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Abstract: The past few years have witnessed a substantial increase in cyberattacks on Internet of
Things (IoT) devices and their networks. Such attacks pose a significant threat to organizational
security and user privacy. Utilizing Machine Learning (ML) in Intrusion Detection Systems (NIDS)
has proven advantageous in countering novel zero-day attacks. However, the performance of such
systems relies on several factors, one of which is prediction time. Processing speed in anomaly-based
NIDS depends on a few elements, including the number of features fed to the ML model. NetFlow, a
networking industry-standard protocol, offers many features that can be used to predict malicious
attacks accurately. This paper examines NetFlow features and assesses their suitability in classifying
network traffic. Our paper presents a model that detects attacks with (98–100%) accuracy using as
few as 13 features. This study was conducted using a large dataset of over 16 million records released
in 2021.

Keywords: Internet of Things; cyber security; Network Intrusion Detection System; machine learning;
feature selection

1. Introduction

During the last few decades, technological advancements have given rise to several
innovative concepts, such as the Internet of Things (IoT), which played an increasingly
important role in a variety of areas, such as smart cities, healthcare, and education. The
IoT is a new technology paradigm envisioned as an ecosystem of interconnected ”things”
aiming to bring every physical device into the digital network [1]. Connecting billions of
devices through sensors, actuators, and other components, IoT is anticipated to have 75 bil-
lion machine-to-machine connections by 2025 and is expected to generate 79.4 zettabytes
of data [2]. With the tremendous amount of data flowing between IoT devices and across
networks, protecting these networks against IoT breaches becomes a high priority. The
world is experiencing a significant increase in IoT cyberattacks, which increased by 100%
in 2021, according to Kaspersky, a leading anti-virus company. The low memory and cost
of IoT devices make them even more challenging to secure [3]. Among recent alarming
incidents of IoT attacks is the Verkada breach [4], in March 2021, where a group of hackers
managed to access and control thousands of Verkada surveillance cameras. In addition,
they could access video recordings stored in the cloud of more than 24,000 clients and
utilize the cameras to carry out future attacks. Another intense incident occurred in July
2021 [5] when My Book Live and My Book Live Duo devices’ storage was completely
erased. This happened during a cyberattack against Western Digital, when hackers were
able to remotely perform a factory reset without having a password due to a critical security
vulnerability. In all of these incidents, IoT devices were targeted by several malicious at-
tacks such as distributed denial of service (DDoS) attacks [6], man-in-the-middle attacks [7],
spoofing attacks [8], targeted code injection [9], and other unprecedented types of attacks.
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Thus, there has been an increased concern about enhancing the effectiveness of the current
Network Intrusion Detection Systems (NIDS) to detect new attacks [10].

Network Intrusion Detection Systems (NIDS) [11] are security tools that monitor
network traffic flow to detect IoT attacks. They are designed to enhance the security of in-
formation and communication systems. NIDS can be categorized into signature-based [12]
and anomaly-based [13]. The signature-based NIDS compares the incoming traffic to a
database of known attacks based on the signatures. However, in the anomaly-based ap-
proach, a normal profile is created based on the normal behavior of the network, and any
deviation from this is viewed as an attack. In other words, The signature-based method
compares network traffic against a pre-existing list of compromises to detect a known
intrusion efficiently. On the other hand, the anomaly-based method relies on machine
learning to identify a threat making it ideal for spotting unknown attacks. However, like
any system that relies on ML, actual accuracy may vary. Understandably, the pros of one
approach are the cons of the other. Thus, some IDS combine signature and anomaly-based
approaches to benefit from both.

Security threats are continuously evolving. Thus, NIDS detection models that rely on
old datasets have clear limitations. Our paper utilizes a recently published (2021) large
dataset with around 17 million data rows known as NF-ToN-IoT-v2 [14]. While the dataset’s
existing features provide outstanding accuracy, we are interested in conducting binary- and
multi-class classification using a subset of the dataset’s 43 features. Reducing the number
of utilized features can minimize the prediction time and necessary storage and enhance
networks’ operational functionality. However, it will also reduce prediction accuracy. Thus,
our focus was on investigating the right balance. Our results were acquired using the entire
dataset without any sampling.

As mentioned earlier, our dataset of choice, NF-ToN-IoT-v2, is an IoT dataset consisting
of 43 features with a total of 16,940,496 data rows. Each data row is classified as an
attack or benign. The attacks make up 63.99% of the dataset, while the benign samples
represent 36.01%. Furthermore, the dataset contains nine different types of attacks, namely
Backdoor, Denial of Service (DoS), Distributed Denial of Service (DDoS), Injection, Man in
the Middle (MITM), Password, Ransomware, Scanning, and Cross-site Scripting (XSS) [14].
Such attacks compromise the IoT system’s security by violating one or more of its CIA
principles [15] (Confidentiality, Integrity, and Availability).

Table 1 below shows the distribution of NF-ToN-IoT-v2 (16,940,496) data rows over
the nine attacks and the benign flow (ten classes in total) [14]. The dataset consists of 43
features, as shown in Table 2 [16]. More details on NF-ToN-IoT-v2 origins, Netflow features,
previous versions, and utilizations are presented in Section 2.

Table 1. Breakdown of the dataset classes.

Count Class

Benign 6,099,469
Backdoor 16,809

Denial of Service (DoS) 712,609
Distributed Denial of Service (DDoS) 2,026,234

Injection 684,465
Man in the Middle (MITM) 1,153,323

Password 16,809
Ransomware 3425

Scanning 3,781,419
Cross-site Scripting (XSS) 2,455,020

In this paper, we used this dataset to efficiently classify network flows into benign and
attacks (binary-classification) and to predict the exact type of attack (multi-classification).
Our research target was to achieve these tasks with high accuracy while utilizing a lower
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number of features. In our assessment, we applied four shallow machine learning classifiers,
namely Decision Trees (DT), Random Forest (RF), XGBoost (XGB), and Naïve Bayes (NB).

Table 2. NF-ToN-IoT-v2 features.

Feature Description

IPV4_SRC_ADDR IPv4 source address
IPV4_DST_ADDR IPv4 destination address

L4_SRC_PORT IPv4 source port number
L4_DST_PORT IPv4 destination port number

PROTOCOL IP protocol identifier byte
L7_PROTO Layer 7 protocol (numeric)
IN_BYTES Incoming number of bytes

OUT_BYTES Outgoing number of bytes
IN_PKTS Incoming number of packets

OUT_PKTS Outgoing number of packets
FLOW_DURATION_MILLISECONDS Flow duration in milliseconds

TCP_FLAGS Cumulative of all TCP flags
CLIENT_TCP_FLAGS Cumulative of all client TCP flags
SERVER_TCP_FLAGS Cumulative of all server TCP flags
DURATION_IN Client to Server stream duration (msec)

DURATION_OUT Client to Server stream duration (msec)
MIN_TTL Min flow TTL
MAX_TTL Max flow TTL

LONGEST_FLOW_PKT Longest packet (bytes) of the flow
SHORTEST_FLOW_PKT Shortest packet (bytes) of the flow

MIN_IP_PKT_LEN Len of the smallest flow IP packet observed
MAX_IP_PKT_LEN Len of the largest flow IP packet observed

SRC_TO_DST_SECOND_BYTES Src to dst Bytes/sec
DST_TO_SRC_SECOND_BYTES Dst to src Bytes/sec

RETRANSMITTED_IN_BYTES Number of retransmitted TCP flow bytes
(src->dst)

RETRANSMITTED_IN_PKTS Number of retransmitted TCP flow packets
(src->dst)

RETRANSMITTED_OUT_BYTES Number of retransmitted TCP flow bytes
(dst->src)

RETRANSMITTED_OUT_PKTS Number of retransmitted TCP flow packets
(dst->src)

SRC_TO_DST_AVG_THROUGHPUT Src to dst average thpt (bps)
DST_TO_SRC_AVG_THROUGHPUT Dst to src average thpt (bps)

NUM_PKTS_UP_TO_128_BYTES Packets whose IP size ≤ 128
NUM_PKTS_128_TO_256_BYTES Packets whose IP size > 128 and ≤256
NUM_PKTS_256_TO_512_BYTES Packets whose IP size > 256 and ≤512

NUM_PKTS_512_TO_1024_BYTES Packets whose IP size > 512 and ≤1024
NUM_PKTS_1024_TO_1514_BYTES Packets whose IP size > 1024 and ≤1514

TCP_WIN_MAX_IN Max TCP Window (src->dst)
TCP_WIN_MAX_OUT Max TCP Window (dst->src)

ICMP_TYPE ICMP Type × 256 + ICMP code
ICMP_IPV4_TYPE ICMP Type
DNS_QUERY_ID DNS query transaction Id

DNS_QUERY_TYPE DNS query type (e.g., 1 = A, 2 = NS.)
DNS_TTL_ANSWER TTL of the first A record (if any)

FTP_COMMAND_RET_CODE FTP client command return code

The paper contributes to the literature by utilizing a fairly large, recently published
dataset (2021). The dataset has been fully utilized without any sampling. While other
research has achieved high accuracy using an extensive set of features, our aim was to
reduce the number of features while still achieving a highly accurate detection system. A
lower number of features results in a faster prediction time and lower storage space, which
translates into a better operational system.



Sensors 2022, 22, 6164 4 of 18

The rest of the paper is divided as follows: Section 2 reviews the literature; Section 3
presents the methodology; Section 4 explains how the features were chosen; Section 5
covers the results and their analysis; Section 6 concludes the paper.

2. Related Work

Our work is based on a dataset created by Sarhan et al. [17]. Thus, we will start
this section by summarizing their highly influential work. In their Intrusion Detection
Work, Sarhan et al. [14,18,19] have utilized and created several datasets with network traffic
data. Sarhan et al. have been interested in utilizing Netflow features to standardize NIDS
datasets [14,18]. NetFlow is a Cisco standard that collects traffic data as it flows across
the network [18]. The features extracted from Netflow have proven valuable in detecting
network attack [14]. In their early work, Sarhan et al., used pcap files of existing datasets
to generate several datasets with a few Netflow features (up to eight features) [18]. For
example, NF-ToN-IoT was created using the publicly available ToN-IoT dataset [20]. The
binary-classification results of NF-ToN-IoT showed a slight improvement over ToN-IoT
with an F1-score of 1.00 compared to 0.99 in the original dataset [18]. However, the multi-
classification F1-score weighted average dropped from 0.87 to 0.60. Both datasets contain
10 classes. Extra Trees ensemble classifier was used to assess both datasets. In later work,
Sarhan et al. expanded the utilized Netflow features to 43 and generated several datasets,
including NF-ToN-IoT-v2 [14]. The use of 43 features made a significant improvement in
comparison to the previous two versions. For example, the second version’s F1-score was
1.00 in binary-classification and the multi-classification F1-score weighted average was 0.98.

In addition to the dataset creators, Le et al. proposed a binary and multi-class detection
model using 20 features from NF-ToN-IoT-v2 [21]. The authors reported an F-1 score of
1.00 and an area under the curve (AUC) value of 93%. A higher AUC means a better
distinction between the classes. However, we argue that our approach achieved similar
results using fewer features (13 and 17). Furthermore, our proposed method resulted in an
AUC of 97.7%.

In another paper, Sarhan et al. [22] compared between original, Netflow feature based
(43 features), and CICFlowMeter feature-based (83 features) datasets. CICFlowMeter is
also a network flow traffic generator. The study concluded that the Netflow-based features
dataset achieved higher accuracy in lower prediction time.

Furthermore, in another recent study, Sarhan et al. analyzed the classification per-
formance of three datasets using several ML models and feature extraction algorithms
and concluded that no ML model and feature extraction algorithm combination work best
across all datasets [19]. Such a conclusion motivated our work and interest in researching a
trade-off between accuracy and performance.

Dias et al. [23] utilized Netflow data to detect attacks. In their work, they used 12 fixed
Netflow features in addition to a set of dynamically defined and extracted features from
the network data. They experimented with 52 to 412 features using CIC-IDS-2018 and a
confidential military dataset. They achieved an F1-score of 0.97.

In another work, Liu et al. [24] converted a 2013 one-dimensional Netflow dataset into
two-dimensional images and fed it to a Convolutional Neural Network (CNN). The authors
reported an accuracy of 95.86%. However, they noted that the additional computational
time to convert the data into images made it impractical in real-life scenarios.

Other works that utilized Netflow in intrusion detection include [25,26]. In [25],
Krishnamurthy et al. proposed a framework that predicts attacks using Netflow logs using
machine learning. The purpose of their framework is to provide analysts with a readable
explanation of the logic behind the classification. In [26], Haghighat et al. applied deep
learning using 92 Netflow extracted features. In their work, they utilized a dataset from
2011 called CTU 13 and reported an accuracy above 99%.

Further research in the domain is summarized below with the purpose of highlighting
the methods adopted. It is difficult to compare against the accuracy and speed of models
that were tested on different datasets using machines with different specifications.
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In [27], Abu Al-Haija and Al-Badawi implemented several ML models (ensemble,
neural, and kernel) and assessed their ability to anomaly detect intrusions on IoT networks.
The designed NIDS was tested on two datasets, namely distilled-Kitsune-2018 and Network
Security Laboratory-Knowledge Discovery Databases (NSL-KDD). Each dataset consisted
of around 150,000 network traffic records. The authors concluded that ensemble methods
achieve the highest accuracy while neural network methods had the highest prediction
speed. In an earlier work, Abu Al-Haija and Saleh achieved an accuracy of 98.2% in
classifying IoT cyber-attacks using the Convolutional Neural Network model over the
NSL-KDD dataset [28].

In [29], Verma and Ranga studied a system specific to detecting DoS attacks. The
authors assessed the accuracy and performance of several models using CIDDS-001, UNSW-
NB15, and NSL-KDD datasets. The study concluded that both Classification and Regression
trees (CART) and XGBoost are the most practical classifiers in terms of performance and
prediction speed.

In [30], an analysis of NIDS classification performance on a benchmark data set, ISCX
2012, was performed using the SVM classification algorithm. In addition, two major
methods for selecting features are examined: Recursive Feature Elimination (RFE) and
Recursive Feature Addition (RFA). In their study, the authors observed that RFE performs
better when it comes to independent features, while RFA works better when tackling
interdependent features.

In [31], the authors used several feature selection algorithms such as genetic algorithm,
particle swarm optimization, firefly optimization, and gray wolf optimization to analyze
the performance of NIDS. Their model was evaluated using support vector machines
(SVMs) and machine learning classifiers. The UNSW-NB15 dataset is used as input for
the experiment. The authors concluded that a system with fewer features would be more
accurate.

3. Methodology

The section below presents our research methodology, starting with an illustration of
the proposed system’s architecture.

3.1. Architecture

As shown in Figure 1, the proposed system consists of four phases: (1) Data Cleaning,
(2) Data Transformation, (3) Feature Engineering, and (4) Classification using Machine
Learning.

Figure 1. The architecture of the proposed system.
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3.1.1. Data Cleaning

This stage aims to clean and prepare data for analysis by removing incomplete, incor-
rect, duplicates, and irrelevant rows and columns. Data cleaning is important as it improves
the data quality, positively affecting the detection process performance and reducing detec-
tion time. As Figure 1 shows, the data cleaning phase consists of two processes:

1. Row cleaning process: deleting any incomplete or noisy rows such as rows with
missing values, INF and Null values, and duplicated rows. By the end of this process,
131 rows were dropped from the NF-ToN-IoT-v2 dataset. The remaining rows are
complete with no missing values or duplicate rows.

2. Column cleaning: in this process, unnamed columns were excluded. Moreover, as
the Label and Attack features are highly correlated, the Label feature was dropped
for the Bi-classification experiments, and the Attack feature was deleted for the multi-
classification experiments. Features with a single value, such as FTP_COMMAND_
RET_CODE, were dropped since they do not contribute to the classification process.

3.1.2. Data Transformation

Data transformation is vital and typical in the pre-processing stage. Data transformation
enables the classifier to learn better from the fed dataset. Two types of feature transformation
are applied to the dataset: categorical features and string feature transformations.

1. The categorical feature transformation: is obligatory for any classifier model because
it can only receive numeric values. For example, the attack feature contains ten classes
(nine attack classes and one benign class) that have been encoded into ten numbers
from 0 to 9. On the other hand, the binary label feature is encoded into 0 for no-attack
(benign) and 1 for the attack (anomaly) class.

2. The String feature transformation is applied to encode a formatted string feature to a
numerical one. For example, the features IPV4_SRC_ADDR and IPV4_SRC_ADDR
are IP addresses expressed in dotted-quad format (e.g., 192.168.0.1). The IP features
cannot effectively contribute to the classification process in this format. Thus, the
IPv4Address python class has been applied to convert the string IP format to a number
using 256 base conversion.

3. Statistical Analysis: All rows distant from other rows, known as outliers, influence the
statistical measure such as mean and deviation. The outliers can be high variance in
the dataset due to data extraction or collection issues. The outliers can misrepresent
the attack pattern recognition. For this reason, a statistical analysis is applied using
the interquartile range (IQR) score technique to detect the outliers. IQR is a statis-
tical dispersion measure that is equal to the difference between upper and lower
quartiles:

IQR = Q3 − Q1; (1)

where Q1 is the first quartile (25th percentile) and Q3 is the third quartile (75th
percentile. Any row outside the (Q1 − 1.5 × IQR) and (Q3 + 1.5) range is considered
an outlier. Experimentally, when outlier detection is applied to the NF-ToN-IoT-v2
dataset, the number of detected rows as outliers was around 4 million out of 16 million.
This meant that a quarter of the dataset would have to be deleted, and consequently,
three attack types would be excluded. Therefore, we decided to keep all the dataset
rows and apply data scaling to minimize the outliers’ magnitudes in each feature.
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3.1.3. Data Standardization

Data standardization is a crucial step in the data preprocessing stage as it improves
the performance of any classifier model. As the dataset on hand has been generated from
different resources with variant scales for each feature, data standardization is essential
to rescale those features. Data standardization eliminates any bias caused by the most
significant numeric values negatively affecting the classification process. For this reason, a
scaling technique has been applied to the dataset by converting the feature values to set the
mean and standard deviation to 0 and 1, respectively. The feature values are standardized
as follows:

y =
x − mean

Standard Deviation
(2)

where the mean is calculated as

mean =
sum(x)

count(x)
(3)

And the Standard Deviation is calculated as

Standard Deviation =

√
sum(x − mean)2

count(x)
(4)

3.2. Feature Engineering

The section below presents the feature engineering process, including feature correla-
tion and feature importance.

Feature Correlation

The lower the correlation between the features in the classification process, the better
the performance. This is because highly correlated features make similar predictions. Thus,
eliminating correlated features reduces the computational time and improves the classifier’s
performance. Corr() python function is used to compute the confusion matrix using the
Pearson Correlation Coefficient (PCC) [32], defined as

r = ∑(xi − x̄)(yi − ȳ)√
∑(xi − x̄)2 ∑(yi − ȳ)2 (5)

where r is the correlation coefficient, xi are the values of the x-variable in a sample, x̄ is the
mean of the values of the x-variable, yi are the values of the y-variable in a sample, and ȳ is
the mean of the values of the y-variable. Two features are considered positively (or nega-
tively) correlated if the PCC between them is high, near 1 (or – 1). The PCC near 0 means
that the features are uncorrelated. Figure 2 shows several correlated features in the dark-
colored cells. For example, corr(MIN_TTL, MAX_TTL) = 1, corr(LONGEST_FLOW_PKT,
MAX_IP_PKT_LEN) = 1, corr(ICMP_IPV4_TYPE, ICMP_TYPE) = 1, corr(RETRANSMITTE
D_OUT_BYTES, RETRANSMITTED_OUT_PKTS) = 0.95, and corr(TCP_FLAGS, SERVER_T
CP_FLAGS) = 0.95. A feature importance analysis is applied to decide which of the two
correlated features to remove, maintaining the most important feature in the classification
process and excluding the other. It is important to emphasize that the feature correlation
process has been applied in all experiments with a different set of features extracted via the
feature importance process.
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Figure 2. The correlation matrix between the 43 features.

4. Feature Importance

Feature Importance is a method used to determine the contribution of the feature
to represent the attack class pattern and then classify it [33]. The better the feature’s
contribution in classifying the attack, the higher the importance score. The Random Forest
machine has been used in this research work to generate the importance score for each
feature. Figure 3 shows the 43 features sorted based on their importance in classifying
multi-class attacks.
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Figure 3. The feature importance for the multi-classification process.

The number of features to consider when selecting the best features to feed the classifier
model is determined based on threshold computation best practice. All features with an
importance score greater or equal to the predetermined threshold are maintained as the
final feature subset used to train the classifier model. In this research work, the threshold
was experimentally determined using several methods, including the ones below:

• Mean: The mean value of the importance scores of the 43 features is 0.02326; this
results in a subset consisting of the top 17 features to train the multi-classifier model.

• Median: the median value of the importance scores of the 43 features is 0.01071; this
results in a subset consisting of the top 22 features to train the multi-classifier model.
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• Through visual analysis of Figure 3, we set the threshold to 0.01; this results in a subset
consisting of the top 24 features to train the multi-classifier model.

• Through visual analysis of Figure 3, we set the threshold to 0.02; this results in a subset
consisting of the top 19 features to train the multi-classifier model.

Figure 4 shows the 43 features sorted based on their importance in binary classification
(benign vs. attack). As shown in Figure 4, the feature importance score depends on
the number of attack classes. The feature importance scores change values because the
number of attack classes varies; consequently, the attack pattern representation changes
accordingly. It should be noted that the same threshold determination techniques applied
in multi-classification are also applied in the bi-classification process.

Figure 4. The feature importance for the bi-classification process.
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4.1. Classification Using Machine Learning

Several machine learning algorithms were applied to construct a model that can
accurately discriminate between ten different classes (nine attacks and a benign). The
supervised ML algorithms used in the classification process include Naive Bayes (NB),
Random Forest [34] (RF) [35], Decision Tree (DT) [36], and eXtreme Gradient Boosting
(XGB) [37].

4.2. Performance Evaluation Metrics

As shown in Figures 5 and 6, Precision, Recall, Accuracy, and F1-score metrics were
used to measure the performance of the machine learning models in detecting the benign
vs. attack classes in the binary classification and each of the ten classes in the multi-
classification.

Figure 5. Confusion matrix for NF-ToN-IoT-v2 Bi-classification process.

In the multi-classification process, the Recall, Precision, F1-score, and Accuracy met-
rics [38] are calculated per class as binary classification (“one-vs-all”). The final metric is
the average of all class metrics. As shown in Figure 6, the confusion matrix of classification
with ten classes, the True Positive (TP), True Negative (TN), False Positive (FP), and False
Negative (FN) results, can be obtained for each class k, where 0 ≤ k ≤ n.

The precision measure is the ratio of actual attack records predicted successfully as an
attack to the total records predicted as an attack.

precision =
TP

(TP + FP)
(6)

Recall measure is the ratio of actual attack records predicted successfully as an attack
to the total records in the attack class.

Recall =
TP

(TP + FN)
(7)
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F1-Score is defined as the harmonic mean of Precision and Recall measures.

F1-Score =
2 × (Recall × Precision)
(Recall + Precision)

(8)

Accuracy measure is the ratio between all correct detection records classes (Attack and
No-Attack) and the total number of detection records classes (TP + FP + TN + FN).

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(9)

Figure 6. Confusion matrix for NF-ToN-IoT-v2 multi-classification process.

5. Results and Analysis

This section is divided into two subsections. The first subsection analyzes the best
set of features that can adequately represent each attack class. The second subsection
evaluates the machine learning classification algorithms in terms of Precision, Recall,
F1-score, detection accuracy, and processing time using the NF-ToN-IoT-v2 dataset. We
believe the creators may have dropped some of the NetFlow dataset features to eliminate
learning bias towards specific sources and destinations. However, the exact number was
not explicitly stated in the case of NF-ToN-IoT-v2.

Feature Selection

Figure 3 indicates the importance of each feature to the RF model used to classify the
attack classes. The features are sorted based on their importance, where Longest_Flow_PKT
is the most important feature, and ICMP_IP4V_Type is the least important feature for the
multi-classification process. In the binary-classification process, in Figure 4, SRC_DST_Secon
d_BYTES and RETRANSMITTED_I_BYTES are the most and the least important part, re-
spectively.
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To select the best set of features that independently represent each class, several exper-
iments were conducted to determine the threshold and decide which features to choose.
Table 3 displays the bi-classification F1-score performance of four data-driven strategies to
compute the optimal threshold value. First, through visual analysis of the feature impor-
tance, we set the threshold to 0.02, which resulted in 14 features and performance similar
to that of all 43 NF features. Then, we tested the performance using the median, mean, and
best eight features. Using the mean as a threshold resulted in a small subset of features (13)
and high performance.

Table 4 shows the results of the multi-classification performance results using similar
thresholds. Using the 17 features above the mean resulted in a high performance similar to
that obtained using the entire feature set with less than half of the features.

Table 3. Feature importance performance for binary-classification Using DT.

Class All Features Importance ≥ 0.02 Importance ≥
Median (0.0096)

Importance ≥
Mean (0.0232) Best 8 Features

F1-score F1-score F1-score F1-score F1-score

0. Benign 0.99 0.99 0.99 0.99 0.96

1. Attack 1.00 1.00 1.00 1.00 0.98

Weighted avg 1.00 1.00 1.00 1.00 0.97

Final # of features
used 43 (none removed) Top 14 features 1 Top 22 features 2 Top 13 features 3 Top 8 features 4

1 from SRC_TO_DST_SECOND_BYTES to CLIENT_TCP_FLAGS; 2 from SRC_TO_DST_SECOND_BYTES to
NUM_PKTS_UP_TO_128_BYTES; 3 from SRC_TO_DST_SECOND_BYTES to SHORTEST_FLOW_PKT—Adopted
approach; 4 from SRC_TO_DST_SECOND_BYTES to IP4_DST_ADDR.

Table 4. Feature importance performance for multi-classification Using DT.

Class All Features Importance ≥ 0.02 Importance ≥ 0.01 Importance ≥
Median (0.0107)

Importance ≥
Mean (0.232)

2-6 F1-score F1-score F1-score F1-score F1-score

0. Benign 0.99 1.00 0.99 0.99 0.99

1. Backdoor 1.00 1.00 1.00 1.00 1.00

2. DoS 0.99 0.99 0.99 0.99 0.98

3. DDoS 0.89 0.80 0.89 0.89 0.77

4. Injection 0.91 0.92 0.91 0.91 0.91

5. MITM 0.55 0.60 0.55 0.55 0.58

6. Password 0.97 0.97 0.97 0.97 0.97

7. Ransomware 0.97 0.98 0.97 0.98 0.98

8. Scanning 1.00 1.00 1.00 1.00 1.00

9. XSS 0.95 0.94 0.95 0.95 0.93

Weighted avg 0.98 0.98 0.98 0.98 0.98

Final # of features
used 43 (none removed) Top 18 features Top 23 features Top 22 features Top 17 features

It is important to note that once the features are selected, we apply a feature filtering
process where all features with a correlation coefficient greater than 90% are removed to
avoid unnecessary duplication and reduce the number of the selected features.
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For the binary-classification process, Table 3 shows that the best threshold for feature
selection is the mean = 0.023. This decision is suitable for the accuracy, F1-score, and the
number of chosen features. All the features with an importance coefficient greater than
the mean are kept while the others are discarded. Consequently, only 13 features are se-
lected for classification, namely: [SRC_TO_DST_SECOND_BYTES, LONGEST_FLOW_PKT,
L4_DST_PORT, TCP_WIN_MAX_IN, IN_BYTES, L7_PROTO, IPV4_SRC_ADDR, IPV4_DST
_ADDR, MAX_IPvPKT_LEN, SRC_TO_DST_AVG_THROUGHPUT, L4_SRC_PORT, FLOW
_DURATION_MILLISECONDS,SHORTEST_FLOW_PKT].

For the multi-classification process, Table 4 shows that the best threshold for feature
selection is the mean = 0.023. This decision is suitable for the accuracy, F1-score, and the
number of chosen features. All the features with an importance coefficient greater than the
mean are kept while the others are discarded. Consequently, only 17 features are selected
for classification, namely: [‘LONGEST_FLOW_PKT’, ‘IN_BYTES’, ‘MAX_IP_PKT_LEN’,
‘SRC_TO_DST_SECOND_BYTES’, ‘L4_DST_PORT’, ‘SRC_TO_DST_AVG_THROUGHPUT’,
‘L7_PROTO’, ‘TCP_WIN_MAX_IN’, ‘IPV4_DST_ADDR’, ‘DST_TO_SRC_SECOND_BYTES’,
‘SHORTEST_FLOW_PKT’, ‘OUT_BYTES’, ‘MIN_IP_PKT_LEN’, ‘FLOW_DURATION_MIL
LISECONDS’, ‘DST_TO_SRC_AVG_THROUGHPUT’, ‘CLIENT_TCP_FLAGS’, ‘L4_SRC_P
ORT’, ‘TCP_WIN_MAX_O’].

Table 5 summarizes the binary-classification results obtained using the most common
classification machine learning models: DT, RF, XGB, and NB. The classification was applied
using the top 13 features to represent the attack vs. benign class. As can be seen, RF and DT
have outperformed XGB and NB models. The results reveal that the selected 13 features
are enough for the RF model to flawlessly classify 100% of accuracy rate, all the 4,615,521
records between attack and benign classes.

Table 5. Binary classification using features with importance ≥ mean (top 13 features).

DT RF XGB NB

Class PR RC F1-Score PR RC F1-Score PR RC F1-Score PR RC F1-Score

0. Benign 1.00 0.99 0.99 1.00 0.99 1.00 0.98 0.97 0.97 0.93 0.04 0.07

1. Attack 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.98 0.62 1.00 0.76

Weighted avg 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.98 0.74 0.62 0.50

Accuracy 1.00 1.00 0.98 0.62

Table 6 summarizes the multi-classification results obtained using the most common
classification machine learning models: DT, RF, XGB, and NB. The classification was applied
using the top 17 features to represent the ten different classes. As can be seen, the RF model
has outperformed the DT, NB, and XGB models in terms of attack classification. The
results reveal that the selected 17 features are enough for the RF model to classify with
98% accuracy all the 4418916 records into either a benign flow or one of the possible nine
attacks: Backdoor, Denial of Service (DoS), Distributed Denial of Service (DDoS), Injection,
Man in the Middle (MITM), Password, Ransomware, Scanning, Cross-site Scripting (XSS).

Based on the results illustrated in Tables 5 and 6, and Figure 7, we can see that the 13
selected features are capable of representing the attack vs. benign class with 100% accuracy.
Also, the 17 selected features are suitable for independently representing the ten different
classes (98% accuracy). Therefore, the low detection rate of the MITM attack (59%) using
the Random Forest model is due to the few MITM class records (991 records) compared to
the other attack classes represented by thousands of records.
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Table 6. Multi-classification using features with importance ≥ mean (top 17 features).

DT RF XGB NB

Class PR RC F1-Score PR RC F1-Score PR RC F1-Score PR RC F1-Score

0. Benign 0.99 1.00 0.99 1.00 1.00 1.00 0.96 0.98 0.97 0.98 0.01 0.03

1. Backdoor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 0.97 0.99

2. DoS 0.98 0.98 0.98 0.98 0.98 0.98 0.93 0.97 0.95 0.85 0.48 0.61

3. DDoS 0.77 0.78 0.77 0.78 0.78 0.78 0.85 0.81 0.83 0.42 0.56 0.48

4. Injection 0.91 0.91 0.91 0.93 0.91 0.92 0.85 0.64 0.73 0.32 0.21 0.25

5. MITM 0.58 0.58 0.58 0.59 0.59 0.59 0.94 0.44 0.60 0.06 0.00 0.01

6. Password 0.97 0.97 0.97 0.97 0.97 0.97 0.87 0.89 0.88 0.47 0.80 0.59

7. Ransomware 0.99 0.98 0.98 0.99 0.99 0.99 0.95 0.78 0.85 0.00 0.16 0.01

8. Scanning 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.95 0.96 0.39 0.98 0.56

9. XSS 0.94 0.93 0.93 0.93 0.95 0.94 0.88 0.94 0.91 0.61 0.72 0.66

Weighted avg 0.98 0.98 0.98 0.98 0.98 0.98 0.94 0.94 0.94 0.71 0.45 0.35

Accuracy 0.98 0.98 0.94 0.45

Figure 7. Prediction time for bi-classification and multi-classification using DT model.

In addition to our attempt to determine the suitable number of NetFlow features for
binary and multi-classification, which turned out to be 13 and 17, respectively, we wanted
to assess the suitability of the best eight features. In this experiment, we wanted to compare
our performance results to those obtained from a previous version of NF-ToN-IoT-v2
(NF-ToN-IoT, 2020) [18]. This dataset consisted of twelve NetFlow features to serve as a
standard for other NIDS models’ training and testing. Eight out of the twelve features were
utilized in the classification process. The authors achieved an F-1 score of 1.00 and 0.60 in
binary and multi-classification, respectively. Our best eight binary classification features
achieved a slightly lower F-1 score of 0.97, while the best eight multi-class features resulted
in an F-1 score of 0.82, which is significantly higher than 0.60. The authors understand
that the dataset creators decided to drop certain features from the twelve. Still, we were
interested in comparing the results acquired using eight features on each side.

All experiments’ results were carried out using Google Colab platform. Figure 7 shows
the difference in testing time when using all the features compared to the subsets utilized.
A smaller subset will result in a faster processing time, making the system more suitable
for real-time detection.
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Table 7 shows that the attack classification performance is similar to the state of art
method using only 13 and 17 instead of 43 features. In other words, using only 30%
(Dimensionality Reduction rate = 70%) and 40% (Dimensionality Reduction rate = 60%) of
the number of features were enough to represent the two and ten classes, respectively.

Table 7. Comparison between the proposed method performance and state-of-the-art method using
NF-ToN-IoT-v2.

Output Class Measure Sarhan et al. [14] Proposed Method

Feature Set 43 13

Binary Classification Begin vs. Attack
Accuracy 99.64% 100%

F1-score 1.00 1.00

Dimensionality Reduction rate - 70%

Feature Set 43 17

Multi-Classification Classes 0-9
Accuracy 98.05% 98%

F1-score 0.98 0.98

Dimensionality Reduction rate - 60%

6. Conclusions

Anomaly-based detection models are trained to determine normal and flag suspicious
behaviors. Networks contain many features that can be used to train IDS. For example,
NetFlow, a networking industry-standard protocol, provides a rich set of fields (over 70 in
version 9) that can be used for that purpose [39]. A recent study proposed a standard set of
43 NetFlow features that resulted in high accuracy [14]. Netflow is a Cisco standard that
provides a huge amount of network data that happened to be outstanding when it comes
to malicious attack detection. The 2021 study included the creation of a massive NetFlow-
based dataset (NF-ToN-IoT-v2) with over 16 million records. Our goal was different as
we wanted to utilize this new dataset and further reduce the number of features while
maintaining high accuracy results. A lower number of features means faster processing
time, which is essential in deploying an anomaly-based detection system.

During our work, we examined several sets of features. We concluded that NetFlow
features with importance values above the mean of all feature values are sufficient to predict
malicious behavior. Indeed, 13 features were enough to perform binary classification with
an F1-score of 1.00, and 17 features were adequate to achieve an F1-score of 0.98 in the case
of multi-classification. These results are identical to those obtained using the 43 features [14].
Furthermore, our approach reduced the prediction time by 38% and 40% in binary and
multi-classification, respectively.

Our study tested the performance using DT, RF, XGB, and NB. The results achieved
by DT and RF were the highest. In our future work, we plan to assess the suitability of this
threshold on other NetFlow-based datasets.
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