1) , (t2, l2), · · · ,
(
tp, lp

)}∣∣
tj<tj+1(j=1,2,··· ,p−1) (1)

where p is the number of radar sampling data, t is the stockline detection time, and l is the
charge surface detection height. In the same way, the finite set of time series of mechanical
probes is described as follows:

T = {(tT0, lT0) , (tT1, lT1), · · · , (tTn, lTn)}|tTi<tTi+1(i=1,2,··· ,n−1) (2)

where n is the number of data sampled by the mechanical probe. Using the discrete
time series joint partition method, the measurement data of the two probes can be par-
titioned with high precision, and the partition results are shown in Figure 4. The main
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steps of the algorithm are shown in Algorithm 1. After the algorithm processing, the
results of the time series partition of the radar and mechanical probes can be expressed as
L = { Li| Li = {Ui , Di}, i = 1, 2, · · · , n}, where variable i represents the ith material charging
cycle. Ui =

{(
tj, lj

)
∈ R

∣∣tmini ≤ tj ≤ tmaxi
}

represents the stockline sequence of the mate-
rial feeding period in the ith cycle, and Di =

{(
tj, lj

)
∈ R, (tTi, lTi) ∈ T

∣∣tmaxi ≤ tj ≤ tmini+1
}

represents the stockline sequence of the idle period in the ith cycle.
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Algorithm 1: Discrete Time Series Joint Partition Method

1. Determine all extreme points and measurement time of radar data time series;
2. Based on the measuring time point tTi(i = 0, 1, 2, · · · , n) of mechanical probe data, the

relative position relationship between all extreme points of radar probe data and reference
points is determined;

3. According to the order principle of (minimum–datum–maximum–minimum), the time
series of radar data are divided into N detection periods, and the material feeding period,
idle period, and the starting and ending dividing points of the material charging period are
recorded as (tmaxi, lmaxi), (tmini, lmini), and (tmini+1, lmini+1), respectively;

4. return the detection periods N and the corresponding ending dividing points (tmaxi, lmaxi),
(tmini, lmini), and (tmini+1, lmini+1).

2.2. Modeling of Radar Data Based on Maximum Likelihood Radial Basis Function
Model (MLRBFM)

The sampling number of radar data of the stockline is set as n in each material
charging cycle, and the time series of the radar probe data in the cycle is described as
Ri = {(ti1, li1), (ti2, li2), · · · , (tin, lin)}. Considering the material charging control strategy
of blast furnaces, the workers try to maintain the fluctuation of the stockline close to the
standard control stockline l0 = 1.5 m in every material feeding cycle, in order to ensure the
high efficiency and smooth operation of the blast furnace. Due to this material charging
operation mode of field workers, it is easy to find obvious normal distribution features in
statistics by statistically analyzing the stockline measurement data of the radar probe at
the same time in multiple different cycles. To test this hypothesis, 14 h of continuous radar
probe data were used for verification. As can be observed in Figure 5, the red dotted line
represents the normal distribution data set, while the blue dot represents the radar data.
The radar data are roughly evenly distributed on the diagonal line, which indicates that
they conform to the normal distribution. A Kolmogorov–Smirnov check of the data shows
that the degree of confidence P of the dataset at each time point is greater than 0.05, which
shows that the hypothesis conforms to the normal distribution and cannot be rejected.
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In order to deeply mine the intrinsic data distribution relationship of radar probe data,
m(m > 106) cycles are selected from the radar probe history database, and the sampling
number of radar probes in each cycle equals n = 36. At the same time, the maximum
likelihood estimation method is used to obtain the normal distribution function of the radar
data at each time in the selected m periods by sampling points at each time in the period.
Setting the j(j = 1, 2, 3, · · · , 36)th sampling data collected by radar probe in the kth period
of m periods as lkj, using maximum likelihood estimation, the Gaussian normal distribution
function of the jth sampling data of radar data in any period can be described as:

Lj

(
µj, σ2

j ; x
)
= 1√

2πσj
e
−

(x−µj)
2

2σj
2

µj =
1
m

m
∑

k=1
lkj

σj
2 = 1

m

m
∑

k=1

(
lkj − µj

)2

(3)

where µj and σj are the mathematical expectation and variance of Gaussian normal distri-
bution of the jth data of radar probe in the period, respectively.

The change in the stockline in a blast furnace has high-dimensional spatial distribution
features. In order to obtain high-dimensional spatial features of the blast furnace level with
high precision, to fully reflect the spatial change law of the blast furnace level, a radar data
MLRBFM can be established, based on the period division result of radar probe data and
the maximum likelihood estimation of sampling points at each time in the period. The
model structure is shown as:

li(t) =
n=36

∑
j=1

aijexp

(
−
‖t− µj‖2

2σj
2

)
+ εi (4)

where i = 1, 2, · · ·, m represents the ith material charging period, aij represents the j-
dimensional spatial feature parameters of radar data extracted in ith period, and εi repre-
sents the regression error of the MLRBFM. For the convenience of explanation, the extracted
high-dimensional space feature vector of radar data is set as αi =

(
ai1, · · · , aij, · · · , ai36

)T ,
the radial basis function vector is set as δi =

(
δi1, · · · , δij, · · · , δi36

)
δij=e

(−
‖t−µj‖

2

2σj
2 )

, and the

mechanical probe measurement data sequence (tTi, lTi) is combined into the above formula
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as a reference point and vectorized, so the maximum likelihood radial basis function model
of radar data is shown as:

li(t) = δi · αi + εi + (lTi − lRi) (5)

where lRi is the radar data sampling point closest to the sampling time of the mechanical
probe in the ith period. For the determination of high-dimensional spatial feature vector αi
of radar data, the least square method can be used to solve it, and its calculation formula is
as follows:

αi =
(

δt
i
T

δt
i

)−1
δt

i
T L (6)

δt
i represents the radial basis function matrix formed when the value of time variable

t in radial basis function vector δi traverses t = tj, that is, when the value of t traverses
the time when the radar probe collects the j, j = 1, 2, 3, · · · , 36th data in the cycle. L is the
column vector composed of the measured stockline values of the radar probe in the current
period, which is described as L = (li1, li2, · · · , li36)

T .

2.3. Significance Test of Radar Maximum Likelihood Radial Basis Function Model

In order to verify the significance of the MLRBFM of radar data and the validity
of the extracted high-dimensional spatial features, it is necessary to test the statistical
significance of the model. Taking the ith period of the MLRBFM as an example, if the
model regression value at tij is l̂ij, the model regression residual generated here can be
described as lij − l̂ij, and its regression square sum RSSi and residual square sum ESSi can
be expressed as follows: 

RSSi =
n
∑

j=1

(
l̂ij − li

)2

ESSi =
n
∑

j=1

(
lij − l̂ij

)2 , l =
1
n

n

∑
j=1

lij (7)

where n = 36, and the unbiased estimation of F detection statistics, R2 detection statistics,
and standard deviation of MLRBFM regression analysis of radar data can be calculated by
the following equation: 

Fi =
RSSi

ESSi/(n−2)

Ri
2 = Fi

Fi+(n−2)

σ̂i =
√

ESSi
(n−2)

(8)

For a given significance level a, the judgment condition of significance of the model is
Fi ≥ F1−a(1, n− 2). In addition, the t = to confidence interval 1− a of the calculated value
l̂io of the model at t = to is (l̂io − σo, l̂io + σo), where σo is calculated by:

σo = t1−α/2(n− 2)σ̂i

√√√√ 1
n +

(tio−ti)
2

n
∑

j=1
(tij−ti)

2

ti =
1
n

n
∑

j=1
tij

(9)

where R2
i represents the hit rate of radar measurement data falling into the confidence

interval of the model, so F and R2 are the two main test statistics of the MLRBFM of radar
data, and the higher their values, the better the significance of the model and the higher the
coincidence between the model and the time series of the stockline detection data.
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3. Structural Dynamic Self-Optimization RBF Neural Network

Under complex blast furnace conditions, there are many unknown influencing factors.
The change in a blast furnace stockline presents randomness and uncertainty, which leads
to the spatial features of blast furnace stockline data showing high-dimensional features.
The dynamic self-optimizing RBF neural network (SDSO-RBFNN) algorithm is constructed
in this paper to characterize the high-dimensional spatial features of the blast furnace
stockline, integrate the advantages of the two probes, and achieve an accurate, real-time
acquisition of blast furnace stockline information. Firstly, the input samples of the algorithm
are composed of the high-dimensional spatial features, periodic features, and radar probe
data processed by the smooth window of blast furnace charge level. Secondly, based on
the feature QR decomposition direct clustering algorithm proposed in this paper, the input
samples are clustered to determine the cluster center and width of the input samples. Then,
based on RBF neural network, a structural dynamic self-optimization network structure is
designed. By adding, merging, and pruning the hidden nodes of the network, the network
structure changes with the features of the input samples, and the related parameters of
the network structure are optimized and updated independently to realize the network
structure self-optimization, and complete the learning and training process of the SDSO-
RBFNN algorithm. Finally, the trained network is used to output the stockline information
at the next moment, and the whole algorithm is realized.

3.1. Eigen QR Decomposition Direct Clustering Algorithm (EQRDD)

The input sample of the algorithm consists of three parts, which are the high-dimensional
spatial features of each cycle, the periodic features, and the radar detection data processed
by sliding window in this cycle, as shown in Equation (10).

xi(k) = (tmini, tmini+1, α i
T , li

k−N+1, · · ·, li
k

)
(10)

where xi(k) represents the input sample of the ith cycle and the kth window of blast furnace
charge level. In a material charging cycle, the blast furnace stockline is artificially controlled
above or below the standard stockline, which leads to the typical clustering phenomenon of
radar data. In addition, the dusty and dynamic environment in the furnace greatly affects
the accuracy and stability of radar probe measurement, which makes the measurement
results fluctuate greatly, with low accuracy and a low signal-to-noise ratio. In order to
deeply explore the inherent clustering features and correlation of input samples, an eigen
QR decomposition direct clustering algorithm is proposed. In the algorithm, an n × m
input sample matrix for m input sample datasets X = [x1, · · · , xm] can be formed, and is
then clustered into k classes. The input sample matrix X can be expressed as the following:

XE = [X1, · · · , Xk], Xi = [x(i)
1

, · · · , x(i)si ] (11)

where E is the rotation matrix, si is the number of samples contained in each class, and Xi
is the sample data vector contained in the ith class represented by the n× si matrix. For
the partition ∏ of the matrix X described by Equation (11), its correlation square sum cost
function can be defined as:

ss(∏) =
k

∑
i=1

si

∑
s=1
‖x(i)s − xi‖

2
, xi =

si

∑
s=1

x(i)s
si

(12)

where xi is the average vector of the ith class sample data, the vector
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F
X Tr X X  (13)

Equation (12) can be deformed into: 

 

 

2

1

2

1

k
T

i i F
i

k
T

i si i
F

i

ss X x e

X I ee s





  

 




 (14)

Note that T
si iI ee s  is the projection matrix, so the following formula holds 

constant: 

 2T T
si i si iI ee s I ee s    (15)

In combination with Equations (13)–(15), Equation (12) can be further changed into 
the following form: 

is intro-
duced, and by means of the matrix, the Hilbert–Schmidt norm is shown in Equation (13).

‖X‖F =
√

Tr(XTX) (13)
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Equation (12) can be deformed into:

ss(∏) =
k
∑

i=1
‖Xi − xieT‖2

F

=
k
∑

i=1
‖Xi
(

Isi − eeT/si
)
‖2

F

(14)

Note that Isi − eeT/si is the projection matrix, so the following formula holds constant:(
Isi − eeT/si

)2
= Isi − eeT/si (15)

In combination with Equations (13)–(15), Equation (12) can be further changed into
the following form:

ss(∏) =
k

∑
i=1

(
Tr
(

XT
i

Xi

)
−
(

eT
√

si

)
XT

i
Xi

(
e√
si

))
(16)

Setting the orthogonal matrix U of m× k as follows:

U =

s1
s2
...

sk


e√
s1

e√
s2

. . .
e√
sk

 (17)

Equation (16) can be simplified into:

ss(∏) = Tr
(

XTX
)
− Tr

(
UTXTXU

)
(18)

Obviously, the best strategy of dividing the input sample matrix X into k class is
equivalent to the partition strategy, which minimizes the correlation square sum cost
function min ss(∏) described in Equation (12). Considering that Tr

(
XTX

)
is determined

by the sample space, the min ss(∏) problem is equivalent to the optimization problem
described as:

max
UTU=Ik

Tr
(

UTXTXU
)

(19)

According to the Ky Fan theorem, for the real symmetry matrix A = XTX with
eigenvalues, λ1 ≥ λ2 ≥ · · · λm is its eigenvalue and (ν1, ν2, · · · , vm) is its eigenvector.
Under the constraint of UTU = Ik, the following equation holds constant:

λ1 + λ2 + · · · λk = max
UTU=Ik

Tr
(

UT AU
)

(20)

The optimal matrix U∗ can be calculated by:

U∗ = [ν1, · · · , νk]H (21)

where H is any orthogonal matrix. Then,

min ss(∏)
≥ Tr

(
XTX

)
− max

UTU=Ik

(
UTXTXU

)
=

min{m,n}
∑

i=k+1
σ2

i (X)

(22)

where σi(X) represents the ith eigenvalue of matrix X.
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In order to quickly determine the optimal matrix U∗ and synchronously divide the m
input sample datasets into optimal k classes, it is assumed that the classification result of the
input sample matrix X described by Equation (11) is the optimal classification, which can
minimize ss(∏) of Equation (12). Each submatrix Xi represents a class, then the following
formula holds:

XTX =


XT

1
X1 0 · · · 0

0 XT
2

X2 · · · 0
...

...
. . .

...
0 0 · · · XT

k
Xk

 (23)

The largest eigenvector of XT
i Xi is set to be yi which satisfies the following equation:

AT
i Aiyi = µiyi, ‖yi‖ = 1, i = 1, · · · , k (24)

Constructing the matrix Yk as follows:

Yk =

s1
s2
...

sk


y1

y2
. . .

yk

 (25)

According to Davis− Kahan sin(Θ) theorem, it can be deduced that the following
equation holds:
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equation: 
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1
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k

T
k s k k ks k

cluster cluster k

y v y v y v y v    
 

 
(29)

Obviously, Equation (28) indicates that the best classification strategy of input 
sample matrix X  can be determined by the orthogonal linear transformation of matrix 

T
k , which is composed of the first k  maximum eigenvectors of matrix TX X , and 

Equation (29) gives a discriminant formula for judging which class the input sample 
belongs to. It is easy to prove that the orthogonal transformation of matrix T

k  into T
kY  

can be realized by QR decomposition of matrix T
k : 

 11 12,T
k P QR Q R R    (30)

where P  is a permutation matrix, Q  is an orthogonal matrix of k k , and 11R  is an upper 

triangular matrix of k k . By calculating T
k , the category discrimination matrix R


 can 

be calculated by the following formula: 

≡ [γ1, · · · , γk] = YkV + o(‖E‖) (26)

where A is the eigenvector of matrix B and satisfies the requirements of the following equation:

XTXγi = λiγi, λ1 ≥ λ2 ≥ · · · ≥ λm (27)

Matrix V = [v1, · · · , vk] is an orthogonal matrix of k× k; approximating Equation (26),
ignoring o(‖E‖) term, and taking transposition on both sides of the equation, it is reduced to:
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where P is a permutation matrix, Q is an orthogonal matrix of k× k, and R11 is an upper

triangular matrix of k× k. By calculating
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calculated by the following formula:

_
R = R−1

11 [R11, R12]PT =
[

Ik, R−1
11 R12

]
PT (31)

According to the row index number of the element with the largest absolute value

of the column corresponding to matrix
_
R, the cluster category to which each data vector

belongs can be determined. After determining the cluster category to which each input sam-
ple belongs, the sample set I(Ci) of any category i can be determined, and the calculation
formula of each cluster center vector ci is given.

ci = ∑
xs∈I(Cj)

xs/si

i=1,2,··· ,k

(32)

where si represents the number of elements in set I(Ci).

3.2. Structure Dynamic Self-Optimizing RBF Neural Network (SDSO-RBFNN)

Due to the complexity of blast furnace working conditions, and the harsh environment,
there is a strong non-linear correlation between radar probe data and mechanical probe
data. In order to effectively fuse the data of the two probes, and improve the accuracy
of stockline measurement on the premise of ensuring the real-time performance of the
algorithm, the SDSO-RBFNN network, with a network structure that efficiently adapts
data features and automatically optimizes network nodes and parameters, is proposed. Its
network structure is shown in Figure 5, and the mathematical key model of the network is
shown as: 

f (xi(k)) = yi(k) =
m
∑

j=1
ωj ϕj(xi(k))

ϕj(xi(k))=exp(−
‖x−cj‖

2

ϑ2
j

) , j=1,2,...,K
(33)

where xi(k) is the kth input sample data of the ith cycle, yi(k) is the kth output stockline
data measured by the network in the ith cycle, ϕj(xi(k)) is the Gaussian excitation function
of the jth hidden node, cj is the center of the jth basis function, ϑj is the width of the jth
basis function, K is the number of hidden nodes, and ωj is the output weight.

The number of hidden nodes, the center, and the width of the basis function can be
determined by real-time clustering with the EQRDD clustering algorithm for the input
sample set X. The number of clustering classes K is the number of hidden nodes, the cluster
center vector cj is the center of the basis function, and the width ϑj of the basis function can
be determined by: 

Gi = {xi(k) ∈ I(Cj)}
dj

max = max
xi(k)∈Gi

{‖xi(k)− cj‖2}

ϑj =
2dj

max
3 (1 ≤ j ≤ K)

(34)

where dj
max is the maximum distance from cluster center to sample point. In the calculation

of weights, the Gaussian basis function value matrix Λ is obtained by using Equation (35),
and Λ is a m× K matrix, where m is the total number of samples, and K is the number
of clusters.

ϕj(xi(k)) = exp

(
−
∣∣∣∣xi(k)− cj

∣∣∣∣
ϑ2

j

2)
(35)



Sensors 2022, 22, 6245 12 of 24

Then, the mechanical probe data corresponding to the input sample is formed into a matrix

YW = [ΛTΛ]
−1

ΛTY, and the weight vector W can be determined by the following formula:

W = [ΛTΛ]
−1

ΛTY (36)

Considering that the SDSO-RBFNN network can change with the increase in samples,
automatically update, merge, and generate hidden nodes in the network, automatically
adjust the number of hidden layer nodes, transform the network structure, and indepen-
dently optimize the network structure parameters online, it is also necessary to clarify the
strategy of the SDSO-RBFNN network to independently optimize and update the network
structure. The strategy is shown in Figure 6, and its specific steps are as follows:
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Step 1: Assuming that j hidden layer nodes already exist at time k, when the kth
data sample of the ith period enters the network, it is necessary to compare the similarity
between the kth input vector and the center vector of the existing j hidden nodes to find
the hidden layer node cl with the largest similarity, and set the maximum similarity as:

smax
(
xi(k), cj

)
= s(xi(k), cl) (37)

Step 2: Judging the size between s(xi(k), cl) and threshold b, if s(xi(k), cl) > b, it is
considered that the current network can complete the learning of new data, the number of
hidden layer nodes remains unchanged, and the parameters of the lth hidden layer node
are adjusted using Equation (38).

cl =
cl + xi(k)

2
(38)

Otherwise, it is considered that the kth input vector cannot activate any existing hidden
layer node, and a new hidden node requires to be added, that is,{

j = j + 1
cj+1 = xi(k)

(39)

Threshold b can control the classification accuracy of the network. When b is larger,
the classification accuracy is higher, and when b is smaller, the classification accuracy is
lower. According to different requirements, different values can be taken for b to satisfy
the requirements.
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Step 3: The distance between all hidden layer nodes in pairs is checked. If the distance
between two hidden layer nodes is less than d, the node with the largest node width is taken
as the merged new node, and the existing hidden nodes are trimmed by Equation (40).

cj =

{
ci i f dist(ci, cj) < d and ϑi > ϑj

cj otherwise
(40)

The sample similarity calculation equation in the above steps is shown as:

s(xp, xq) = 1− dist(xp, xq)

‖xp‖+ ‖xq‖ (41)

where xp and xq are any two different input sample vectors, dist(xp, xq) is the distance
between samples, and ‖·‖ is the length of sample vector. To ensure that the distance
between samples is reasonable and fully reflects the similarity of samples as much as
possible, dist(xp, xq) is defined as:

dist(xp, xq) =

√√√√ p

∑
h=1

wh

(
xp

h − xq
h

)2
(42)

where p is the dimension of the input vector, xp
h represents the hth variable value of the pth

sample, and wh is the weight of the hth dimension, which is determined by:
I(X, Y) =

∫
y

∫
x

p(x, y) log p(x,y)
p(x)p(y)dxdy

wh = Ih
p
∑

h=1
Ih

(43)

where Ih is the mutual information value of the hth variable, and p(x, y) is the joint proba-
bility density of random variables X and Y.

In summary, the algorithm steps of SDSO-RBFNN are as follows:
Step 1: According to the features of input samples, the values of category discrimina-

tion radius b and node distance d are set;
Step 2: When the first sliding window radar data of the first material charging cycle

are sampled, the first input sample x1(1) is constructed according to Equation (10), a first
class is formed, and the number of classes K = 1, the clustering centers C = {c1} and
c1 = x1(1), and the first hidden node h1 of the hidden layer of the network are generated;

Step 3: When the data of the k input sample x1(k) in the ith material charging cycle
is sampled, the number of samples m = k, k = 2, 3, · · · , there are K − 1 cluster cate-
gories, and the cluster center C = {c1, c2, · · · , cK−1} and hP, p = 1, 2, 3, · · · , K− 1 hidden
nodes are formed. Setting the input sample data matrix as X = (xi(1), · · · , xi(m)), when
min‖xi(k)− cj‖2

cj∈C < b is established, the current clustering results are kept and network
structure unchanged, Step 7 is next. Otherwise, the number of hidden layer nodes increases
by 1 and Step 4 is initiated;

Step 4: Based on the input sample data matrix X, the matrix XTX is calculated, the

first K maximum eigenvectors of XTX are used to form the matrix
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is

QR decomposed. Then, the class discriminant matrix
_
R is calculated based on Formula (31),

and all samples are reclassified to obtain a new class set I = {I(C1), I(C2), · · · , I(CK)};
Step 5: The cluster center vector set C = {c1, c2, · · · , cK} is updated based on Equation (32),

then the basis function centers and widths of K hidden nodes on the hidden layer of the
network are synchronously updated based on Equation (34), while all the hidden nodes are
merged and pruned, based on Equation (40);

Step 6: The network weight vector is calculated and updated using Equation (36) to
complete the establishment and training of SDSO-RBFNN;
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Step 7: Using Equation (33), xi(k) is taken as the model input, and the current stockline
information yi(k) is calculated and obtained in real time, so as to realize high-precision,
real-time measurement of the blast furnace stockline.

Although the number of neurons in SDSO-RBFNN K is always in the process of
dynamic change, it eventually changes dynamically within a certain range. After long-
term experiments, we find that K tends to be in the order of 102 under long-term stable
normal working conditions, but when abnormal working conditions occur, the number of
K increases greatly and decreases after the abnormal working conditions end.

4. The Simulation and Industrial Verification Results

For the training of the network model, the hardware environment included Intel(R)
Xeon(R) CPU E5-2620 v3 @ 2.40GHz, NVIDIA Geforce, and one RTX2080 graphics card.
The language chosen was python3.7.4, the platform used was PyTorch 1.9.0, and the
CUDA version was 11.4.0. All our simulation diagrams were drawn based on MATLAB. In
order to select a suitable maximum likelihood radial basis function model, and verify the
effectiveness of the proposed real-time measurement method for blast furnace stockline,
the actual measurement data of a mechanical probe and a radar probe in the same area
on the north side of a 2650 m3 blast furnace in a steel plant were used for simulation. The
sampling interval of mechanical probe was 3–6 min, and the number of samples was 3393.
The sampling interval of radar probe was 10 s, the number of samples was 78,816, the
width of the sliding window was set to N = 10, according to experience, and then the radar
data were adjusted to a 3393× 10 matrix.

4.1. Selection and Comparison of Maximum Likelihood Radial Basis Function Model

In this paper, a maximum likelihood radial basis function model (MLRBFM) was
proposed to mine the intrinsic correlation of blast furnace stockline radar data and extract
the high-dimensional spatial features of stockline changes. In the MLRBFM algorithm,
the cycle number m has a great influence on the extraction accuracy of high-dimensional
spatial features. If the cycle number m is too small, the internal data features of the radar
data cannot be fully extracted, and the accuracy of the model decreases. An excessive cycle
number m leads to the high complexity of the model, serious over-fitting of the model,
and the accuracy also declines. In order to find the best matching cycle number m, an
ablation experiment, as shown in Figure 7, was carried out. On the premise of changing
only the cycle number m, the MRE and RMSE curves of the SDSO-RBFNN method based
on MLRBFM with different m values were drawn under normal and abnormal working
conditions. It can be seen from Figure 7 that with a gradual increase in the m value, the
accuracy of extracting high-dimensional spatial features of radar data by the algorithm is
improved, and the detection error of the SDSO-RBFNN method is gradually reduced. When
m = 106, both MRE and RMSE achieve the minimum value, and the algorithm proposed
in this paper basically reaches the minimum value compared with the reference data.
When the m value increases further, the model complexity and over-fitting phenomenon
become the core factors leading to the decline in algorithm accuracy, and the accuracy of
the algorithm declines rapidly; when m is greater than 108, the complexity and over-fitting
of the model are saturated, and the accuracy of the algorithm is improved slightly with
the increase in data quantity. When m is greater than 1014, due to excessive accumulation
of abnormal sample data, the accuracy of the algorithm decreases with the increase in
abnormal samples, that is, with the continuous increase in m, the accuracy of the algorithm
continues to decline. Therefore, m = 106 is selected as the best cycle number.
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Figure 7. Comparison in ablation experiment with different m values.

Figure 8 is a comparison chart of stockline measurement trends with different cycle
numbers, including normal and abnormal working conditions of the blast furnace. Figure 8
not only shows the measured values of the mechanical probe and radar probe, but also
draws the curves of the stockline measured by the proposed algorithm when m is 106,
1/2× 106, and 1/3× 106, respectively. It can be seen from Figure 8 that when the blast
furnace is in normal working condition, the blast furnace stockline data usually fluctuate
around the standard control stockline of 1.5 m. At this time, the closer the value of m is
to 106, the higher the accuracy of the algorithm for measuring the stockline, the smaller
the fluctuation, and the better the consistency with the measured value of the mechanical
probe. When the blast furnace is in an abnormal working condition shown in Figure 8, the
real stockline of the blast furnace measured by the mechanical probe is greater than the
standard control stockline of 1.5 m. Figure 8 shows that the stockline is close to 2 m. At the
same time, due to dust and the high-speed flow and high-frequency fluctuation of airflow
in the top of the furnace, the radar measurement data also follow frequent and large-scale
jumps, and the measured values are often far from those measured by the mechanical
probe. The average absolute error of the two measurements in Figure 8 is about 0.5 m.
At this time, by observing the algorithm measurement curves based on different m, it is
found that when m is too small, the accuracy of the MLRBFM method for high-dimensional
spatial feature extraction of radar measurement data decreases, which means that the
SDSO-RBFNN method is unable to fit the change of radar probe measurement data well,
resulting in the change in stockline measurement data being limited in a narrow range.
Obviously, this is inconsistent with the actual blast furnace material charging conditions,
and the reliability of the stockline measurement is low. With the increase in m to 106, the
SDSO-RBFNN method not only shows a high degree of consistency with the measured
value of the mechanical probe, but also shows a high degree of consistency with the trend of
the radar data. Therefore, it is further verified that m = 106 is the best cycle number for the
MLRBFM method. In addition, through the analysis of radar probe data and mechanical
probe data, it can be seen that the change trend and fluctuation period of the blast furnace
charge level plotted in Figure 8 are highly similar to the radar data. This shows that
SDSO-RBFNN has high confidence in measuring blast furnace stockline data and extracting
high-dimensional spatial features.
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In order to further understand the influence of the extraction accuracy of high-
dimensional spatial features of MLRBFM on the improvement in the accuracy of SDSO-
RBFNN, Figure 9 provides a graph of stockline measurements by the proposed algorithm
when the variance and mean value of radial basis function are randomly given in MLRBFM.
Comparing the measurement results of SDSO-RBFNN and random RBFNN with random
parameters of the radial basis function, it can be seen that when the fluctuation of the blast
furnace stockline is small and gentle, the measured values of the above two methods are
basically consistent with the measured stockline of the mechanical probe. When the blast
furnace stockline jumps and fluctuates greatly, because the radial basis function parameters
in MLRBFM are given randomly, MLRBFM does not fully explore the inherent distribution
law of radar data, so the accuracy of extracting high-dimensional spatial features of the
blast furnace stockline by MLRBFM is poor. This leads to the large deviation between the
measured results of random RBFNN and the true values, and it is difficult to track the
changing trend of radar data and coincide with the measured values of the mechanical
probe. However, SDSO-RBFNN, which extracts the high-dimensional space features of
stockline accurately, exhibits a good similarity to the mechanical probe measurements.
Therefore, the high-precision extraction of high-dimensional space features of the blast
furnace based on MLRBFM has significance for the accuracy of the stockline measurement
algorithm in this paper.
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4.2. Verification of the Blast Furnace Stockline Detection Based on SDSO-RBFNN

In order to fully verify the accuracy, continuity, and reliability of real-time measure-
ments of the blast furnace stockline by the SDSO-RBFNN algorithm proposed in this paper,
Figure 10 is a comparison chart of blast furnace stockline measured by a traditional RBFNN
method and the SDSO-RBFNN method under normal working conditions. From the mea-
sured data of the mechanical probe, the stockline is basically around 1.5 m of a standard
control stockline, and the material charging cycle length is basically fixed. Radar probe data
fluctuates around the mechanical probe data, but at the measuring points of the mechanical
probe, the measured values of the radar probe are slightly deviated, which shows that
the accuracy of the radar probe data is not high. Analyzing the measurement results of
traditional RBFNN, this method extracts the time-dimension periodic features of radar
data, and keep a certain consistency with the change trend of radar data. However, the
traditional RBFNN cannot track the change range of radar detection data effectively, which
shows a strong inhibition to the fluctuation of stockline, so that the detected stockline
cannot deviate greatly from the standard control stockline of the blast furnace. However, in
the actual material charging process, it is normal for the stockline to deviate from 1.5 m
greatly, which makes the error of this method large when the stockline fluctuates greatly.
In addition, the blast furnace stockline measured by the traditional RBFNN method is
generally higher than that measured by mechanical probe, which is caused by the fact that
this method refers to radar probe data unilaterally, ignores the correlation between the radar
probe and mechanical probe data, and fails to effectively use accurate mechanical probe
data to correct the deviation of the radar probe data. In the SDSO-RBFNN method, the time
features and accurate high-dimensional spatial features of stockline data are extracted by
the discrete time series joint partition method and MLRBFM method, respectively. Through
the SDSO-RBFNN network, the correlation between the two kinds of detection data is
analyzed, quantified, and modeled. At the same time, it has the advantages of both the
radar detection and mechanical detection methods, which cannot only track the change
trend of radar probe data, but also achieve a high degree of fitting to the mechanical probe
data, thus, obtaining real-time and accurate stockline data, which is significantly improved
compared with the traditional RBFNN in a material level measurement trend comparison.
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Figure 10. Comparison of stockline detection under normal working conditions.

Figure 11 is a comparison chart of the stockline trend of the blast furnace under
abnormal working conditions. Under abnormal working conditions, the measured data
of the mechanical probe fluctuate continuously and greatly, and deviate greatly from
the standard control stockline of the blast furnace, reaching more than 2.2 m in extreme
cases. At this time, due to the abnormal working conditions, the dust density in blast
furnace increases sharply, the gas–powder mixed flow moves randomly and violently, and
fluctuates frequently. The radar measurement data deviate significantly from the actual
stockline, and the error is very large, so the radar measurement value almost loses the
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actual reference value. However, the traditional RBFNN method is highly dependent on
the accuracy of the radar probe data, which makes it impossible to fit the measured data of
the mechanical probe under abnormal working conditions. Moreover, the method itself
restrains the fluctuation of the stockline, which leads to the loss in tracking ability for the
trend of the radar probe data with a large amplitude and multiple movements, and, thus,
its reliability and accuracy are low. The proposed SDSO-RBFNN method performs well
under abnormal working conditions. It not only shows the high consistency of the change
trend of the radar detection data, but also fits well with the mechanical detection data in
most cases. The fitting effect is not good only when some material surfaces show extreme
changes. Therefore, the proposed SDSO-RBFNN method still has high practical value and
good universality under abnormal working conditions.
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Figure 11. Comparison of stockline detection under abnormal working conditions.

Figures 12 and 13 show the absolute error and relative error distribution of the stockline
measured by radar, the RBFNN method, and the SDSO-RBFNN method, relative to the
measured value of the mechanical probe for 3 days of continuous operation of a blast
furnace. Table 1 shows the specific error distribution of the three methods. Most of the
time, the blast furnace is in normal condition, but there are numerous abnormal conditions
during the operation of the blast furnace. During this period, 799 accurate stockline values
were measured by mechanical probe. It can be seen from the Figures 12 and 13 that the
relative error and absolute error of radar measurement data are large, the absolute error
fluctuates within ±0.5 m, the relative error concentrates within ±20%, that is, within the
red line, and the accuracy is not high. The RBFNN method is more accurate than the radar
measurement method. However, because this method does not fully explore the internal
correlation of radar data and extract the key high-dimensional spatial features of radar data,
the measurement results are randomly distributed on both sides of the stockline data of the
mechanical probe, and the absolute error fluctuates within ±0.3 m, while the relative error
is evenly distributed within −18% ∼ 10%. However, in the actual blast furnace material
charging process, the error of this method is still large, which is unacceptable in practical
application. It can only be used as an auxiliary measurement method, and its industrial
application value is low. The SDSO−RBFNN method based on MLRBFM proposed in this
paper accurately extracts the high-dimensional spatial features of radar data, and at the
same time, establishes an accurate model that reflects the clustering features of radar data.
Figure 13 shows that the measured values of this method are widely distributed on both
sides of the baseline, which indicates that it effectively learns the features of low stockline
data with relatively few training samples, thus, realizing the fitting of low stockline. It
is seen from Table 1 that the relative error of the measurement results of the proposed
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method is basically within ±5%. As the measuring method of the mechanical probe
itself has a relative error of ±2%, therefore, the stockline detection method based on the
proposed high-dimensional spatial features shows an accuracy similar to the mechanical
probe measurement method on the premise of real-time and continuity, which meets the
requirements of the blast furnace smelting material charging process, and has extremely
high practical value.
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Table 1. Statistical error comparison.

Method
Statistical Indices

MRE RMSE Error-2% Error-5%

Radar 18.73% 0.2156 55.13% 55.13%

RBFNN 8.94% 0.1162 58.97% 67.95%

Proposed 2.73% 0.0388 92.31% 99.13%
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Figure 14 is a 45◦ line diagram of the measurement results of the above three methods,
where the red line is the accurate value, which shows the accuracy of the three stockline
measurement methods in a more intuitive way. As seen from Figure 14, the data distri-
bution of the radar probe is clustered, concentrated and distributed above the measured
stockline, and the deviation is large. The deviation comes from the interference of the high
concentration of dust and airflow, and the interference increases with the stockline deviat-
ing from the standard control stockline of the blast furnace. That is, when the stockline of
the blast furnace is higher than 2.0 m, the radar data deviates greatly from the standard
line and jumps frequently, resulting in extremely low accuracy. When the RBFNN method
is near 1.5 m of the standard stockline, that is, at the midpoint of the standard line, the
measured values can be well gathered on both sides of the standard line, which indicates
that the method has good measurement accuracy when the blast furnace condition is stable.
However, when the stockline moves to both ends of the standard line, that is, when the
working condition of blast furnace deteriorates gradually, this method cannot fully reflect
the intrinsic clustering features of the radar data. This is because it does not extract the
spatial features of radar data, resulting in a sharp decline in its measurement accuracy.
Therefore, the image presents a wedge shape with divergence at both ends and aggregation
in the middle; therefore, the universality of the method is poor, and it is difficult to use it in
the actual process for an extended period of time. The proposed SDSO-RBFNN method has
little difference with the measured stockline data of the mechanical probe under normal
and abnormal working conditions, and the measured values are closely distributed on
both sides of the reference line, which is not only accurate, but also suitable for various
abnormal working conditions of the blast furnace.
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Selecting the 12 h real operation data of the proposed method, the VS-RBFNN [20]
method, and the ESST-RBFNN [21] method on a 2650 m3 blast furnace, a long-term opera-
tion effect diagram, as shown in Figure 15, is drawn to compare the detection accuracy of
the three detection methods. Obviously, the VS-RBFNN method is similar to the traditional
RBFNN method, showing inhibition to the predicted stockline, and the predicted stockline
fluctuates slightly at 1.55 m. Compared with the real stockline, the prediction of the stock-
line under normal working conditions is on the high side, and the prediction of stockline
under abnormal working conditions has great deviation. It can be seen that, although this
method fits the changing trend of radar gauge data well, the deviation correction effect of
the mechanical probe data on the predicted value and the real value is poor. The prediction
results of the ESST-RBFNN method at normal and high stockline are basically consistent
with the data of the mechanical probe. However, when predicting the low stockline, the
predicted stockline frequently changes violently, which is caused by the failure of this
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method to extract the spatial features of radar data effectively, and the poor stability of
the clustering algorithm. Under normal working conditions, the predicted stockline of
the proposed method is basically equal to the actual material level, and under abnormal
working conditions, the deviation between the predicted stockline and the actual stockline
is small, and the predicted stockline data change smoothly. This shows that this method
has higher accuracy and stronger stability than the other methods.
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In order to further verify the statistical correctness and effectiveness of the stockline
measurement method in this paper, taking the mechanical probe data as the standard value,
the stockline data, including normal and abnormal working conditions and lasting for one
week, are selected for testing, and the prediction results of the above method are compared
with the proposed method. Figures 16 and 17 are a box-whisker plot and a histogram of
the relative errors of the prediction results of the three methods, respectively. As can be
seen from Figure 16, the relative error outliers of the proposed method, that is, the red
dots in the figure, are less than the relative error outliers of other methods. As can be seen
from Figure 17, the relative errors of the proposed method are more concentrated, and
most of them are within ±5%. This shows that, compared with other existing methods, this
method is more stable and has higher overall accuracy. In addition, these data are used
to calculate the evaluation indexes of the three methods. As shown in Table 2, according
to the statistical data, compared with other methods, the real-time measurement method
of the blast furnace stockline based on high-dimensional spatial characteristics proposed
in this paper shows significant improvement in all indexes, which provides accurate and
continuous real-time blast furnace stockline information for distributors, and has very
strong practical value under both normal and abnormal working conditions.
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Table 2. Statistical indices comparison.

Method
Statistical Indices

MSE RMSE MAE EAP R2

VS-RBFNN 0.0226 0.1503 0.1056 6.0227% 0.4295

ESST-
RBFNN 0.0222 0.1491 0.1046 5.9823% 0.3664

Proposed 0.0200 0.1415 0.0962 5.4677% 0.3563

5. Discussion and Conclusions
5.1. Discussion

A high-dimensional spatial characteristic blast furnace stockline detection method
based on MLRBFM and SDSO-RBFNN is proposed. Based on the blast furnace material
charging process, the discrete time series joint partition method extracts the accurate time
characteristics of the blast furnace material charging cycle by analyzing the stockline
information. Secondly, based on the Gaussian distribution model of the radar probe
data, the MLRBFM method is proposed to obtain the high-dimensional spatial features
of stockline data. Finally, combined with the EQRDD algorithm, SDSO-RBFNN realizes
the periodic fusion of the stockline detection data of the two probes to obtain accurate and
continuous real-time stockline data. Industrial experiments and simulation results indicate
that the proposed method has high accuracy, good real-time performance, strong anti-
interference, and stable generalization. Under normal and abnormal working conditions,
the detection results satisfy the requirements of on-site industries, and exhibit industrial
application value.

5.2. Conclusions

The proposed method can track the blast furnace stockline information well under
normal and most abnormal conditions, thus, providing continuous, high-precision, and
high-stability level information for actual industrial production in real time. However,
under some extreme working conditions, the data measured by radar probe are affected
by the extreme environment in the blast furnace, resulting in high frequency and a high
amplitude jump, which significantly reduces the accuracy of the proposed method. The
main reason for this situation is that the radar data under extreme working conditions are
greatly affected by the environment, lose the clustering characteristics, and do not conform
to Gaussian distribution, which means the proposed method is unable to effectively extract
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the high-dimensional spatial characteristics of radar data, and leads to the inability to track
the real material level, which needs to be further studied and improved in the future.
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