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Abstract: Mobility management is an essential process in mobile networks to ensure a high quality
of service (QoS) for mobile user equipment (UE) during their movements. In fifth generation (5G)
and beyond (B5G) mobile networks, mobility management becomes more critical due to several key
factors, such as the use of Millimeter Wave (mmWave) and Terahertz, a higher number of deployed
small cells, massive growth of connected devices, the requirements of a higher data rate, and the
necessities for ultra-low latency with high reliability. Therefore, providing robust mobility techniques
that enable seamless connections through the UE’s mobility has become critical and challenging.
One of the crucial handover (HO) techniques is known as mobility robustness optimization (MRO),
which mainly aims to adjust HO control parameters (HCPs) (time-to-trigger (TTT) and handover
margin (HOM)). Although this function has been introduced in 4G and developed further in 5G,
it must be more efficient with future mobile networks due to several key challenges, as previously
illustrated. This paper proposes a Robust Handover Optimization Technique with a Fuzzy Logic
Controller (RHOT-FLC). The proposed technique aims to automatically configure HCPs by exploiting
the information on Reference Signal Received Power (RSRP), Reference Signal Received Quality
(RSRQ), and UE velocity as input parameters for the proposed technique. The technique is validated
through various mobility scenarios in B5G networks. Additionally, it is evaluated using a number of
major HO performance metrics, such as HO probability (HOP), HO failure (HOF), HO ping-pong
(HOPP), HO latency (HOL), and HO interruption time (HIT). The obtained results have also been
compared with other competitive algorithms from the literature. The results show that RHOT-FLC
has achieved considerably better performance than other techniques. Furthermore, the RHOT-FLC
technique obtains up to 95% HOP reduction, 95.8% in HOF, 97% in HOPP, 94.7% in HOL, and
95% in HIT compared to the competitive algorithms. Overall, RHOT-FLC obtained a substantial
improvement of up to 95.5% using the considered HO performance metrics.

Keywords: 5G; B5G; 5G and beyond; self-optimization; MRO; HCP; mobility management; handover;
small cells; robust handover technique

1. Introduction

There has been enormous development in mobile cellular networks during the last
decade. Fifth generation (5G) and beyond (B5G) technologies aim to provide revolutionary
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features, such as ultra-high speed, extremely low latency, huge capacity (wide bandwidth),
a massive number of connected devices, all-time availability, coverage everywhere, low
energy usage, and long battery life [1]. In addition to that, the B5G networks support
connectivity under high mobility speeds.

To meet the increasing demand of user data throughput, the carrier frequency range
has been further expanded, such as to Millimeter Wave (mmWave) frequencies in B5G
cellular networks, and even Terahertz may work with the sixth generation (6G) and beyond
networks. However, mmWave has limited coverage of 200 m. This means that several
base stations (BSs) will cover a small area to improve the frequency reuse and the total
network capacity. In addition, a larger number of BSs in a small area increase the number
of handovers (HO) and mobility management challenges in B5G networks, especially for a
user speed higher than 100 km/h.

Consequently, mobility management functions are essential and need continuous de-
velopments and investigations in mobile cellular networks. That involves various mobility
management functions, such as the self-optimization for HO control parameters, handover
decision algorithms, mobile routing algorithms, authentications, identification and tracking
of changes in user locations connected to the cellular network. Furthermore, mobility man-
agement provides network connectivity to users at any location. Users can avail themselves
of this function to access the network at a new location smoothly. Additionally, it ensures
users with an uninterrupted and reliable connection, communication, and service [2]. In
B5G systems, the importance of mobility management is significantly increased because
many applications are very connectivity-sensitive to the networks [3].

HO is one of the main functions of mobility management. In the ideal case, it enables
the user equipment (UE) to move and change its connection to a new serving cell seamlessly
without interruption. In B5G networks, HO is becoming more challenging, especially with
high-frequency bands (such as mmWave) and ultra-dense small cells. The use of mmWave
leads to reduced cell coverage and a larger number of deployed small BSs, thus further
increasing the number of HO compared to legacy networks. This affects the network
performance regarding signaling load, connectivity and throughput. Therefore, the HO
process in a new mobile network must be fast and the connection should be more seamless
as many applications require very low latency and zero link failures. Thus, developing
a handover technique that can provide a seamless and robust HO process is a critical
challenge that needs to be solved in B5G networks. Different solutions have been proposed
and developed to solve mobility issues in 5G and B5G networks [4–7].

Mobility Robustness Optimization (MRO) is one of the significant functions that have
been introduced in 4G and 5G mobile networks to optimize Handover Control Parameters
(HCPs). It is one of the prominent techniques that focuses on HCPs, such as time-to-trigger
(TTT) and HO margin (HOM). Adjusting HCPs properly is the main factor in providing an
optimum HO process.

Several existing techniques have been developed to improve the optimization pro-
cess and estimate more optimum HCPs. The work presented in [8] aims to decrease the
effect of HO ping-pong (HOPP). The results illustrate that the HOPP is greatly decreased
compared to the literature techniques. However, the algorithm did not efficiently lower
the HO probability (HOP); it is still high. Studies in [9,10] focused on HO management
and enhancing HO delay but did not consider HOPP and HOP. Furthermore, schemes
in [11,12] succeed to improve particular HO performance metrics, but it is at the cost of
deterioration of other HO metrics. More related works are discussed in the next section.
Consequently, HO management improvements are still required to enhance the overall
system performance.

This paper extends our previous work [13], which focused on HOP and HOPP ef-
fect reductions. In general, the main contributions of this paper are summarized in the
following points:

• Proposition of a Robust Handover Optimization Technique with Fuzzy Logic Con-
troller (RHOT-FLC) to automatically adjust the HCPs more efficiently for 5G and
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B5G mobile networks. In other words, we developed a fuzzy-based algorithm that
utilizes the advantages of the FL system to automatically adjust the TTT and HOM
simultaneously. The proposed technique exploits the UE’s information such as RSRP,
RSRQ, and speed to adapt the TTT and HOM as the system outputs.

• Evaluation of system performance in terms of HO probability (HOP), HO failure
(HOF), HO ping-pong (HOPP) effect, HO latency (HOL), and HO interruption time
(HIT), with different mobility speed scenarios. The RHOT-FLC technique aims to im-
prove the HO performance in a B5G mobile system in terms of these mentioned KPIs.

• Comparison and performance analysis of the RHOT-FLC technique with various
techniques from the literature, such as the conventional HO method (Conv), Fuzzy
Logic Controller (FLC) [14] algorithm, and another competitive algorithm by Silva
et al. (Slv) [15].

The rest of the paper is structured as follows: Section 2 presents recent related
works, while Section 3 introduces the proposed technique (RHOT-FLC) and system model.
Section 4 describes the simulation environment and performance metrics, then Section 5
presents the simulation report and performance analyses. Finally, Section 6 concludes
our paper.

2. Related Work

In 2019, Souza et al. [8] proposed a heuristic for HO based on the Analytic Hierarchy
Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOP-
SIS), named H2ATF. A ranking of eNB according to priority was generated by adopting
these elements: (1) AHP for defining criteria weights, (2) TOPSIS for ranking the chosen
destination cells, and (3) an adaptive hysteresis fuzzy inference system to perform the
calculation using parameters with direct impact on HO. MATLAB simulations were imple-
mented with various small-cell eNodeBs (eNBs) and fixed macrocells to validate the efficacy
of the proposed heuristic scheme. According to the findings, determining the optimal HO
time was possible with a suitable antenna. Furthermore, a reduction of up to 43% in HO
ping-pong, a commonly used metric to assess HO heuristics, was also achieved. The study
emphasized that new parameters for HO decisions, such as the direction, flow type, and
antenna load, should be further explored. Aside from that, alternative mobile network
design and novel computational intelligence approaches (e.g., unique fuzzy approach, ge-
netic algorithm, and clustering) may be examined to optimize the decision-making process.
However, since it ignores the TTT, the results affect the radio link failure (RLF), which
affects the HO performance.

In 2013, Muñoz et al. [14] investigated HOM and TTT to evaluate the HO performance
for different UE speeds and system load systems. Moreover, the authors proposed an FLC
optimization technique to adjust the HOM. The technique was set up with three different
configurations of FLC and evaluated to provide the optimal key performance indicators
(KPIs): call-drop ratio and HOP. Although the technique achieved a good HO performance
in the call-drop ratio and HOP, it does not provide exemplary performance in the other
HO’s KPIs, such as RLF and HOPP.

In 2018, Silva et al. [15] introduced a fuzzy logic-based scheme that leverages user
velocity and radio channel quality to self-optimize a hysteresis margin for HO decision
to address mobility management issues. The work targets future networks with a large
number of small cells while enabling smooth connectivity. MATLAB was utilized to assess
the proposed solution while considering the situation of a 1000 m × 1000 m area, where
2 eNBs, up to 200 small cells eNBs, and 50 UEs were placed in this region. Based on the
findings, the study concluded that, in all cases, the proposed algorithm efficiently restricted
and kept its ping-pong effects below 1%. Moreover, the HOF ratio and the HO occurrences
were significantly decreased when compared to previous methods, particularly for cases
with many small cells. The dwelling time of users in the small cells was also comparable
to similar schemes. As for future work, the study emphasized focusing on signal-level
prediction for the throughput gain ascertainment and investigating potential enhancements
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for HO performance metrics. However, the algorithm is limited to a certain mobility speed
of up to 80 km/h, which is considered moderate.

In 2017, Nguyen et al. [16] proposed a distributed MRO algorithm to reduce HOFs
caused by RLFs by modifying trigger time and offset parameters. The algorithm categorized
three HOF types (wrong cell, too late, and too early) and optimized three HO parameters
simultaneously based on the prevailing failure. Furthermore, the algorithm considered
HOFs in each nearby cell and modified HO parameters separately. Simulations were
performed using the Long-Term Evolution (LTE) module in the ns-3 network simulator
to validate the proposed MRO algorithm [17]. A one-tier small-cell network with seven
small eNBs was also studied, with a 30 m inter-site distance. According to the simulation
findings, the algorithm effectively discovered the best HO parameters and surpassed
prior techniques. Furthermore, the proposed method produced the fewest ping-pongs
of the algorithms studied. However, it only focused on RLF and HOPP and ignored
discussing other important HO KPIs, such as HOP probability, HIT, throughput, and cell
edge spectral efficiency.

In 2018, Hegazy et al. [18] introduced a method to optimize two opposing HO problems
(i.e., RLFs and ping-pongs) utilizing fuzzy Q-learning. The first must reduce the HO margin
to reduce the too-late HO, whereas the second must raise the HO margin to reduce the
needless signaling. Users in the network were classified into four groups based on their
speed and data traffic usage. As a result, keeping general HO issues within acceptable
levels can enhance the user experience. Fuzzy Q-learning was used with distinct initial
candidate fuzzy actions for each user group. LTE-Sim [19] was used to assess the proposed
algorithm’s efficacy. However, these two existing research methods do not apply any
optimization method. The findings indicated that the suggested technique offered the
optimum performance for each user group corresponding to the most chosen metric, either
decreasing ping-pongs or lowering RLF. Furthermore, whether the number of users was
cut by half or doubled, the proposed algorithm was proven to be resistant against changes
in the number of users. Furthermore, not all KPIs have been investigated.

In 2019, Liu et al. [20] proposed a fuzzy-TOPSIS-based HO algorithm to reduce the
ping-pong effect and number of HOs. The proposed algorithm leveraged the benefits of
fuzzy logic and TOPSIS and utilized the received signal-strength intensity (RSSI) and signal-
to-noise ratio (SNR) as the HO criteria. According to the MATLAB simulation results, the
proposed HO algorithm could effectively decrease the ping-pong rate and the number of
Hos when compared to conventional RSSI-based HO approach and classical multi-attribute
decision-making (MADM) HO methods, such as simple additive weighting (SAW) and
basic TOPSIS. Nevertheless, HO performance such as HOF, and HOL was not evaluated to
show the robustness of the algorithm with various KPIs.

In 2019, Goyal et al. [21], the authors presented a scheme for choosing the optimal
network in a heterogeneous network situation to preserve overall network quality of
service (QoS) by employing multiple criteria: velocity, received signal strength (RSS), dwell
time, bandwidth, cell radius, load on eNB, and power transmission. The best-ranked
network with the lowest HOF was chosen using the fuzzy AHP method. The findings
were statistically evaluated and revealed that the optimum network with a lower HOF rate
may enable uninterrupted communication. Nonetheless, the study did not consider other
aspects that may impact UE and the network during HO, such as UE energy consumption
and packet loss.

In 2019, Alhammadi et al. [22] proposed a weighted fuzzy self-optimization (WFSO)
approach for optimizing HCPs. The HO choice in this method was based on three key
attributes: SINR, the traffic load of serving and target BS, and UE velocity. To increase HO
performance, the self-optimized HCPs (i.e., HOM and TTT) were modified based on the
present status of these attributes. MATLAB was used to comply with the third-generation
partnership project (3GPP) HetNet mobility simulation methodology [23]. Based on the
results, HOPP, RLF, and HOF rates were considerably reduced using the developed WFSO
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compared to other benchmark methods. However, the algorithm did not provide optimum
performance in all HO KPIs.

Finally, and most recently, Lema et al. [24] assessed HO performance in 2021 by
optimizing the HCPs, such as TTT, HO offset, and HO margin. A well-known heuristic
algorithm known as particle swarm optimization (PSO) was also employed. In addition,
the performance of the networks could be improved by a self-organized network (SON)
through the automation of mobility load balancing (MLB) and PSO. The results were
validated using MATLAB Software. Compared to standard HO performance enhancement
approaches, the simulation results revealed that the PSO and MLB-based HOF and HOPP
were considerably improved. However, the probability of the HOF is highly increased as
the UE’s speed increases. Additionally, not all KPIs were considered in this study.

Although the aforementioned works have attained HO performance enhancement in
terms of different HO KPIs, an optimum solution that can provide optimum HO perfor-
mance for all HO KPIs is still required, and the developers and researchers are working on
delivering robust HO techniques that overcome the HO issues. Table 1 summarizes the
related works.

Table 1. Summary of Related Works.

Ref. Problem Solution System Optimization Parameters Performance Metrics

[8]

Deterioration in the
provided quality of services

due to a high number of
HOs because of failure to

rank the priority of BS.

Self-optimization based on
AHP-TOPSIS-Fuzzy to

select the target cell

Small
Cells/HetNets HOM HOPP and HOF

[14]

Providing automated
operation for

Self-Organizing
Networks (SONs).

FLC-based technique that
adaptively adjusts HOM LTE HOM Call drop ratio and

HO ratio

[15]
A high number of HOs in

networks of a large number
of small cells

Self-optimization algorithm
based on FL exploiting
users’ speed and radio

channel quality to
adjust HOM

Dense Small-Cell
Networks HOM Number of HO, HOF

ration, and HOPP

[16]
Occurring HOF as a result
of RLF, which reduces the

system’s performance

MRO algorithm to adjust
TTT and offset according to

HOF reason

4G/Small Cells
Networks TTT RLF and HOPP

[18] RLF and HOPP for users
using real-time traffic

MRO algorithm based on
fuzzy Q-learning to

adjust HOM
LTE HOM RLF and HOPP

[20]

Increased HOPP, number of
HOs, unnecessary HOs,

and frequent HOs due to
deployment of a massive

number of BSs

Self-optimization algorithm
based on FL-TOPSIS
Handover Decision-
making Algorithm

4G HOM Number of HO
and HOPP

[21] Increasing HOF affects the
QoS of the system

Fuzzy AHP-based
technique that correctly

selects the optimal network
among the available
networks as a target

network with HO

LTE/ HetNets − HOF

[22]

Increasing the number of
HOs increases the HOPP

and HOF due to the
deployment of a massive

number of BSs

Self-optimization based on
WFSO to adapt HOM

and TTT
4G/5G HetNets HOM and TTT RLF, HOPP, and HOF

[24]
Degradation in QoS due to
a high probability of HOF

and HOPP

Self-optimization based on
PSO to adjust HOM

and TTT
4G HOM and TTT HOPP and HOF
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3. Proposed System

This section explains the HCP optimization and gives a general overview of the FLC
system. It also presents the proposed RHOT-FLC technique, including its system process.

3.1. Overview

Two important HCPs are TTT and HOM. Both of these have a significant effect on HO.
HOM is a variable that indicates the threshold of the difference between the strength of the
signal received at the serving base station and that of signals received at target BSs. TTT
indicates the essentially vital time interval for meeting HOM conditions. Two criteria must
be met for the execution of HO: The first criterion requires the RSS of the serving BS to
be outshined by the RSS of a potential cell. In contrast, the second criterion involves the
fulfillment of the first condition within the time specified in the TTT parameter [25].

Ensuring reliable and stable communication throughout the UE mobility is one of the
critical challenges facing the practical implementation of the B5G networks. One of the
solutions to design and improve the HO robustness is using the HCP-based techniques,
which is considered a self-optimization technique. HCPs (TTT and HOM) are vital criteria
in HO decision techniques. Therefore, they must be adapted and optimized very well
to provide optimum HO performance. For example, increasing the value of TTT in a
high-speed scenario increases the RLF probability, which degrades the overall system
performance. On the contrary, adjusting TTT with a small value in a low mobile speed
scenario increases the HOPP probability. Similar to the HOM, adjusting TTT with different
values affects the HO performance accordingly.

A fuzzy logic system is a mathematical system based on fuzzy logic that analyzes
analog input values in continuous logical variables values between 0 and 1. A fuzzy
logic controller (FLC) generally consists of three main stages: fuzzification, inference,
and defuzzification. During fuzzification, numerical input variables are converted into
membership functions. The systems’ output has linguistic relations with the system’s
inputs. These relations are called rules, and the output of each rule is referred to as a fuzzy
set. More than one rule is used to increase conversion efficiency. The inference is the process
whereby the fuzzy output sets of each rule are combined to make one fuzzy output set.
Afterward, the fuzzy set is defuzzified to a crisp output in the defuzzification process.

FLC has been widely applied to mobile network parameter optimization as in studies
by [14,15,22,26–31] for HO. FLC has the advantages of working with imprecise inputs, not
needing an accurate mathematical model, and handling nonlinearity, as proved by the
results of this research. In mobility management, FLC is used to adjust and adapt the
HCP (TTT and HOM) values to provide an automatic HO process. The existing works, for
example, in [15,18,20,21], applied FLC in their algorithms for HO in mobile systems and
show that FLCs are very useful for automatic HO parameter optimization.

A membership function can be described, for example, by a triangular fuzzy number
(x) (Figure 1) consisting of triplet a, b, c. The fuzzy triangle function is suitable for real-time
operation due to its modelling simplicity. The mathematical expression of the membership
function, in this case, is as the following Equation (1):

f (x) =


0, x ≤ a

x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c

0, c ≤ x

 (1)
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3.2. Robust Handover Optimization Technique with Fuzzy Logic Controller (RHOT-FLC)

We propose a robust handover optimization technique (RHOT-FLC) exploiting the FL
system to enhance the HO performance in B5G networks by mitigating the HOPP rate, HOP,
HOF, HIT, and HOL. The proposed technique is designed to automate the HO decision and
adjust TTT and HOM. The system consists of 48 rules based on three input parameters:
UE velocity, RSRP, and RSRQ. These rules are used to dynamically estimate two different
outputs, TTT and HOM, in every single process. The 48 rules are formulated according to
Table 2 and the triangle function, Equation (1). The mobile speeds and RSRQ are classified
into four levels, while the RSRP is classified into three categories. Both TTT and HOM are
divided into four categories that can enhance HO performance. Increasing the number
of levels may enhance the accuracy of selecting the TTT and HOM values. However, it
increases the processing time and vice versa. Therefore, the four levels are selected to
compromise the system performance, accuracy and processing time. In other words, the
four levels are maintained to achieve the desired HO performance, as presented in the
Results and Discussions Section. The rules (cases) are formulated by adjusting the values
of the TTT and HOM and evaluating the output using the considered HO performance
metrics. In addition, the rules are determined based on the evaluation conducted on each
rule and overall system performance results.

Many of the existing works, such as in [15,18,20,21], have demonstrated that the
FL system could provide optimum HO performance. Besides that, the FL system can
simultaneously optimize the two important HO parameters, which are TTT and HOM,
with accurate results, as demonstrated in our results. However, designing the HO algorithm
based on the FL system depends on the classifications of each input, formulating rules,
and considering input parameters. The RHOT-FLC technique considers the UE’s velocity,
RSRP, and RSRQ as the system input and designed 48 rules and cases. The values of the
RSRP and RSRQ are adjusted according to 3GPP, Release 16 definition [32]. Although HO
algorithms based on the FL system can achieve excellent HO performance, the HO time
process is increased as the input parameters and rules are increased.
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Table 2. Membership values for input and output.

Input Degree Range

Velocity

slow 0 to 30 km/h

moderate 25 to 70 km/h

high 65 to 135 km/h

very high 130 to 160 km/h

RSRP

weak −160 to −95 dBm

moderate −100 to −73 dBm

strong −80 to −20 dBm

RSRQ

poor −60 to −18 dB

good −22 to −12 dB

very good −14 to −6 dB

excellent −10 to +20 dB

Output Degree Range

TTT

very short 0 to 220 ms

short 210 to 380 ms

average 370 to 520 ms

large 510 to 640 ms

HOM

very low 0 to 0.3 dB

low 0.2 to 0.5 dB

average 0.4 to 0.8 dB

high 0.7 to 1 dB

Moreover, the proposed system has been designed to automatically adjust both TTT
and HOM concurrently, unlike many works, which focus on adjusting only one HCP, either
TTT or HOM [8,15,16]. Figure 2 illustrates the proposed RHOT-FLC system, consisting
of five stages. The first stage is the input stage, which consists of three measured values
as updated input from Algorithm 1 (UE’s velocity, RSRP, and RSRQ). In the fuzzification
stage, the crisp input values are converted to fuzzy values in the next stage. The third stage
is the inference engine, in which the proposed if-then rules are applied. Next, the generated
fuzzy values are converted into crisp values in the defuzzification stage. The last stage is
the output stage, which is TTT and HOM. After updating the HCPs with adjusted values,
the process is completed according to the Algorithm 1 process. Algorithm 1 presents the
RHOT-FLC algorithm. The general steps of the proposed technique are as follows:

1. The RSRP for all gNBs is sorted and compared to the gNBs target station. If the
Equation (2) condition is not fulfilled, the HO decision is not performed. Else,

RSRPtarget > RSRPserving + HOM (2)

2. Update the system inputs with RSRP, RSRQ, and UE speed.
3. Convert the inputs values into fuzzy sets and calculate the degree of each membership

function, according to Equation (1) (Figure 2).
4. Apply the proposed rules (48 if/then rules) for each membership.
5. The TTT and HOM are updated as system output according to the three input param-

eters conditions. The input parameters are defined in 48 cases.
6. Update the system with adapted HCPs to perform the HO decision.
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Algorithm 1: RHOT-FLC

1. Initialize System Parameters (B5G network)
2. if t = 1 (t: simulation time)
3. Handover Decision →False
4. else
5. Measure: RSRP, RSRQ, and UE Velocity
6. Sort RSRPall
7. if RSRP serving > RSRP target

8. Handover Decision →False
9. elseif
10. Update: RSRP, RSRQ, and UE Velocity
11. Input: Define input parameters
12. Convert input parameters to fuzzy sets
13. Calculate the degree of each rule
14. Output: Adapt TTT and HOM
15. Update the HCPs
16. else RSRP target > RSRP serving + HOM
17. if trigger time = TTT
18. Handover Decision →True
19. else
20. Handover Decision →False
21. end
22. end
23. end
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4. System and Simulation Model and Performance Metrics

This section presents the simulation model, including the network deployment sce-
nario and parameters. It also provides the HO performance metrics used to evaluate
the system.

4.1. Network Deployment Scenario

The simulation environment has been developed in MATLAB 2020b to simulate the
B5G network considering microcells and urban area scenarios. The network layout consists
of sixty-one gNBs with three sectors for each cell that are deployed in a (3000 × 3000) m2

simulation environment, and the distance between two BSs is 400 m (each BS covers 200 m).
The UEs move in a straight way within eight directions [N, NE, E, SE, S, SW, W, and

NW] within the simulation environment and pass-through BSs with five different scenario
speeds, which are 20 km/h, 40 km/h, 80 km/h, 120 km/h, and 160 km/h. Each UE was
randomly initiated to move within the possible directions straightly with different mobile
speeds, until it reached the edge of the defined area and changes its movement direction
randomly within possible directions.

The considered assumption for the use-case scenario is ultra-high-definition video
(UHDV) streaming, such as 4K video streaming. Video streaming is one of the prominent
applications that all users use, and its demands are dramatically increased. According
to Ericsson forecasts, video streaming will account for 76% of mobile traffic by 2025 [33].
Moreover, by the year 2023, it is expected that around 75% of mobile data traffic will be
produced by video applications [34]. As a result, ensuring the quality of video streaming
via B5G networks may significantly influence passengers’ travel experiences.

In this study, 200 UEs’ traffic per simulated cell has been proposed to be generated
and distributed randomly throughout the coverage area. Then, it is changed dynamically
and randomly in each simulation cycle. This assumption is considered to simulate a real
network scenario as high traffic negatively affects the overall system performance. Once
the cell traffic is increased, the HOP is increased to balance cell loads. This may lead to
high degradation in the network performance in terms of HOPP, RLF, interruption time,
throughput and spectral efficiency. Ten UEs were chosen to be measured in this study to
investigate the HO performance for different KPIs compared with the competitive methods
(such as the driving test in real life, where only one or two users are used to evaluate
the network). Thus, when the ten UEs move within the cells, their performance will be
impacted negatively or positively based on the cell loads of each serving cell. Figure 3
illustrates the deployment scenario.
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4.2. Simulation Parameters

The channel model and simulation parameters are adjusted according to 3GPP Release
16 [35–38], as 3GPP has defined mmWave frequency with 28 GHz as a prominent candidate
frequency band considered in a B5G system to meet the increasing demand for user data
throughput. The main simulation parameters are presented in Table 3.

Table 3. Simulation parameters.

Parameter Values

Environment Micro cells, urban area, B5G networks

Cell Layout Hexagonal grid

Simulation Area (m) (3000 × 3000)

Number of gNB 61

Number of Sectors 3

Cell Radius (m) 200

Maximum Number of UE per Cell 200/cell

Maximum Number of PRB per UE 2500

Number of Measured UE 10

Carrier Frequency ( fc)(GHz) 28

System Bandwidth (MHz) 500

White Noise Power Density (dBm/Hz) −174

Path Loss PL3GPP,UMi = 35.3log10(d) + 22.4 +
21.3log10( fc)− 0.3(hUE − 1.5)

Shadow Fading (dB) 7.82

gNB Hight (m) 10

UE Hight (hUE ) (m) 1.5

UE Speeds (km/h) (20, 40, 80, 120, 160)

UE Power (dBm) 23

Transmission Power (dBm) 35

Mobility Model Straight-way within 8 possible directions [N,
NE, E, SE, S, SW, W, and NW]

HO Decision Equation (2)

TTT (ms) Adaptive: 0 − 640

HOM (dB) Adaptive: 0 − 1

4.3. Performance Metrics
4.3.1. Handover Probability (HOP)

HOP is the probability of HO when the UE moves from one cell to another. Likewise,
HOP represents the percentage of HOs occurring. One of the cases that increases the HOP
is the HOPP.

Increasing HOP leads to an increase in the system complexity and affects the overall
performance. The average HOP in the network in each simulation time and overall UE is
calculated as the following expression:

HOP =
∑NUE

i=1 Pi(HO)

NUE
, (3)
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where NUE is the number of UEs. Each UE is moving in a random direction, which means
that each UE has a different location, different signal strength, and different BS coverage.
Therefore, each UE may have a different HOP.

4.3.2. Handover Failure (HOF)

HOF refers to unsuccessful HO from serving gNB to a target gNB. The inappropriate
setting of HCPs increases the HOF rate, thus leading to a rise in the RLF probability. In
other words, HCPs play the main role in increasing or decreasing the HOF rate. Further,
HOF happens due to four scenario cases: too-early HO, too-late HO, wrong HO, and
ping-pong HO. The too-early and too-late HO occurs due to incorrect TTT. A low value of
TTT causes too-early HO, whereas a high value of TTT causes too-late HO. In the case of
the wrong HO, the HOF occurs when the UE is handed over to the wrong cell. Ping-pong
HO happens when the UE is at the border of two or more neighbor cells, and UE changes
its connection gNB to another gNB in a concise time. The HOF probability is calculated
as follows:

HOFP =
NHOF
NHO

, (4)

where NHOF is the total number of HOF, and NHO number of (failure HO + successful HO).

4.3.3. Handover Ping-Pong (HOPP)

The HOPP is the frequent HO that happens between two neighbor cells. The frequent
movement of the UE between the boundaries of the two neighboring cells results in a
ping-pong effect due to high signal fluctuations.

HOPP(%) =
NHOPP
NHO

, (5)

where HOPP is the HOPP probability, NHOPP represents the number HOPP, and NHO is
the number of (failure HO + successful HO).

The instantaneous average HOPP probability
(

HOPP
)

over all UEs can be given
as follows:

HOPP =
∑NUE

i=1 NHOPP(i)
NUE

, (6)

where i is the corresponding index of the measured user, and NUE is the total number of
measured UEs. Moreover, each UE moves in a random direction, which means that each
UE has a different location, different signal strength, and different BS coverage. Therefore,
each UE may have a different HOPP.

4.3.4. Handover Latency (HOL)

HOL is an essential measurement of system performance. According to 3GPP [39],
HOL is when UE has received the HO command from the serving gNB to complete the HO
process to the target gNB. In other words, the HOL is the total time that is taken for the HO
execution stage. B5G networks require very low latency, up to 1 ms, as several applications
are sensitive to the time; for example, autonomous vehicles require ultra-low latency to
avoid accidents.

4.3.5. Handover Interruption Time (HIT)

The HO Interruption Time, or HIT, is the instant during the execution of HO when
there is an interruption in the user data exchange between the source and target cell by
the mobile terminal. This suggests that HIT is the minimum time supported by a cellular
network during HO. The mobility interruption time ranges from 30 to 60 ms for a 4G LTE
deployment [40]. The factors affecting this interruption time include HO conditions and
radio conditions. The 3GPP community aims to reduce the interruption time to allow the
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effective use of 5G wireless technologies in future applications. The interruption time can
be precisely reduced to around zero ms in the B5G networks [41].

5. Results and Discussions

This section provides the simulation study results for RHOT-FLC and the three compet-
itive algorithms from the literature: Conv method, FLC, and Slv. The proposed technique is
evaluated using five important HO performance metrics (HOP, HOF, HOPP, HOL, and HIT)
and assessed in five mobile speed scenarios (20, 40, 80, 120, and 160) km/h, as explained in
the previous section. Furthermore, the algorithms are validated by using simulation with
B5G networks. The presented results illustrate the average measured values of the 10 UEs
in each mobile speed scenario and overall simulation times. The performance of each UE is
evaluated and collected in every simulation cycle (50 ms) for each mobile speed. Each HO
performance is evaluated individually.

The proposed technique is compared with three competitive algorithms, which are
the techniques presented [15] (denoted as Slv in the results and figures), a conventional
HO algorithm based on the quality of signal criterion plus HOM (denoted as Conv in
the results and figures), and FLC [14] (denoted as FLC in the results and figures). The
competitive algorithms are chosen because they focus on mobility management and MRO
while having similar techniques as in FLC and Slv. Further details are presented in Table 1.
Meanwhile, these three techniques have been explained and investigated in more detail
compared to the other techniques in the literature. To ensure fairness in the comparison,
we used the same simulation parameters, scenario, and environment for the proposed and
competitive algorithms.

5.1. Handover Probability (HOP)

Figure 4 shows the average HOP overall mobile speeds and simulation times for
100 s. The result indicates that RHOT-FLC achieved the lower HOP for all mobile speeds
and simulation times with less than 3.6%. The consistency of RHOT-FLC provides a
substantial reduction in HOP, indicating the appropriate adjusting of HCPs of RHOT-
FLC. The other algorithms provided higher HOP and higher fluctuations, which means
insufficient accuracy in adjusting the HCPs of the algorithms.
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Figure 5 presents the average probability of HO for all algorithms and overall mobile
speeds. The figure shows that RHOT-FLC significantly reduces the HOP compared to the
other algorithms, Conv, FLC, and Slv. RHOT-FLC has obtained the lowest HOPs of less than
3.6%, while the Conv, FLC, and Slv achieved HOPs of 37%, 25.7%, and 74%, respectively.
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The number of HOs is increased drastically in B5G networks due to the requirements
of B5G, which aims to support a massive number of devices per area and uses the mmWave
operating band, which has a very small coverage area of up to 200m. Therefore, many
small cells are required to be deployed in a small area, which increases the HOP. However,
RHOT-FLC shows a significant reduction in HOP up to 90%, 86%, and 95% compared to
the Conv, FLC, and Slv, respectively. The reduction in HOP decreases HOF probability,
enhancing HO performance.

5.2. Handover Failure (HOF)

Figure 6 illustrates the results of HOF probability for all algorithms and overall mobile
speed scenarios. The results depict that the lowest HOF probability is attained by RHOT-
FLC by less than 0.19%, while the HOFs of the Conv, FLC, and Slv are 2%, 1.4%, and
4.6%, respectively. RHOT-FLC has considerably reduced HOF by 90.5%, 86.4%, and 95.8%
compared to Conv, FLC, and Slv, respectively. HOF was caused due to the failure of UE to
connect to the target gNB. However, RHOT-FLC can reduce the HOF probability and help
to improve the overall HO performance even in high-mobile-speed scenarios. Moreover,
the results in all algorithms suggest the behavior of HOF probability reflects the HOP.
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5.3. Handover Ping Pong (HOPP)

Figure 7 depicts the HOPP probability with different mobile speeds for selected
simulation times (50 s). RHOT-FLC achieved lower HOPP probability than the other
algorithms at all mobile speeds. The results give an additional view that RHOT-FLC reacts
better with the speeds than the other algorithms and is preserved at a low rate. This justifies
the robustness of RHOT-FLC. Furthermore, the competitive algorithms obtained higher
HOPP and fluctuated probability. For instance, the Slv algorithm obtained the highest
HOPP and probability fluctuations along the selected time. This phenomenon may be
justified due to the inappropriate setting of HCPs. Furthermore, adjusting the HCPs with
high-level values caused a high probability of the RLF.
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HOPP is an essential HO performance metric that represents the unnecessary HO.
Figure 8 illustrates the probability of HOPP with different speed scenarios. Overall, the
HOPP ratio for all algorithms gradually decreases as the speed increases. This condition
due to UE is moving straight, which means that the UE at low speeds stays at the cell’s
edge longer than at higher speeds. Additionally, assigning HOM and TTT with low values
results in an increase in the HOPP. Therefore, auto HO techniques aim to adjust the HOM
and TTT perfectly to preserve optimal HO performance. However, it is seen that RHOT-
FLC is superior to all algorithms used for comparison. RHOT-FLC achieved the lowest
HOPP probability of less than 1.9%, as compared to 30%, 20%, and 64% in Conv, FLC, and
Slv, respectively. The best performance is achieved at 160km/h for all algorithms by 26%,
16%, 55%, and 0.45% for Conv, FLC, Slv, and RHOT-FLC.
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Figure 9 shows the average HOPP probability for all algorithms and overall mobile
speeds and simulation times. It can be seen that RHOT-FLC attained the overall average
HOPP performance for all mobile speeds with an average HOPP probability of 1.9% and
30%, 20, and 64% in Conv, FLC, and Slv, respectively. Therefore, RHOT-FLC substantially
improves HOPP up to 93.6%, 90.5%, and 97% compared to Conv, FLC, and Slv. The
optimum HO performance shown in HOPP by RHOT-FLC explains that RHOT-FLC can
perfectly adjust the HCPs. The reduction in HOPP decreases the HOP, thus decreasing the
HOF probability. Therefore, this improves the overall HO performance.
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5.4. Handover Latency (HOL)

The average HOL for all algorithms and overall mobile speeds is illustrated in Figure 10.
The figure shows that the RHOT-FLC significantly decreased the average HOL up to 3.7 ms.
At the same time, the other algorithm, Conv, FLC, and Slv attained average HOL up
to 35.9 ms, 25 ms, and 70.8 ms, respectively. Thus, RHOT-FLC provides the best HOL
performance with an average 89.7%, 85%, and 94.7% improvement in HOL compared to
Conv, FLC, and Slv, respectively. Thus, RHOT-FLC can improve the overall HO process,
which enhances the overall HO performance.
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5.5. Handover Interruption Time (HIT)

The result of HIT is presented in Figure 11. The figure provides the average HIT for
all algorithms and overall mobile speeds. The figure shows that RHOT-FLC obtains the
lowest HIT by 1.8 ms compared to 18.5 ms, 12.8 ms, and 37 ms by Conv, FLC, and Slv,
respectively. In other words, it is seen that RHOT-FLC obtained the best HIT performance
with a HIT reduction of 90.5%, 86%, and 95% compared to Conv, FLC, and Slv, respectively.
Moreover, the HIT performance achieved by RHOT-FLC is substantially enhanced, which
can be considered an optimum performance of the B5G networks.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 22 
 

 

performance with an average 89.7%, 85%, and 94.7% improvement in HOL compared to 

Conv, FLC, and Slv, respectively. Thus, RHOT-FLC can improve the overall HO process, 

which enhances the overall HO performance. 

 

Figure 10. Average HOL overall mobile speeds scenarios. 

5.5. Handover Interruption Time (HIT) 

The result of HIT is presented in Figure 11. The figure provides the average HIT for 

all algorithms and overall mobile speeds. The figure shows that RHOT-FLC obtains the 

lowest HIT by 1.8 ms compared to 18.5 ms, 12.8 ms, and 37 ms by Conv, FLC, and Slv, 

respectively. In other words, it is seen that RHOT-FLC obtained the best HIT performance 

with a HIT reduction of 90.5%, 86%, and 95% compared to Conv, FLC, and Slv, respec-

tively. Moreover, the HIT performance achieved by RHOT-FLC is substantially enhanced, 

which can be considered an optimum performance of the B5G networks. 

 

Figure 11. Average HIT overall mobile speeds scenarios. 
Figure 11. Average HIT overall mobile speeds scenarios.

In summary, as the results demonstrated, RHOT-FLC outperforms all the competitive
algorithms in all considered HO performance metrics, HOP, HOF, HOPP, HOL, and HIT.
This explains that the proposed technique can adjust the HCPs (TTT and HOM) efficiently
and appropriately. Furthermore, simultaneously adjusting both TTT and HOM properly
leads to substantially reducing the HOP, HOF, HOPP, HOL, and HIT, thus significantly
enhancing the HO performance.

Regarding the complexity of the competitive algorithms and RHOT-FLC, they have
a slight difference. RHOT-FLC, FLC, and Slv algorithms are FL-based techniques, but
the RHOT-FLC technique may have higher computational complexity as a result of the
technique being designed to adjust both HOM and TTT at the same time, and its rules are
formulated to support low and high speeds, which leads to increasing the algorithm’s time
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execution. The FLC and Slv algorithms was designed to adjust the HOM only, while the
conventional method (Conv) has the lowest complexity because the algorithm basically
fixes the values of the TTT and HOM at certain values based on the RSRP only; there is no
optimization or adapting process. Overall, the complexity of the competitive algorithms
and RHOT-FLC can be sorted from the lowest to the highest time complexity as follows:
Conv, FLC, Slv, and RHOT-FLC. Nevertheless, the RHOT-FLC significantly enhanced the
HO performance as compared with the competitive algorithms.

Table 4 summarizes the average performance of HO for all algorithms and the overall
improvement of RHOT-FLC compared to the state of the art. Moreover, from the following
tables, it can be noticed that RHOT-FLC dramatically enhances the overall HO perfor-
mance by lowering the HOP, HOF, HOPP effect, HOL, and HIT. Moreover, RHOT-FLC
has achieved an overall improvement of 90%, 86%, and 95% compared to Conv, FLC, and
Slv, respectively. The excellent HO performance obtained by RHOT-FLC indicates that
RHOT-FLC can appropriately adjust the HCPs.

Table 4. Average HO performance for all algorithms and overall improvement of RHOT-FLC as
compared to the competitive algorithms.

KPI Conv FLC [14] Slv [15] RHOT-FLC

HOP (%) 37 25.7 74 3.6

HOF (%) 2 1.4 4.6 0.19

HOPP (%) 30 20 64 1.9

HOL (ms) 35.9 25 70.8 3.7

HIT (ms) 18.5 12.8 37 1.8

RHOT-FLC
Overall improvement (%) 90.76 86.78 95.5 −

6. Conclusions

This paper proposed RHOT-FLC to optimize the HCP (TTT and HOM) parameters
dynamically. The FLC-based technique exploits UE information, such as RSRP, RSRQ, and
UE’s speed as the system inputs. Different HO KPIs, such as HOP, HOF, HOPP, HOL, and
HIT, are considered to verify the technique. Furthermore, the technique is investigated
considering different mobile speed scenarios, which are 20, 40, 80, 120, and 160 km/h. As
the results show, the RHOT-FLC technique significantly improves the HO performance
by considerably reducing the probabilities of HOP, HOF, HOPP, HOL, and IT. The overall
improvement of RHOT-FLC is up to 90.76%, 86.78%, and 90.5%, compared to the literature
Conv, FLC, and Slv algorithms, respectively. The optimum results provided by RHOT-
FLC indicate that the HCPs are adequately adjusted. Therefore, it enhances the overall
HO performance.

Additional HO performance metrics, such as RLF and frequency efficiency with higher
mobile speed scenarios, will be tested in future works in addition to different deployment
networks consideration.
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Acronym Definition
5G Fifth Generation
4G Fourth Generation
LTE Long-Term Evolution
3GPP Third-Generation Partnership Project
UE User Equipment
B5G Beyond Fifth Generation
RHOT-FLC Robust Handover Optimization Technique with Fuzzy Logic Controller
HO Handover
HCP Handover Control Parameter
HOM Handover Margin
TTT Time-To-Trigger
PRB Physical Resource Block
RSRP Reference Signal Received Power
RSRQ Reference Signal Received Quality
SNR Signal-to-Noise Ratio
SINR Signal to Interference & Noise Ratio
RSSI Received Signal Strength Indicator
HOPP Handover Ping-Pong
HOP Handover Probability
HOF Handover Failure
HOL Handover Latency
HIT Handover Interruption Time
MRO Mobile Robustness Optimization
BS Base Station
FLC Fuzzy Logic Controller
RLF Radio Link Failure
eNB eNodeB (LTE)
gNB gNodeB (5G)
MADM Multi-Attribute Decision-Making
SAW Simple Additive Weighting
QoS Quality of Service
RSS Received Signal Strength
AHP Analytic Hierarchy Process
TOPSIS Technique for Order of Preference by Similarity to Ideal Solution
HetNet Heterogeneous Network
ATO Auto Tuning Optimization
PSO Particle Swarm Optimization
MLB Mobility Load Balance
KPIs Key Performance Indicators
SON Self-Organization Network
WFSO Weighted Fuzzy Self-Optimization
UHDV Ultra-High-Definition Video
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