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Deep learning techniques have shown their capabilities to discover knowledge from
massive unstructured data, providing data-driven solutions for representation and deci-
sion making. They have demonstrated significant technical advancement potential for
many research fields and applications, such as sensors and imaging, audio–visual signal
processing, and pattern recognition. Today, with the rapid advancements of advanced deep
learning models, such as conventional neural network (CNN), deep neural network (DNN),
recurrent neural network (RNN), generative adversarial network (GAN), and transformer
network, learning techniques, such as transfer learning, reinforcement learning, federal
learning, multi-task learning, and meta-learning, and the increasing demands around
effective visual signal processing, new opportunities are emerging in deep-learning-based
sensing, imaging, and video processing.

After a careful peer-review process, this editorial presents the manuscripts accepted
for publication in the Special Issue “Advances in Deep-Learning-Based Sensing, Imaging,
and Video Processing” of Sensors, which includes fourteen articles. These articles are
original research papers describing current challenges, innovative methodologies, technical
solutions, and real-world applications related to advances in deep-learning-based sensing,
imaging, and video processing. They can generally be divided into two categories.

The first category is the deep-learning-based image and video processing by exploiting
low-level visual features, including five articles [1–5]. Inspired by biological structure of
avian retinas, Zhao et al. [1] developed a chromatic LED array with a geometric arrangement
of multi-hyper uniformity to suppress frequency aliasing and color misregistration. The
proposed concept provides insights for designing and manufacturing future bionic imaging
sensors. To enhance image quality of imaging systems, Wang et al. [2] developed a novel
color-dense illumination adjustment network (CIANet) for removing haze and smoke from
fire scenario images. Schiopu et al. [3] explored a novel filtering method based on deep
attention networks for the quality enhancement of light field (LF) images captured by
plenoptic cameras and compressed by the high efficiency video coding (HEVC) standard.
Tian et al. [4] proposed a dynamic neighborhood network (DNet) to dynamically select
the neighborhood for local region feature learning in point clouds which improved the
performances of point cloud classification and segmentation tasks. To access visual quality
of videos, Lin et al. [5] proposed a no-reference objective video quality metric called saliency-
aware artifact measurement (SAAM), which consists of an attentive CNN-LSTM network
for video saliency detection, Densenet for distortion type classification, and support vector
regression for quality prediction. These works reveal that deep learning models can exploit
low-level visual features and promote imaging, image/video enhancement, segmentation,
and quality assessment.
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The second category relates to deep-learning-based visual object detection and analysis
by exploiting higher-level visual and cognitive features. It contains nine articles [6–14].
Li et al. [6] developed a wheat ear recognition method based on RetinaNet and transfer
learning by detecting the number of wheat ears as an essential indicator. This method can
be used for automatic wheat ear recognition and yield estimation. To detect surface defects
with variable scales, Xu et al. [7] proposed a multi-scale feature learning network (MSF-Net)
based on a dual module feature (DMF) extractor, which classified the surface defects with
multifarious sizes. In addition, Yu et al. [8] developed a deep-learning-based automatic pipe
damage detection system for pipe maintenance. This detection system was composed of a
laser-scanned pipe’s ultrasonic wave propagation imaging (UWPI) and CNN-based object
detection algorithms. To inspect condition of hull surfaces by using underwater images
acquired from a remotely controlled underwater vehicle (ROUV), Kim et al. [9] proposed a
binary classification method by resembling multiple CNN classifiers which were transfer-
learned from larger natural image datasets. Kim et al. [10] proposed a neg-region attention
network (NRA-Net) to suppress negative areas and emphasize the texture information of
objects in positive areas, which was then applied in an auto-encoder architecture based
salient objects detection. He et al. [11] developed a small object detection algorithm named
YOLO-MXANet for traffic scenes, which reduced the computational complexity of the
object detection and meanwhile improved the detection accuracy. Alia et al. [12] proposed
a hybrid deep learning and visualization framework of pushing behavior detection for
pedestrian videos, which comprised a recurrent all-pairs field transforms (RAFT)-based
motion extraction and an EfficientNet-B0-based pushing patches annotation. Deepfakes
may cause information abuse by creating fake visual information. To verify video integrity,
Lee et al. [13] presented a deep learning-based deepfake detection method by measuring
changing rate of a number of visual features among adjacent frames. Then, a learned
DNN was used to identify whether a video was manipulated. Xu et al. [14] proposed a
timestamp-independent synchronization method for haptic–visual signals by exploiting a
sequential cross-modality correlation between haptic and visual signals, where the deep
learning network YOLO V3 was employed in visual object detection. In these works, deep
learning technologies were applied to promote the performances of defect detection, object
detection, anomaly detection, and recognition tasks in practical sensing, imaging, and
video processing applications.

We would like to thank all the authors and reviewers for their contributions to the
Special Issue. We hope this Special Issue can provide some research insights, useful
solutions, and exciting applications to scholars in academics and researchers in the industry
interested in Deep-Learning-Based Sensing, Imaging, and Video Processing.
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