
Citation: Maalberg, A.; Kuntzsch, M.;

Petlenkov, E. Real-Time Regulation of

Beam-Based Feedback: Implementing

an FPGA Solution for a Continuous

Wave Linear Accelerator. Sensors 2022,

22, 6236. https://doi.org/10.3390/

s22166236

Academic Editor: Roberto Teti

Received: 27 July 2022

Accepted: 17 August 2022

Published: 19 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Real-Time Regulation of Beam-Based Feedback: Implementing
an FPGA Solution for a Continuous Wave Linear Accelerator
Andrei Maalberg 1,* , Michael Kuntzsch 1 and Eduard Petlenkov 2

1 Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
2 Department of Computer Systems, Tallinn University of Technology, 19086 Tallinn, Estonia
* Correspondence: a.maalberg@hzdr.de

Abstract: Control applications targeting fast industrial processes rely on real-time feasible imple-
mentations. One of such applications is the stabilization of an electron bunch arrival time in the
context of a linear accelerator. In the past, only the electric field accelerating the electron bunches was
actively controlled in order to implicitly stabilize the accelerated electron beam. Nowadays, beam
properties are specifically measured at a target position and then stabilized by a dedicated feedback
loop acting on the accelerating structures. This dedicated loop is usually referred to as a beam-based
feedback (BBF). Following this, the control system of the electron linear accelerator for beams with
high brilliance and low emittance (ELBE) is planned to be upgraded by the BBF, and the problem
of implementing a designed control algorithm becomes highly relevant. In this work, we propose
a real-time feasible implementation of a high-order H2 regulator based on a field-programmable
gate array (FPGA). By presenting simulation and synthesis results made in hardware description
language (HDL) VHDL, we show that the proposed digital solution is fast enough to cover the bunch
repetition rates frequently used at ELBE, such as 100 kHz. Finally, we verify the implementation by
using a dedicated FPGA testbench.

Keywords: regulation; beam-based feedback; FPGA; linear accelerator; continuous wave

1. Introduction

Radio frequency (RF) particle accelerators employ RF electromagnetic fields to ac-
celerate charged particles to high energies while forming the particles into well-defined
beams. A beam of accelerated particles can then be used to create a secondary radiation of
ultra-short photon pulses, thus providing a light source for scientific experiments. Figure 1
illustrates a conceptual schematic of such a light source.

Light Beam

Electron Dump

e−

Undulator

RF Accelerator

Figure 1. Conceptual schematic of an accelerator driven light source.

ELBE is a versatile light source located at Helmholtz-Zentrum Dresden-Rossendorf
(HZDR), Germany. As illustrated in Figure 2, the general layout of the ELBE THz beamline
follows the concept of a light source, namely: (1) electron bunches are generated by an
electron gun, (2) these electron bunches are accelerated with the help of RF linacs consisting
of superconducting RF cavities, and (3) photons are produced from these accelerated
electron bunches inside a periodic magnetic structure, called undulator.

Sensors 2022, 22, 6236. https://doi.org/10.3390/s22166236 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22166236
https://doi.org/10.3390/s22166236
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9560-0487
https://orcid.org/0000-0002-8145-5837
https://orcid.org/0000-0003-2167-6280
https://doi.org/10.3390/s22166236
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22166236?type=check_update&version=1


Sensors 2022, 22, 6236 2 of 22

Light Beam

Electron Dump

Undulator
BAMChicane

C4C3

LLRF BBF regulator

RF Linac 2

C2C1

RF Linac 1RF Bunchers

DC Gun

SRF Gun

Electron Guns

Figure 2. General layout of ELBE THz beamline featuring beam-based feedback regulation loop.

ELBE is one of the few electron linear accelerators routinely operated in a continuous
wave (CW) mode. The notion of CW refers to a specific machine operation mode in
which the RF electromagnetic field that resonates inside an accelerating RF cavity is driven
continuously. Compared to a more common pulsed mode, CW allows flexible electron
bunch repetition rates and high average current, thus enabling experiments that would
otherwise be impossible to perform, hence the versatility.

Still, the quality of experimental results depends on the stability of the accelerated
electron beam. For example, a time-resolved pump-probe experiment [1] may be configured
to expect an electron bunch to arrive at the undulator with precise timing. In case this
arrival time fluctuates due to the instability of the corresponding electron beam, this
fluctuation is transferred to the subsequent secondary radiation, and the time resolution
of such experiments degrades. Since the process of RF acceleration is affected by various
disturbances, including RF noise inherent to RF acceleration modules and drifts caused by
changes in ambient temperature, regulation of the electron beam becomes crucial.

The existing low-level RF (LLRF) controller installed at ELBE [2,3] represents the state
of the art. The controller deals with stabilizing the RF field that accelerates the electron beam.
However, such control scheme has no feedback from the electron beam, and thus there
is no way to stabilize the electron beam directly. To overcome this limitation, the control
scheme at ELBE is planned to be upgraded by a beam-based feedback (BBF) regulator,
see Figure 2. This regulator is expected to minimize the impact of disturbances acting on
the electron beam. In our previous work [4], we proposed a regulator design that seeks
to minimize the fluctuations of beam arrival time with respect to low frequency RF noise.
Due to CW mode, it was possible to target specific noise profiles, the low frequency ones
included. This suggested the application of modern control techniques, such as optimal
H2 control [5,6], which finally resulted in a high-order state-space regulator. Even though
the field of linear accelerators already lists a number of BBF control designs [7–10], these
examples target pulsed machines. Yet ELBE is operated in CW mode, and very few studies
[11] address real-time feasible implementations targeting CW machines. Especially, when
the corresponding sample times are on a sub-microsecond level.

The bunch arrival time monitor (BAM) [12–14] measures the arrival time of every
electron bunch accelerated inside the machine. This implies that the sample time of
the regulator must correspond to the bunch repetition rate. Since this rate may reach
several megahertz, the actual sample time requirement is forced to the sub-microsecond
level. Obviously, such regulator requires an efficient, yet adjustable implementation of its
algorithm, thus strongly suggesting an FPGA-based solution. In fact, low latency and high
reconfigurability—the outstanding features of FPGAs—facilitated the adoption of FPGA-
based solutions by the accelerator community [15–18]. As a result, the LLRF controller and
BAM digital signal processing are implemented on FPGAs as well, thus establishing a low-
latency digital signal path on the inputs and outputs of the regulator. It is therefore natural
to follow the same trend and implement the regulator in terms of an FPGA-based solution.

In this work, we aim to fill the existing gap by presenting a real-time feasible FPGA-
based implementation of the BBF regulator targeting the CW ELBE accelerator. We exploit
the analogy between the state-space form of a digital system and a finite-state machine
(FSM) to propose a general architecture of the digital solution. This architecture is then



Sensors 2022, 22, 6236 3 of 22

elaborated by introducing systolic arrays in order to deal with state-space matrix operations.
Despite the fact that there are many sophisticated systolic array architectures [19–22], in this
work, a straightforward systolic structure suffices that is similar to a 2-D array. Furthermore,
we examine the application of fixed-point data types to the regulator algorithm. The latency
of the resulting implementation is then compared to the one based on floating-point data
types. Finally, by assembling a hardware testbench that involves another FPGA, we verify
the output of our implementation against simulation data from Simulink.

The remainder of this paper is organized as follows: Section 2 presents the BBF loop
structure at ELBE and discusses the loop elements, including the bunch arrival time reg-
ulator, the LLRF controller and the BAM sensor. The discussion aims to build a proper
context for the regulator implementation. Section 3 describes the hardware and software
frameworks used in this work. Following this, Section 4 introduces the resulting firmware
architecture and demarcates the new regulator logic from the given framework. By moving
towards internal details, Section 5 focuses on the implementation of state-space formal-
ism and introduces important topics, such as systolic arrays and fixed-point data types.
Section 6 demonstrates the hardware setup used to verify the regulator implementation
and discusses the verification results. Finally, Section 7 concludes the paper.

2. Beam-Based Feedback Loop Structure at ELBE

ELBE beam-based feedback extends the existing control scheme by introducing a
regulation loop involving a BAM sensor, a BBF regulator and a LLRF system of the fourth
accelerating cavity (C4). This results in a new interconnection of control elements that
involves cascaded loops. Figure 3 elaborates the emerging beam-based feedback structure,
while making the main accent on the beam-based feedback regulator.

e−

LLRF

C4

BAM

δτ−1
max

Ψ

Υ

Ω

amax

z−1

Φ

z−1

Ξ

Θ
Beam-based feedback regulator

τ[k]

–
r

+

δτ[k]

y[k]
+

–

+

+

+x[k + 1]
x[k]

u[k]

a[k]

+

+

u[k− 1]

+

Figure 3. Beam-based feedback loop structure at ELBE.

2.1. Beam-Based Feedback Regulator

The BBF regulator designed in [4] represents a 7th-order single-input single-output
H2 control law expressed in a state-space form



Sensors 2022, 22, 6236 4 of 22

x[k + 1] = Ax[k]+ B2u[k]+Lxex[k], (1)

u[k] =Kux[k]+ Lueu[k], (2)

where

ex[k] = y[k]− C2x[k]− D22u[k], (3)

eu[k] = y[k]− C2x[k]− D22u[k− 1], (4)

where x, u and y denote the usual state, control input and measured output, and where
A, B2, C2 and D22 are the system, input, output and feed-forward matrices, respectively.
Matrices Ku, Lx and Lu are the products ofH2 synthesis generated by MATLAB function
h2syn. In order to alleviate the implementation of this control law, Equations (1) and (2) can
be rearranged based on variables x[k], y[k] and u[k− 1]. This yields a new set of matrices

Θ = A + B2Ku − B2LuC2 − LxC2 − LxD22Ku + LxD22LuC2, (5)

Υ = B2Lu + Lx − LxD22Lu, (6)

Φ = LxD22LuD22 − B2LuD22, (7)

Ξ = Ku − LuC2, (8)

Ψ = Lu, (9)

Ω = LuD22, (10)

and since the new matrices can be evaluated offline, Equations (1) and (2) can be rewritten as

x[k + 1] =Θx[k]+ Υy[k]+Φu[k− 1], (11)

u[k] =Ξx[k]+ Ψy[k] − Ωu[k− 1]. (12)

As a result, Equations (11) and (12) form the structure of the beam-based feedback
regulator displayed in Figure 3.

The regulator acts by correcting the setpoints of RF variables inside the LLRF controller
FPGA. So to further reveal the loop details, the LLRF block displayed in Figure 3 needs to
be expanded and elaborated.

2.2. RF System as Actuator for Electron Beam Regulation

In case of ELBE, every RF system is controlled by its dedicated LLRF controller. The
purpose of such control is the stabilization of the corresponding RF variables, i.e., the
amplitude A and phase φ of an accelerating RF field. Due to implementation specifics, the
LLRF controller operates with the in-phase I and quadrature Q representations of the field
amplitude and phase. Stabilized by the LLRF controller these I and Q signals are then
applied inside a vector modulator (VM) to modulate a reference RF signal coming from a
master oscillator. But since the signals generated by the LLRF controller are in the range of
milliwatts, hence the name low-level RF, a solid-state power amplifier (SSPA) is used to
drive the modulated RF signal to a kilowatt range. This finally results in a high-power RF
signal that is passed through a waveguide to a RF cavity. Figure 4 illustrates the described
RF system by expanding the LLRF block first introduced in Figure 3.



Sensors 2022, 22, 6236 5 of 22

C4

Waveguide

SSPA

VM

DAC

DAC
LLRF

Controller

rI

rQ

+

+

M

a

+

+

∆rI

+

∆rQ

+

beam-based feedback correction

A, φ
I, Q

ADC65 MHz

54.166 MHz

1.3 GHz

field probe

1.3 GHz + 54.166 MHz

Master Oscillator @ 1.3 GHz

uI

uQ

eI

eQ

yI
–

yQ

–

Figure 4. Schematic overview of RF system at ELBE including BBF extension.

To incorporate the RF setpoint correction signal a coming from the beam-based feed-
back regulator, the LLRF controller FPGA is extended by a setpoint modulation logic M.
The logic is defined as [

∆rI
∆rQ

]
=

1
100

[
rI
rQ

]
a, (13)

where a denotes a change in the RF field amplitude expressed in percent units, and where
rI and rQ are the RF field setpoints in I and Q, respectively. Factor 1/100 is required to
convert the amplitude change in percent to a relative error ∆A/A [8]. In fact, this factor
could be applied by the BBF regulator implementation. In this case, however, the small
resulting number would suffer from underflows caused by the fixed-point data type in
use by the LLRF implementation. Therefore, this factor is applied last. To sum up, the
I and Q setpoints are modulated by the relative amplitude error in order to alter the RF
field oscillating inside the cavity. This will cause a change in the arrival time of subsequent
electron bunches, which can then be diagnosed by the BAM sensor.

2.3. Bunch Arrival Time Monitor as Sensor of Electron Beam

The beam-based feedback is represented by a bunch arrival time measured by the
BAM sensor, see Figure 3. The operation principle of this sensor is based on measuring
bunch arrival time relative to an actively-stabilized optical timing reference. Specifically,
periodic pulses of a reference laser are amplitude-modulated with electric signals coming
from pick-up antennas that probe the electric field of the passing electron bunch. The
arrival time information is thus transferred into an amplitude modulation of coincident
laser pulses. According to such arrival time representation, the output of this sensor is



Sensors 2022, 22, 6236 6 of 22

defined by a dimensionless modulation value τ with a working point set to τ = 1. Figure 5
exemplifies a BAM readout taken at a bunch repetition rate of 50 kHz.

Figure 5. Example of BAM readout in (a) time and (b) frequency domains.

The BAM readout displays arrival time fluctuations caused by various disturbances,
e.g., noise coming from the electron gun, drifts caused by changes in ambient temperature
and RF noise inherent to RF acceleration process. In particular, the presented time domain
data reveals distinct low frequency oscillations about the working point. Simultaneously,
the frequency domain data features two components inherent to RF noise. These are (1)
a random component represented by a spectral profile that decays with certain slopes
as the frequency offset increases and (2) a deterministic component that manifests itself
as a number of spurs along that profile. A harmonic of voltage ripple at 100 Hz is a
representative of the latter.

The beam-based feedback regulator seeks to compensate the fluctuations in signal τ,
and the simulation of such compensation is displayed in Figure 6.

Figure 6. Simulation of BBF regulator with BAM readout in (a) time and (b) frequency domains.

The compensated data demonstrates the work of the regulator, i.e., (1) time domain
data exhibits no drift and (2) the frequency data demonstrates suppression of low frequency
noise up to ca. 5 kHz. Compared to the initial τ signal with no feedback, the regulator
almost halves the disturbance effect in terms of the corresponding rms values.

The 50 kHz bunch repetition rate is commonly used for the ELBE THz beamline. Still,
higher rates are possible, e.g., several hundred kilohertz or even a megahertz. Hence, the
main reason to aim for a low-latency implementation of the regulator algorithm.



Sensors 2022, 22, 6236 7 of 22

3. Hardware/Software Environment for Beam-Based Feedback Regulator

As a system, the beam-based feedback regulator relies on a number of subsystems
to perform common tasks, such as establishing a user interface, sending and receiving of
data, saving these data for further analysis, etc. To alleviate the heavy lifting, the regulator
solution takes advantage of a digital platform based on the micro telecommunications
computing architecture (MTCA) [23] and deployed on the ELBE accelerator machine [24].

3.1. MTCA.4 Hardware Environment

The fact that the regulator will be incorporated into the existing digital platform sets
a few important conditions: (1) use of custom FPGA boards and (2) compliance with the
existing firmware framework developed in VHDL [25]. Consequently, the regulator imple-
mentation is carried out on a specific data processing and telecommunication board, called
the advanced mezzanine card (AMC) TCK7 [26]. The board features a high-performance
FPGA device XC7K420T from Xilinx. To help leveraging the features of this board the given
firmware framework provides support for

• RAM- or register-based internal interface (II) to communicate with CPU software;
• Low-latency links (LLLs) to communicate with other FPGA boards;
• Data acquisition (DAQ) facility to save diagnostic data to DDR3 memory.

In this work, the AMC TCK7 board must (1) receive data from the BAM FPGA, (2) do
the processing and (3) send the result to the LLRF FPGA. While the processing is done inside
the XC7K420T chip, the receiving/sending occurs through the low-latency links that are
driven by 10-Gigabit small form-factor pluggable (SFP) optical transceivers. Measurement
signals τ and control signals a are transferred via these LLL facilities. Similarly, the
initialization of the processing stage happens through a register-based hardware/software
(HW/SW) interface driven by a PCI Express (PCIe) connection. This interface is used by
external CPU software to set the values of gain matrix elements, setpoints, etc. In addition,
the processing stage needs to save diagnostics data. For this reason, DAQ facility is used
to dump data to DDR3 memory. To sum up this description, Figure 7 illustrates a general
block diagram showing the beam-based feedback regulator in the context of the given
MTCA.4 hardware environment.

BBF regulator LLL Rx
τ

LLL Tx
a

10G SFP+10G SFP+

BAM FPGA

optical fibre

LLRF FPGA

optical fibre

gains, setpoint

user RAMs, registersDAQ adapter

diagnostics

DDR3

RAM

PCIe

HW/SW user interface

II adapterDMA controller

A
M

C
TC

K
7

Bo
ar

d

Figure 7. Beam-based feedback regulator in the context of MTCA.4 hardware environment.



Sensors 2022, 22, 6236 8 of 22

The complexity of the presented hardware system underscores the importance of a
software-based user interaction. Hence, the necessity to establish a hardware/software
interface that would facilitate the initialization, control and other user related tasks.

3.2. Hardware/Software Interface

The MTCA.4 technology uses a special software framework [27] to support the PCIe-
based communication between the related hardware and software. Specifically, this frame-
work provides the necessary application programming interface (API) to establish a register-
based HW/SW interface. By writing and reading these registers the user is able to interact
with the beam-based feedback regulator FPGA, and Figure 8 depicts a basic user interaction
as a unified modeling language (UML) use case diagram.

Version August 11, 2022 submitted to Sensors 8 of 21

The complexity of the presented hardware system underscores the importance of a197

software-based user interaction. Hence the necessity to establish a hardware/software198

interface that would facilitate the initialization, control and other user related tasks.199

3.2. Hardware/Software Interface200

The MTCA.4 technology uses a special software framework [27] to support the201

PCIe-based communication between the related hardware and software. Specifically, this202

framework provides the necessary application programming interface (API) to establish203

a register-based HW/SW interface. By writing and reading these registers the user is204

able to interact with the beam-based feedback regulator FPGA, and Figure 8 depicts a205

basic user interaction as a unified modeling language (UML) use case diagram.206

BBF regulator FPGA
BBF regulator FPGA

≪include≫

initialize

start

stop

ELBE Operator

Figure 8. UML use case diagram summarizing user interaction with the BBF regulator FPGA

Along with the basic use case to initialize the gain data when the application starts,207

a more sophisticated variant is to allow updating this data when the regulation is already208

running. The difficulty is related to the fact that ELBE is operated in CW mode, so there209

are no pauses long enough to permit a plain data overwrite. Moreover, it is reasonable210

to assume that updating the gain data separately, i.e. regardless of the algorithm state211

as a whole, will lead to erroneous algorithm results. Hence the necessity to update the212

gains 1) all at once and 2) at a proper time instant. Essentially, the second requirement213

suggests an FSM-based implementation on the hardware side. In the meantime, the first214

requirement is fulfilled on the software side by first making a time-consuming write of215

the entire data from the software to intermediate hardware buffers and then triggering a216

fast data update on the hardware side. Figure 9 demonstrates this concept.217

write(g, d)

trigger data update

read
d

initialize:SW intermediate buffer:HW gain:HW

loop

[d in g data]

loop

[g in gains]

loop

[d in buffer data]

Figure 9. UML sequence diagram demonstrating the concept of (re)initialization of gain data

The starting and stopping use cases are both based on the manipulation of the218

same flag to enable feedback data propagation to the regulation algorithm. This one-bit219

Figure 8. UML use case diagram summarizing user interaction with the BBF regulator FPGA.

Along with the basic use case to initialize the gain data when the application starts, a
more sophisticated variant is to allow updating these data when the regulation is already
running. The difficulty is related to the fact that ELBE is operated in CW mode, so there
are no pauses long enough to permit a plain data overwrite. Moreover, it is reasonable to
assume that updating the gain data separately, i.e., regardless of the algorithm state as a
whole, will lead to erroneous algorithm results, hence the necessity to update the gains (1)
all at once and (2) at a proper time instant. Essentially, the second requirement suggests an
FSM-based implementation on the hardware side. In the meantime, the first requirement
is fulfilled on the software side by first making a time-consuming write of the entire data
from the software to intermediate hardware buffers and then triggering a fast data update
on the hardware side. Figure 9 demonstrates this concept.

Version August 11, 2022 submitted to Sensors 8 of 21

The complexity of the presented hardware system underscores the importance of a197

software-based user interaction. Hence the necessity to establish a hardware/software198

interface that would facilitate the initialization, control and other user related tasks.199

3.2. Hardware/Software Interface200

The MTCA.4 technology uses a special software framework [27] to support the201

PCIe-based communication between the related hardware and software. Specifically, this202

framework provides the necessary application programming interface (API) to establish203

a register-based HW/SW interface. By writing and reading these registers the user is204

able to interact with the beam-based feedback regulator FPGA, and Figure 8 depicts a205

basic user interaction as a unified modeling language (UML) use case diagram.206

BBF regulator FPGA
BBF regulator FPGA

≪include≫

initialize

start

stop

ELBE Operator

Figure 8. UML use case diagram summarizing user interaction with the BBF regulator FPGA

Along with the basic use case to initialize the gain data when the application starts,207

a more sophisticated variant is to allow updating this data when the regulation is already208

running. The difficulty is related to the fact that ELBE is operated in CW mode, so there209

are no pauses long enough to permit a plain data overwrite. Moreover, it is reasonable210

to assume that updating the gain data separately, i.e. regardless of the algorithm state211

as a whole, will lead to erroneous algorithm results. Hence the necessity to update the212

gains 1) all at once and 2) at a proper time instant. Essentially, the second requirement213

suggests an FSM-based implementation on the hardware side. In the meantime, the first214

requirement is fulfilled on the software side by first making a time-consuming write of215

the entire data from the software to intermediate hardware buffers and then triggering a216

fast data update on the hardware side. Figure 9 demonstrates this concept.217

write(g, d)

trigger data update

read
d

initialize:SW intermediate buffer:HW gain:HW

loop

[d in g data]

loop

[g in gains]

loop

[d in buffer data]

Figure 9. UML sequence diagram demonstrating the concept of (re)initialization of gain data

The starting and stopping use cases are both based on the manipulation of the218

same flag to enable feedback data propagation to the regulation algorithm. This one-bit219

Figure 9. UML sequence diagram demonstrating the concept of (re)initialization of gain data.



Sensors 2022, 22, 6236 9 of 22

The starting and stopping use cases are both based on the manipulation of the same
flag to enable feedback data propagation to the regulation algorithm. This one-bit flag,
called CTL_ENA, is set to 1 to enable regulation. Fundamentally, this defines an event-
driven behavior of the algorithm implementation, i.e., when the algorithm receives no data,
the regulation idles, see Figure 10.

ready busy

BAM data valid and CTL_ENA = 1 / trigger BBF regulation algorithm

done / LLRF data valid

transition condition / action

Figure 10. State diagram showing the effect of CTL_ENA flag on regulator state transitions.

In essence, the given MTCA.4 environment sets a number of requirements to the
firmware architecture of the beam-based feedback regulator, namely:

• firmware is written in hardware description language VHDL;
• digital design targets an FPGA device from Xilinx;
• communication logic adheres to the given protocols, i.e., LLL and II;
• regulator algorithm is governed by an FSM.

With this in mind, the firmware architecture can now be elaborated.

4. Firmware Architecture of Beam-Based Feedback Regulator

The structure of the MTCA.4 firmware framework divides the on-chip logic into
board and application compartments. The former manages the board specific features,
including the low-level communication interfaces and clock generation, while the latter
defines the application logic. Both compartments are then united inside a top level VHDL
entity. Figure 11 depicts this structure as a general block diagram and uses color codes to
demarcate the new regulator logic from the given framework.

BBF Board

board

inputs/

outputs

clock

reset

II
registers AXI4

LLL Tx
control AXI4-Stream

LLL Rx
measurement AXI4-Stream

DAQ
diagnostics AXI4

APPLICATION

TOP LEVEL VHDL ENTITY

BBF regulator logic MTCA.4 firmware framework

Figure 11. Structure of top level VHDL entity as defined by the MTCA.4 firmware framework.



Sensors 2022, 22, 6236 10 of 22

4.1. Behavioral Model

The behavior of the regulator can be modeled in terms of the data that flows inside
the application compartment and drives the initialization, regulation and diagnostics:

Initialization Before running the regulation algorithm, the gain data need to be initialized.
Since these data are transferred from the CPU software, the values are received by
the firmware through the II communication. In fact, a single gain can be represented
by a matrix with multiple values, so the receiver should be RAM-based. According to
the firmware requirements outlined in Section 3, this RAM is expected to serve as an
intermediate buffer that is first written by the software and then, after a software trig-
ger, read by the actual gain logic. Once such initialization is complete, the regulation
data flow becomes enabled.

Regulation The regulation data flow starts from the reception of a BAM sensor measure-
ment coming over a dedicated low-latency link. Provided the regulator algorithm
is not busy at the moment and the regulation is enabled by the user, see Figure 10,
the new measurement triggers the computation of a new control signal. Otherwise,
the received measurement is dropped. Such behavior ensures that the algorithm
always sees up-to-date measurements. When the algorithm is indeed triggered, the
data starts flowing to gains and further to sums. Once the regulation algorithm is
complete, the new control signal is transmitted over a dedicated low-latency link to
the LLRF actuator.

Diagnostics The diagnostics saves the regulation data, including the BAM sensor measure-
ments and the corresponding control signals. Importantly, the BAM data are saved
even if the regulator is disabled. This allows to diagnose the open-loop behavior of
the system.

To sum up, Figure 12 illustrates a functional schematic of the BBF application. Note that
the illustrated firmware blocks belong to the new regulator logic, hence the corresponding
color code. In this context, the additional Rx and Tx blocks act as adapters between
the framework and the regulator in order to establish a properly registered ready/valid
handshake—a flow control technique [28] that is used throughout the entire regulator logic.
Note also that for the sake of brevity the diagram omits the transformation from signal τ[k]
to y[k] and from u[k] to a[k]. Finally, the diagram makes the central role of the FSM obvious.

FSM

RAM

x[k + 1], u[k]

SUMS

x[k], y[k], u[k− 1]

GAINS

II
bu

s
C

PU

Rx Tx

τ[k] a[k]

LL
L

st
re

am
BA

M

LL
L

st
re

am
LL

R
F

τ[k] a[k]

DAQ bus CPU

initialization algorithm diagnostics

Figure 12. Functional schematic illustrating the main data flows inside the BBF application.



Sensors 2022, 22, 6236 11 of 22

4.2. Finite State Machine

In addition to the firmware requirements outlined in Section 3, another reason for
involving an FSM to manage the regulator algorithm is inspired by the analogy between
a discrete-time state-space form of the regulator and a Mealy state machine [29]. Specif-
ically, a hardware implementation of the Mealy machine is composed of combinational
and sequential logic blocks. The combinational logic takes the current state together with
input and computes the next state and output. The next state is then saved, or regis-
tered, by the sequential logic. The process repeats during the next iteration. Accordingly,
Figure 13 depicts an FSM of the state-space regulator, where sequential logic block z−1

registers the regulator state, and where combinational logic blocks f (·) and g(·) implement
Expressions (11) and (12), respectively.

z−1f (·) g(·)
u[k]x[k + 1]

x[k], u[k− 1]

y[k]

Figure 13. Discrete-time state-space regulator visualized as a Mealy FSM.

Unfolding this FSM approach, Figure 14 demonstrates a state diagram that captures
the essential parts of the regulator behavior. Note that once the BBF algorithm is triggered,
f (·) and g(·) will be executed in parallel. Yet f (·) will take significant time to process
its longest operation, i.e., Θx. So it is possible to get the result of g(·) and initiate the
sending of LLRF data before f (·) completes. Hence, a busy state with two stages. Finally,
the latency of algorithm operations, such as Θx, underscores the necessity to analyze the
implementation of these state-space constructs.

idle

init

gains valid / trigger initialization

ready

done / nonegains valid / trigger initialization

busy0

BAM data valid and CTL_ENA = 1 /

trigger BBF regulation algorithm

busy1

g(·) done /

register u state, LLRF data valid

f (·) done / register x state

transition condition / action

Figure 14. State diagram showing the operation of the regulator FSM.



Sensors 2022, 22, 6236 12 of 22

5. State-Space Implementation in Hardware

In this work, we propose to describe the state-space formalism of the beam-based
feedback regulator in terms of systolic arrays. Indeed, Equations (11) and (12) are based
on matrix-vector multiplication, and systolic arrays offer a hardware architecture that
enables massively parallel execution of this mathematical operation. Moreover, when
implemented on FPGAs, systolic arrays can enjoy not only the inherently parallel nature of
FPGAs, but also the availability of specialized circuits that are able to efficiently perform
mathematical operations.

5.1. Systolic Array Structure

Systolic arrays are grid-like interconnections of data processing elements, or nodes,
that are driven by data to perform some specific uniform operation. In particular, a properly
organized data flow can drive an array of multiply-accumulate nodes, or MACs, in order
to implement a matrix-vector multiplication. Figure 15 demonstrates an example of a node
interconnection that computes the product c = A b, where b and c are 2× 1 input and
output vectors, respectively, and where A is a 2× 2 matrix. In this straightforward systolic
implementation the number of nodes corresponds to the size of the output vector c. This
allows to parallelize the computation of individual output vector elements and to keep the
computation results local to the nodes. Consequently, when the data finishes propagating
through this interconnection in a wave-like manner, the nodes will store a fully computed
output vector.

c110 a12 a11

c21a22 a21 0

b11

b21

0

×a

b

+ z−1 c

z−1

b

multiplier-accumulator unit

Figure 15. Structure of systolic array for multiplying a 2× 1 vector b by a 2× 2 matrix A.

An efficient implementation of the presented systolic array node, i.e., the multiplier-
accumulator unit, requires a design that exploits specialized computational resources
provided by an FPGA, namely digital signal processor (DSP) slices. These high-speed
circuits support a number of mathematical functions, including multiplication and ad-
dition, and therefore can accelerate a compute-intensive design. According to the data
sheet [30], the XC7K420T device features 1680 DSP slices, and each slice contains a pre-
adder, a 25 × 18 multiplier, an adder, and an accumulator. Correspondingly, this kind of
slice can be configured to perform a multiply-accumulate operation in the form of a · b + c,
where a and b are 25-bit and 18-bit signals, respectively, and where accumulation with c is
sign-extended to 48 bits. On the one hand, by adhering to these signal widths, e.g., in case
of custom fixed-point data types, a MAC unit can be mapped to a single DSP slice on the
FPGA, thus leading to an optimal use of FPGA resources. On the other hand, if the MAC
unit needs to operate with wider signals, e.g., when dealing with 32-bit floating-point data,
the number of DSP slices per MAC unit increases, and the design consumes more FPGA
resources. To investigate the optimal solution—both in terms of resources and latency—this
work focuses on the custom fixed-point data types.



Sensors 2022, 22, 6236 13 of 22

5.2. Fixed-Point Analysis of Regulator Signals and Gains

Due to the 25 × 18 signal widths dictated by the DSP48E1 slice [31], the fixed-point
implementation differentiates between two types of data:

• signals flowing through the regulator, e.g., from y[k] to u[k];
• gain matrix values that modify the signals.

The signals and gains are assigned to 25-bit and 18-bit words, respectively, thus
prioritizing the precision of the signal data. Apart from the precision, the 25-bit signal word
needs to allocate enough bits for the integer part to avoid overflows inside the regulator. To
mitigate this risk and to improve the conditioning of the regulator, the inputs and outputs
are properly scaled. It is expected that the input signal coming from the BAM sensor
exhibits a deviation of roughly δτmax = 0.1. This yields y = δτ · δτ−1

max = 0.1 · 10 = 1, thus
normalizing the signal magnitudes flowing inside the regulator.

However, there can also be unexpected spikes in the BAM readout, see Figure 5. In
general, a large deviation of the input signal δτ will result in a considerable action taken by
the regulator. In case of ELBE, a drastic change of the signal driving the cavity will have a
high probability to trigger the ELBE protection system to switch off the accelerator. To cope
with this unwanted scenario the signal δτ is limited as follows

δτ =

{
δτ, if δτ < δτlim

δτlim, otherwise
. (14)

Setting δτlim = 1 yields y = δτlim · δτ−1
max = 1 · 10 = 10. Under these conditions, four

bits are enough to represent the integer part of the signal. The derived signal data type is
then (1, 25, 20), where the fixed-point notation is specified as

(sign, word length, word fraction length). (15)

In contrast, the fixed-point data type for gains of a 4th-order regulator is derived by
examining the magnitudes of the values stored inside the corresponding matrices, namely

Θ =


47.0522 −39.4131 1.48102 −0.45106
0.26835 99.3678 0.02415 −0.00735
13.2079 11.7310 99.0439 0.13750
−72.9060 −102.943 −7.72665 87.6644

× 10−2,

Ξ =
[
−291.624 −411.771 −30.9066 9.41304

]
× 10−2,

Υ =


−7.13823
−0.11638
−47.8240
12.2410

× 10−2, Φ =


−2.34632
−0.03825
0.71523
12.2410

× 10−2,

Ψ = 48.9641× 10−2, Ω =− 48.9641× 10−2.

Depending on the magnitude range of a particular matrix, the gain data type can vary
its precision. For example, the maximum magnitude among the matrix values constituting
the gain Θ is−1.0294. Hence, only one bit suffices for the integer part, another bit represents
the sign, and 16 bits can be allocated to the fraction part, thus yielding a precision of
2−16 = 1.5259× 10−5. Following this, Table 1 displays the various fixed-point data types
assigned to the regulator matrices.



Sensors 2022, 22, 6236 14 of 22

Table 1. Gain matrices with value magnitude ranges and assigned fixed-point data types.

Gain Minimum
Magnitude

Maximum
Magnitude

Fixed-Point Data
Type

Θ −7.3538× 10−5 −1.0294 (1, 18, 16)
Ξ 0.0941 −4.1177 (1, 18, 14)
Υ −0.0012 −0.4782 (1, 18, 16)
Φ −3.8253× 10−4 0.1224 (1, 18, 16)
Ψ 0.4896 0.4896 (1, 18, 16)
Ω −0.4896 −0.4896 (1, 18, 16)

The gains δτ−1
max and amax are integers with values 10 and 1, respectively, so their

fraction parts could be omitted. Still, it is expected that these gains can be manipulated
during run-time to do fine-tuning of the regulator. Thus, the fraction parts are preserved
and the corresponding data types are both chosen as (1, 18, 10). In addition, the BAM
and LLRF signals have fixed-point data types (0, 18, 15) and (1, 18, 10), respectively.
Consequently, the regulator implementation needs to take this into account when receiving
or sending low-latency link data.

The presented analysis underscores the fact that a fixed-point implementation requires
a thorough examination of the data flowing inside the design. It is therefore of interest
to see how much this effort helps to keep the systolic array structure optimal in terms of
latency and resources, e.g., compared to a floating-point implementation.

5.3. Data Flow to Drive Systolic Arrays

The operation of systolic arrays relies on a properly organized data flow. In this work,
a digital circuit responsible for the data flow is called a data channel, and multiple data
channels compose a data stream. As shown in Figure 16, this circuit plays a central role in
the gain entity.

Register CTL

argument vector

RAM

gain row 1

...

RAM

gain row n

Data stream

elem 1

elem n

gain column

RAM write address

argument

Gain CTL

SW trigger

RAM read addr

RAM data

argument

result

gain column

RAM read address

argument vector elem

result vector

Systolic array CTL

...

gain row 1 elem

result

argument vector elem

gain row n elem

result

Sy
st

ol
ic

ar
ra

y
no

de
s

Figure 16. Gain entity schematic showing internal data flow.



Sensors 2022, 22, 6236 15 of 22

Inside the data stream circuit, the data are structured based on their types. The gain
is treated as a two-dimensional matrix and is organized into matrix rows. These rows
are represented by separate data channels implemented as RAMs. Such organization
facilitates the gain data throughput, because it allows to write or read an entire matrix
column in a single clock cycle. This also places a requirement on the software to write
the gain data to intermediate RAM buffers in a column-major order. After a software
trigger, the gain controller will rely on the proper format of the intermediate data in order
to initialize the internal data channels column by column. Unlike the gain, the signal is
placed into a register-based memory. Again, this allows to register an incoming signal, i.e.,
the gain argument, in a single clock cycle. Along with the gain column, the signal vector
element is then fed into the systolic array to perform the necessary computation. Once the
computation is over, the results from each systolic array node are assembled into a result
vector which is then propagated to the gain entity output.

Undoubtedly, the data stream circuit introduces some amount of overhead into the
design. Moreover, the latency of the data management will dominate in case of low-order
regulator implementations, see Figure 17.

0 2 4 6 8 10

100

200

300

400

500

0.5

1

1.5

2∆ cc = 58

∆t = 0.242

∆ cc = 24

∆t = 0.1

Regulator order

C
lo

ck
cy

cl
es

Ti
m

e
la

te
nc

y
@

24
0

M
H

z
cl

oc
k

[µ
s]

floating-point
fixed-point

Figure 17. Time latency of the regulator busy state under various orders and data types.

The data stream overhead is partially related to data padding required by systolic
arrays. As can be seen in Figure 15, the data flow driving the systolic array is padded with
zeros. Although these zeros ensure the correct computation inside the nodes, they also lead
to the increase of the corresponding data channel size which becomes

data channel size = gain row size + gain column size− 1. (16)

Of course, the overall latency of the regulation algorithm is also affected by the
implementation of the state-space computation units, i.e., the MAC and the sum. This is
especially true for the floating-point case which uses a 32-bit single precision data type [32]
and thus relies on an intellectual property (IP) from Xilinx [33]. In this context, even though
the sum implementation represents a trivial element-wise summation of the argument
vectors, and thus does not involve systolic arrays, its floating-point implementation still
uses DSP resources, see Table 2.



Sensors 2022, 22, 6236 16 of 22

Table 2. Use of DSP resources by the two main computation units of the state-space algorithm.

Unit Implementation DSPs Clock Cycles Total DSPs for
7th Order

MAC fixed-point 1 5 26
floating-point 4 22 104

Sum fixed-point none 3 none
floating-point 2 14 18

Indeed, by adhering to the dictated signal widths the fixed-point MAC implementation
is mapped to a single DSP slice. Compared to the floating-point counterpart that uses
more DSPs per MAC, the one-to-one mapping allows the fixed-point design to occupy
considerably less DSP resources on the FPGA.

It can be argued, though, that the usage of the proposed gain entity architecture for
scalar operations, such as δτ−1

max · δτ, is far beyond what is required. Hence, the unwanted
overhead. This is a reasonable point provided the system does not change in the future. Yet
there are plans to extend the system in order to regulate the compression and energy of the
electron bunches. In this case, the current architecture can be easily scaled to implement
the required mathematical operation, e.g., yτ

yE
yC

 =

 δτ−1
max 0 0
0 δE−1

max 0
0 0 δC−1

max

 ·
 δτ

δE
δC

, (17)

where E and C denote the energy and compression of the electron bunches, respectively.
This underscores the scalability of the current digital solution.

In general, the presented data demonstrates that the proposed state-space architecture
can be routinely clocked at 240 MHz—a particular clock signal generated by the board
compartment of the MTCA.4 firmware framework. Running at such frequency allows
the fixed-point implementation to stay on the sub-microsecond level even in the case of
high-order regulator designs. The floating-point implementation exhibits greater latency,
but even the 7th-order regulator designed in [4] takes less than 2 microseconds to perform
its state-space computation. The 50 kHz bunch repetition rate is thus supported by both
implementations. In the mean time, the fast fixed-point implementation needs to be verified
in hardware.

6. Firmware Verification

The correctness of the regulator implementation is verified by assembling a digital
setup which involves the BBF regulator FPGA connected to an additional FPGA that serves
as a testbench. Along with the verification of the state-space implementation, the usage of
a separate FPGA allows testing the low-latency link communication. The corresponding
installation can be observed in Figure 18. The two FPGAs are slided into a MTCA.4 crate
leaving only their front panels exposed. As can be seen, these panels feature SFP slots that
are used to interconnect the two devices using optical cables.

In principle, the testbench operation can be outlined as follows

1. Sending a stimulus to the BBF regulator FPGA;
2. Receiving a response;
3. Comparing the received response with a similar one generated by a floating-point

MATLAB simulation.

The MATLAB simulation is run offline and is driven by the same stimulus—simulated
BAM data. Hence, both responses should be identical to a certain degree of precision.
Figure 19 summarizes the outlined testbench operation.



Sensors 2022, 22, 6236 17 of 22

Figure 18. MTCA.4 crate with two installed FPGAs serving as a testbench.

Version August 11, 2022 submitted to Sensors 17 of 21

In principle, the testbench operation can be outlined as follows424

1. Sending a stimulus to the BBF regulator FPGA;425

2. Receiving a response;426

3. Comparing the received response with a similar one generated by a floating-point427

MATLAB simulation.428

The MATLAB simulation is run offline and is driven by the same stimulus—simulated429

BAM data. Hence, both responses should be identical to a certain degree of precision.430

Figure 19 summarizes the outlined testbench operation.431

load stimuli

start

read
none

send(response)

send(s)

read
response

trigger stimulus update

write(s)

stop

load MATLAB response and compare

verify:SW testbench:HW regulator:HW

loop

[s in stimuli]

Figure 19. UML sequence diagram showing the operation of the BBF regulator testbench

In this work, the testbench compares the time response of a 4th-order regulator im-432

plemented in fixed-point with the same regulator simulated in a floating-point MATLAB433

model. The result of this comparison is depicted in Figure 20.434

1 1,000 2,000 3,000 4,000 5,000 6,000

−2

−1

0

1

Time samples

a
[%

]

MATLAB
FPGA

Figure 20. Comparison of MATLAB and testbench time responses for a 4th-order regulator

Figure 19. UML sequence diagram showing the operation of the BBF regulator testbench.



Sensors 2022, 22, 6236 18 of 22

In this work, the testbench compares the time response of a 4th-order regulator im-
plemented in fixed-point with the same regulator simulated in a floating-point MATLAB
model. The result of this comparison is depicted in Figure 20.

Version August 11, 2022 submitted to Sensors 17 of 21

In principle, the testbench operation can be outlined as follows424

1. Sending a stimulus to the BBF regulator FPGA;425

2. Receiving a response;426

3. Comparing the received response with a similar one generated by a floating-point427

MATLAB simulation.428

The MATLAB simulation is run offline and is driven by the same stimulus—simulated429

BAM data. Hence, both responses should be identical to a certain degree of precision.430

Figure 19 summarizes the outlined testbench operation.431

load stimuli

start

read
none

send(response)

send(s)

read
response

trigger stimulus update

write(s)

stop

load MATLAB response and compare

verify:SW testbench:HW regulator:HW

loop

[s in stimuli]

Figure 19. UML sequence diagram showing the operation of the BBF regulator testbench

In this work, the testbench compares the time response of a 4th-order regulator im-432

plemented in fixed-point with the same regulator simulated in a floating-point MATLAB433

model. The result of this comparison is depicted in Figure 20.434

1 1000 2000 3000 4000 5000 6000

−2

−1

0

1

Time samples

a
[%

]

MATLAB
FPGA

Figure 20. Comparison of MATLAB and testbench time responses for a 4th-order regulatorFigure 20. Comparison of MATLAB and testbench time responses for a 4th-order regulator.

The difference between the response simulated in MATLAB and the one produced
by the testbench is displayed in Figure 21. Essentially, the assembled testbench represents
an open-loop system, i.e., the output of the testbench regulator has no effect on the next
BAM data sample. Coupled with the precision issue, the open-loop scenario leads to
accumulation of the mismatch between the two responses. Still, it is expected that this
negative behavior will disappear, once the fixed-point regulator closes the real machine
loop. In the closed-loop scenario, the correctness of the first few responses will matter, and
the current testbench data exhibits up to 20 correct responses before the least significant
fraction bit flips. Note that the magnitude of the bit flip corresponds to the precision of the
fixed-point data type (1, 18, 10) used by the LLRF controller.

Figure 21. FPGA and MATLAB responses expressed as (a) absolute difference and (b) zoomed.



Sensors 2022, 22, 6236 19 of 22

7. Conclusions

In the context of the linear accelerator ELBE, the benefit of implementing a beam-based
feedback regulator using an FPGA is twofold. Firstly, the low-latency nature of FPGAs
allows dealing with fast processes, such as the regulation of an electron bunch arrival time.
Secondly, the high configurability of FPGAs enables the implementation of sophisticated
regulation algorithms, e.g., an optimalH2 regulator in its state-space representation.

Accordingly, in this work we proposed an FPGA-based implementation of a beam-
based feedback regulation algorithm to compensate electron bunch arrival time fluctuations.
Using a top-down approach, we gradually introduced the levels of the regulator system,
starting from the structure of the ELBE beam-based feedback loop and culminating in the
digital architecture of a state-space regulator. In order to implement the matrix-vector
multiplications of the state-space formalism, we used systolic arrays. Even though the
systolic arrays added data management overhead into the design, we saw that the design
could easily be scaled in terms of the regulator orders as well as its inputs and outputs. Fur-
thermore, we made a thorough analysis of a potential fixed-point implementation and then
compared it to a floating-point one. Essentially, when clocked at 240 MHz the fixed-point
implementation of a 4th-orderH2 regulator takes 0.425 µs to perform its state-space compu-
tations, thus enabling sub-microsecond sample times. In contrast, a similar floating-point
implementation takes 1.025 µs. Finally, we verified the correctness of the implementation
by running a hardware testbench which included two interconnected FPGAs.

The next step is to validate the proposed digital solution on the real machine. This
will allow evaluating the whole spectrum of decisions made in this and our previous
works, including the disturbance modeling, the choice of the regulation algorithm and the
state-space implementation. Such evaluation will be the subject of our future report.

Author Contributions: Conceptualization, A.M., M.K. and E.P.; methodology, A.M.; software, A.M.;
validation, A.M.; formal analysis, A.M.; investigation, A.M. and M.K.; resources, M.K.; data curation,
A.M.; writing—original draft preparation, A.M.; writing—review and editing, M.K. and E.P.; visual-
ization, A.M.; supervision, M.K. and E.P.; project administration, M.K.; funding acquisition, M.K. and
E.P. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially funded by the Estonian Research Council grant PRG658.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the MicroTCA Technology Lab at the German
Electron Synchrotron (DESY) for their help with the MTCA.4 firmware framework. Special thanks
goes to Cagil Gümüş, Burak Dursun and Łukasz Butkowski.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AMC Advanced mezzanine card
API Application programming interface
BAM Bunch arrival time monitor
BBF Beam-based feedback
CPU Central processing unit
CW Continuous wave
DAQ Data acquisition
DDR Double data rate
DSP Digital signal processor
ELBE Electron linear accelerator for beams with high brilliance and low emittance
FPGA Field-programmable gate array



Sensors 2022, 22, 6236 20 of 22

FSM Finite state machine
HZDR Helmholtz-Zentrum Dresden-Rossendorf
HW Hardware
II Internal interface
IP Intellectual property
LLL Low-latency link
LLRF Low-level radio frequency
MAC Multiply-accumulate
MTCA Micro telecommunications computing architecture
PCIe Peripheral component interconnect express
RAM Random-access memory
RF Radio frequency
SFP Small form-factor pluggable
SSPA Solid-state power amplifier
SW Software
UML Unified modeling language
VHDL VHSIC hardware description language
VHSIC Very high-speed integrated circuit
VM Vector modulator

Nomenclature

ELBE accelerator
A RF field amplitude
a RF field amplitude change in percents
φ RF field phase
e− electron
τ electron bunch arrival time in dimensionless BAM modulation units
I in-phase representation of RF field amplitude and phase
Q quadrature representation of RF field amplitude and phase

Control configuration
A system matrix
B2 input matrix
C2 output matrix
D22 feed-forward matrix
r reference input (setpoint)
e error signal
u control signal (manipulated plant input)
x control state
y plant output
z−1 discrete integrator
Ku state feedback gain
Lu observer gain
Lx observer gain
Θ gain from x[k] to x[k + 1]
Υ gain from y[k] to x[k + 1]
Φ gain from u[k− 1] to x[k + 1]
Ξ gain from x[k] to u[k]
Ψ gain from y[k] to u[k]
Ω gain from u[k− 1] to u[k]

References
1. Schlarb, H. Techniques for Pump-Probe Synchronisation of Fsec Radiation Pulses. In Proceedings of the Particle Accelerator

Conference, Knoxville, TN, USA, 16–20 May 2005.
2. Pfeiffer, S.; Branlard, J.; Hoffmann, M.; Schmidt, C. Advanced LLRF System Setup Tool for RF Field Regulation of SRF Cavities. In

Proceedings of the 19th International Conference on RF Superconductivity, Dresden, Germany, 30 June–5 July 2019. [CrossRef]

http://doi.org/10.18429/JACoW-SRF2019-THP073


Sensors 2022, 22, 6236 21 of 22

3. Zenker, K.; Gümüş, C.; Hierholzer, M.; Michel, P.; Pfeiffer, S.; Schlarb, H.; Schmidt, C.; Schurig, R.; Steinbrück, R.; Kuntzsch, M.
MicroTCA.4-Based Low-Level RF for Continuous Wave Mode Operation at the ELBE Accelerator. IEEE Trans. Nucl. Sci. 2021, 68,
2326–2333. [CrossRef]

4. Maalberg, A.; Kuntzsch, M.; Petlenkov, E. Regulation of the Linear Accelerator ELBE Exploiting Continuous Wave Mode of a
Superconducting RF Cavity. In Proceedings of the American Control Conference, Atlanta, GA, USA, 8–10 June 2022.

5. Kwakernaak, H. H2-optimization—Theory and applications to robust control design. Annu. Rev. Control 2002, 26, 45–56.
[CrossRef]

6. Skogestad, S.; Postlethwaite, I. Multivariable Feedback Control: Analysis and Design, 2nd ed.; John Wiley & Sons, Ltd.: Chichester,
UK, 2005; pp. 355–356.

7. Pfeiffer, S.; Schmidt, C.; Bock, M.K.; Schlarb, H.; Jalmuzna, W.; Lichtenberg, G.; Werner, H. Fast Feedback Strategies for
Longitudinal Beam Stabilization. In Proceedings of the 2012 International Particle Accelerator Conference, New Orleans, LA,
USA, 20–25 May 2012.

8. Koprek, W.; Behrens, C.; Bock, M.K.; Felber, M.; Gessler, P.; Schlarb, H.; Schmidt, C.; Schulz, S.; Steffen, B.; Wesch S.; et al.
Intra-train Longitudinal Feedback for Beam Stabilization at FLASH. In Proceedings of the 32nd International Free Electron Laser
Conference, Malmö, Sweden, 23–27 August 2010.

9. Rezaeizadeh, A.; Schilcher, T.; Smith, R. MPC based Supervisory Control Design for a Free Electron Laser. In Proceedings of the
54th Conference on Decision and Control, Osaka, Japan, 15–18 December 2015.

10. Rezaeizadeh, A.; Schilcher, T.; Smith, R. Adaptive robust control of longitudinal and transverse electron beam profiles. Phys. Rev.
Accel. Beams 2016, 19, 052802. [CrossRef]

11. Bellandi, A.; Butkowski, Ł.; Dursun, B.; Eichler, A.; Gümüş, C.; Kuntzsch, M.; Nawaz, A.; Pfeiffer, S.; Schlarb, H.; Schmidt, C.;
et al. Online Detuning Computation and Quench Detection for Superconducting Resonators. IEEE Trans. Nucl. Sci. 2021, 68,
385–393. [CrossRef]

12. Löhl, F. Optical Synchronization of a Free-Electron Laser with Femtosecond Precision. Ph.D. Thesis, University of Hamburg,
Hamburg, Germany, 2009.

13. Bock, M.K. Measuring the Electron Bunch Timing with Femtosecond Resolution at FLASH. Ph.D. Thesis, University of Hamburg,
Hamburg, Germany, 2013.

14. Kuntzsch, M.; Zenker, K.; Maalberg, A.; Schwarz, A.; Czwalinna, M.K.; Kral, J. Update of the Bunch Arrival Time Monitor at
ELBE. In Proceedings of the 13th International Particle Accelerator Conference, Bangkok, Thailand, 12–17 June 2022.

15. Rybaniec, R.; Przygoda, K.; Cichalewski, W.; Ayvazyan, V.; Branlard, J.; Butkowski, Ł.; Pfeiffer, S.; Schmidt, C.; Schlarb, H.;
Sekutowicz, J. FPGA-Based RF and Piezocontrollers for SRF Cavities in CW Mode. IEEE Trans. Nucl. Sci. 2017, 64, 1382–1388.
[CrossRef]

16. Wibowo, S. B.; Matsumoto, T.; Michizono, S.; Miura, T.; Qiu, F.; Liu, N. Digital low level rf control system for the International
Linear Collider. Phys. Rev. Accel. Beams 2018, 21, 082004. [CrossRef]

17. Qiu, F.; Michizono, S.; Miura, T.; Matsumoto, T.; Liu, N.; Wibowo, S.B. Real-time cavity simulator-based low-level radio-frequency
test bench and applications for accelerators. Phys. Rev. Accel. Beams 2018, 21, 032003. [CrossRef]

18. St. John, J.; Herwig, C.; Kafkes, D.; Mitrevski, J.; Pellico, W.A.; Perdue, G.N.; Quintero-Parra, A.; Schupbach, B.A.; Seiya, K.; Tran, N.;
et al. Real-time artificial intelligence for accelerator control: A study at the Fermilab Booster. Phys. Rev. Accel. Beams 2021, 24, 104601.
[CrossRef]

19. Kumar, V.K.P.; Tsai, Y.-C. Synthesizing optimal family of linear systolic arrays for matrix computations. In Proceedings of the
International Conference on Systolic Arrays, San Diego, CA, USA, 25–27 May 1988.

20. Jang, J.-W.; Choi, S.B.; Prasanna, V.K. Energy- and time-efficient matrix multiplication on FPGAs. IEEE Trans. Very Large Scale
Integr. VLSI Syst. 2005, 13, 1305–1319. [CrossRef]

21. Shen, J.; Qiao, Y.; Huang, Y.; Wen, M.; Zhang, C. Towards a Multi-array Architecture for Accelerating Large-scale Matrix
Multiplication on FPGAs. In Proceedings of the 2018 International Symposium on Circuits and Systems, Florence, Italy, 27–30
May 2018.

22. Wei, X.; Yu, C.H.; Zhang, P.; Chen, Y.; Wang, Y.; Hu, H.; Liang, Y.; Cong, J. Automated Systolic Array Architecture Synthesis for
High Throughput CNN Inference on FPGAs. In Proceedings of the 54th Annual Design Automation Conference, Austin, TX,
USA, 18–22 June 2017.

23. Walter, T.; Ludwig, F.; Rehlich, K.; Schlarb, H. Novel Crate Standard MTCA.4 for Industry and Research. In Proceedings of the
4th International Particle Accelerator Conference, Shanghai, China, 12–17 May 2013.

24. Kuntzsch, M.; Steinbrück, R.; Schurig, R.; Hierholzer, M.; Killenberg, M.; Schmidt, C.; Hoffmann, M.; Iatrou, C.; Rahm, J.;
Rutkowski, I.; et al. MicroTCA.4-Based LLRF for CW Operation at ELBE - Status and Outlook. In Proceedings of the 6th
International Beam Instrumentation Conference, Grand Rapids, MI, USA, 20–24 August 2017.

25. Butkowski, Ł.; Kozak, T.; Prędki, P.; Rybaniec, R.; Yang, B.Y. FPGA Firmware Framework for MTCA.4 AMC Modules. In
Proceedings of the 15th International Conference on Accelerator and Large Experimental Physics Control Systems, Melbourne,
Australia, 17–23 October 2015.

26. Data Processing AMC Module for MTCA & ATCA. Available online: https://www.nateurope.com/products/NAT-AMC-
TCK7.html (accessed on 30 March 2022).

http://dx.doi.org/10.1109/TNS.2021.3096757
http://dx.doi.org/10.1016/S1367-5788(02)80010-4
http://dx.doi.org/10.1103/PhysRevAccelBeams.19.052802
http://dx.doi.org/10.1109/TNS.2021.3067598
http://dx.doi.org/10.1109/TNS.2017.2687981
http://dx.doi.org/10.1103/PhysRevAccelBeams.21.082004
http://dx.doi.org/10.1103/PhysRevAccelBeams.21.032003
http://dx.doi.org/10.1103/PhysRevAccelBeams.24.104601
http://dx.doi.org/10.1109/TVLSI.2005.859562
https://www.nateurope.com/products/NAT-AMC-TCK7.html
https://www.nateurope.com/products/NAT-AMC-TCK7.html


Sensors 2022, 22, 6236 22 of 22

27. Killenberg, M.; Petrosyan, L.M.; Schmidt, C.; Marsching, S.; Piotrowski, A. Drivers and Software for MTCA.4. In Proceedings of
the 5th International Particle Accelerator Conference, Dresden, Germany, 15–20 June 2014.

28. Dimitrakopoulos, G.; Psarras, A.; Seitanidis, I. Microarchitecture of Network-on-Chip Routers: A Designer’s Perspective; Springer
Science+Business Media: New York, NY, USA, 2015; pp. 11–12.

29. Clements, A. Principles of Computer Hardware, 4th ed.; Oxford University Press Inc.: New York, NY, USA, 2006; pp. 134–136.
30. 7 Series FPGAs Data Sheet: Overview. Available online: https://docs.xilinx.com/v/u/en-US/ds180_7Series_Overview (accessed

on 15 May 2022).
31. 7 Series DSP48E1 Slice: User Guide. Available online: https://docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1 (accessed

on 15 May 2022).
32. IEEE Std 754-2019; IEEE Standard for Floating-Point Arithmetic. (Revision of IEEE 754-2008). IEEE: Piscataway, NJ, USA, 2019.
33. Floating-Point Operator v7.1: LogiCORE IP Product Guide. Available online: https://docs.xilinx.com/v/u/en-US/pg060-

floating-point (accessed on 15 May 2022).

https://docs.xilinx.com/v/u/en-US/ds180_7Series_Overview
https://docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1
https://docs.xilinx.com/v/u/en-US/pg060-floating-point
https://docs.xilinx.com/v/u/en-US/pg060-floating-point

	Introduction
	Beam-Based Feedback Loop Structure at ELBE
	Beam-Based Feedback Regulator
	RF System as Actuator for Electron Beam Regulation
	Bunch Arrival Time Monitor as Sensor of Electron Beam

	Hardware/Software Environment for Beam-Based Feedback Regulator
	MTCA.4 Hardware Environment
	Hardware/Software Interface

	Firmware Architecture of Beam-Based Feedback Regulator
	Behavioral Model
	Finite State Machine

	State-Space Implementation in Hardware
	Systolic Array Structure
	Fixed-Point Analysis of Regulator Signals and Gains
	Data Flow to Drive Systolic Arrays

	Firmware Verification
	Conclusions
	References

