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Abstract: Brain decoding is a process of decoding human cognitive contents from brain activities.
However, improving the accuracy of brain decoding remains difficult due to the unique characteristics
of the brain, such as the small sample size and high dimensionality of brain activities. Therefore, this
paper proposes a method that effectively uses multi-subject brain activities to improve brain decoding
accuracy. Specifically, we distinguish between the shared information common to multi-subject brain
activities and the individual information based on each subject’s brain activities, and both types of
information are used to decode human visual cognition. Both types of information are extracted as
features belonging to a latent space using a probabilistic generative model. In the experiment, an
publicly available dataset and five subjects were used, and the estimation accuracy was validated
on the basis of a confidence score ranging from 0 to 1, and a large value indicates superiority. The
proposed method achieved a confidence score of 0.867 for the best subject and an average of 0.813 for
the five subjects, which was the best compared to other methods. The experimental results show that
the proposed method can accurately decode visual cognition compared with other existing methods
in which the shared information is not distinguished from the individual information.

Keywords: brain decoding; functional magnetic resonance imaging (fMRI); multiple subjects; visual
features; generative model

1. Introduction

Brain decoding estimates human cognition from brain activities and has been actively
studied. There has been recent research progress in measuring human brain activities.
Certain measuring methods have been used in this regard, including the implantable
microelectrode array (MEA) [1] and other noninvasive measuring methods, such as near-
infrared spectroscopy [2], electroencephalogram [3], functional magnetic resonance imaging
(fMRI) [4–10], and magnetoencephalography (MEG) [11,12]. MEA is an invasive measure-
ment method, and the merit of MEA is its robustness to noise during brain activity mea-
surement. However, it necessitates the implantation of microelectrodes in a subject’s body,
which is its demerit, as this imposes a significant physical burden on the subject. Therefore,
noninvasive methods, such as fMRI and MEG, which are less likely to directly harm a
subject, are more widely used than invasive methods. fMRI in particular is frequently used
to measure brain activities and can obtain brain activities with high-spatial resolutions.
Compared with MEA, the demerits of fMRI are its sensitivity to noise and the large size of
the measurement equipment. MEG is superior to fMRI in terms of temporal resolution and
has reasonable spatial resolutions [13,14].

Several positive results have been reported by using machine learning methods to
analyze brain activities from these measuring methods. For example, emotion analysis
methods have been proposed from brain activities [15–17]. Some techniques have been
proposed to generate an image caption and reconstruct an image using brain activities
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while seeing the image [9,18–22]. In addition, image reconstruction is attempted on the
basis of brain activities while imagining [20]. Researchers believe that the advancement
of machine-learning-based brain decoding will reveal the human brain mechanism. The
revelation of the human brain’s mechanism is expected to contribute to a society in which
everyone lives comfortably by realizing effective devices that use brain activities as input.
For example, a brain–machine interface (BMI) aims for humans to directly operate and
communicate with external machines without physical movement, which can assist the
daily lives of people with handicaps [23–25].

The estimation of visual perception from fMRI data has been actively researched in
the field of brain decoding to take advantage of excellent spatial resolutions [6–8,26]. fMRI
data vary depending on the imaging object [6]. Previous studies [7,26] have attempted to
analyze visual perception using classical methods, such as a support vector machine [27]
and a Gabor wavelet filter [28]. There is a relationship between visual information extracted
from a convolutional neural network (CNN) [29] and fMRI data obtained while seeing an
object [8,30]. This relationship suggests that a CNN mimics the visual perception system
in the human brain, and visual features extracted by a CNN are essential in estimating
visual perception. Previous studies have attempted to estimate CNN-based visual features
of images using fMRI data collected while subjects see the images [8,31–34]. In a previous
study [8], the authors constructed a decoder that learns the relationship between each
subject’s fMRI data and the visual features of a seen image, and the decoder can estimate
the visual features of the seen image from the fMRI data. Their method is based on linear
regression. Although this decoder can estimate visual features, the estimation accuracy
strongly depends on the size of the training set that consists of fMRI data. However, it
is essential to lie in a closed and narrow space for a long period to measure fMRI data.
Preparing a large amount of fMRI data also places a psychological and time burden on
a subject.

Meanwhile, it is still challenging to estimate visual perception using a limited amount
of data. Some studies [31,32] have used multi-subject fMRI data obtained when multiple
subjects see the same image. These methods construct the latent space to extract the
common features (shared features) from multi-subject fMRI data. These methods are
based on the generative model, and they can stably train models using multiple inputs,
even though the size of training data is limited. They emphasized the concept of shared
features as the common information between multi-subject fMRI data. However, they have
not considered individual features on which the researchers [8,35] focused as the subject-
specific information in single-subject fMRI data. Each feature contains different information,
and it is possible that accuracy is improved by combining shared and individual features
in terms of differences in expressive ability.

In this study, we propose a novel method for estimating the visual features of a seen
image from multi-subject fMRI data. To improve the estimation accuracy, we introduce
the idea of focusing on multi-subject and single-subject fMRI data. We calculate the latent
space based on fMRI data and extract shared and individual features using a generative
model. The generative model assumes the distributions of the extracted features and can
extract effective features from a limited amount of data. We can train decoders to estimate
visual features using the extracted shared and individual features. In addition, it is possible
to use common cognitive information from multi-subject fMRI data and subject-specific
cognitive information from single-subject fMRI data.

The remainder of this paper is organized as follows. In Section 2, we explain the
proposed estimation method using multi-subject fMRI data. Section 3 presents the experi-
mental results using an fMRI dataset when multiple subjects see an image. Finally, Section 4
presents the conclusion.

2. Estimation of Visual Features of Seen Image Using Shared and Individual Features

In this section, we explain the proposed method. The overview of the training phase
is illustrated in Figure 1. We constructed a probabilistic generative model (PGM) to extract
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shared and individual features from multiple and single subjects. In addition, a visual
decoder was constructed to estimate visual features from both extracted features. The
overview of the test phase is shown in Figure 2. We extracted shared and individual
features from single-subject fMRI data using the PGM and estimate the visual features
of a seen image using the trained visual decoder. The trained PGM can extract shared
features from only single-subject fMRI data. The training and test phases are explained in
Sections 2.1 and 2.2, respectively. A list of the variables used is presented in Appendix A.

2.1. Training Phase: Construction of PGM and Visual Decoder

The training phase consisted of two steps. In the first step, we constructed the PGM to
extract shared and individual features from fMRI data separately. This model can extract
features robust to the noise in fMRI data. In the second step, we trained a visual decoder to
estimate the visual features of a seen image. The visual decoder can transform shared and
individual features into visual features using a projection matrix.

Figure 1. Overview of the training phase in the proposed method. Different PGMs are trained to
extract shared and individual features of each subject. We can extract shared features from single-
subject fMRI data. The PGM for individual features uses only single-subject fMRI data as a target
for training. The visual decoder was trained using both extracted features from PGMs based on the
minimization problem between the estimated and visual features from the trained CNN.
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Figure 2. Overview of the test phase in the proposed method. The PGM corresponding to each feature
was used to extract features from the target subject’s fMRI data. The trained visual decoder can
estimate visual features using shared and individual features, and this scheme realizes our approach.

2.1.1. Step 1: Construction of PGM

In step 1, we constructed the PGM for extracting of shared and individual features
from fMRI data Bi = [bi,1, · · · , bi,N ] ∈ Rdi×N (i = 1, . . . , J; here, J represents the number
of subjects, di denotes the dimension of the fMRI data in ith subject, and N represents
the number of fMRI data training corresponding to each seen image). First, we describe
the scheme for extracting the shared features C = [c1, · · · , cN ] ∈ Rdcom×N(dcom being the
dimensions of the shared features). An algorithm table is shown in Algorithm 1. The
Gaussian distribution is introduced as a prior distribution of shared features C into the
following minimization problem:

min
Pi ,C

J

∑
i=1
‖Bi − PiC‖2

F s.t. P>i Pi = I, (1)

where Pi ∈ Rdi×dcom denotes the projection matrix that transforms the fMRI data Bi into the
shared features C, and I represents the identity matrix. The prior distribution of the shared
features cn (n = 1, · · · , N) and the conditional Gaussian distribution p(bi,n|cn) are given
as follows:

p(cn) ∼ N (0, Σc), (2)

p(bi,n|cn) ∼ N (Picn + µi, ρ2
i I), (3)

where Σc ∈ Rdcom×dcom denotes the covariance matrix of the shared features cn, µi =
1
N ∑N

n=1 bi,n ∈ Rdi represents the mean of the fMRI data Bi, and ρ2
i represents the variance

of Bi. The fMRI data of each subject are combined under the assumption that multiple
subjects see the same image, and multi-subject fMRI data corresponding to an image
bn = [b>1,n, · · · , b>J,n]

> are defined. Moreover, the marginal probability distribution p(bn)
and bn are represented as follows:
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p(bn) ∼ N (µ, PΣcP> + Ψ), (4)

bn = Pcn + µ + ε, (5)

where P = [P>1 , · · · , P>J ]>, µ = [µ>1 , · · · , µ>J ]
> and Ψ = diag(ρ2

1 I, · · · , ρ2
J I) ∈ Rdall×dall are

combined parameters (dall = ∑J
i=1 di), and ε ∼ N (0, Ψ) is an error term. To calculate the

marginal probability distribution in Equation (4), we define the joint distribution of the
shared features cn and fMRI data bi,n and take the logarithm. The mean and covariance
matrix of p(bn) can be calculated by computing the exponential part of the joint matrix
distribution for the second-order and first-order terms [36].

Algorithm 1 PGM for shared features cn.

1: Initialize:
2: Pi, ρi, Σc, µi, J, N, MAXLOOP, Ai, ρnew2

i , Σnew
c

3: for i = 1 . . . J do
4: for n = 1 . . . N do
5: µi ← µi + bi,n
6: end for
7: µi ← 1

N µi
8: end for
9: l ← 1

10: while MAXLOOP ≥ l do // EM algorithm for updating parameters
11: Varc|b[c]← Σc − Σ>c P>(PΣcP> + Ψ)−1PΣc // Start expectation step
12: for n = 1 . . . N do
13: Ec|b[cn]← (PΣc)>(PΣcP> + Ψ)−1(bn − µ)

14: Ec|b[cnc>n ]← Varc|b[c] + Ec|b[cn]Ec|b[cn]>

15: end for // End expectation step
16: for i = 1 . . . J do // Start maximization step
17: for n = 1 . . . N do
18: Ai ← Ai + (bi,n − µi)Ec|b[cn]>

19: end for
20: Ai ← 1

2 Ai
21: Pnew

i ← Ai(A>i Ai)
−1/2

22: for n = 1 . . . N do
23: ρnew2

i ← ρnew2

i + ||bi,n − µi||2 − 2(bi,n − µi)
>Pnew

i Ec|b[cn] + tr(Ec|b[cnc>n ])
24: end for
25: ρnew2

i ← 1
Ndi

ρnew2

i
26: end for
27: for n = 1 . . . N do
28: Σnew

c ← Σnew
c + Ec|b[cnc>n ]

29: end for
30: Σnew

c ← 1
N Σnew

c

31: Pi, ρ2
i , Σc ← Pnew

i , ρnew2

i , Σnew
c // End maximization step

32: Initialize:
33: Ai, ρnew2

i , Σnew
c

34: l ← l + 1
35: end while

We introduce the expectation maximization (EM) algorithm [37] for updating the
model parameters Pi, ρ2

i , and Σc. The posterior distribution p(cn|bn) is calculated in the
expectation step of the EM algorithm. The posterior distribution p(cn|bn) follows the



Sensors 2022, 22, 6148 6 of 18

Gaussian distribution, and we can analytically calculate the expected value Ec|b[cn] and
the variance Varc|b[c] as follows:

Ec|b[cn] = (PΣc)
>(PΣcP> + Ψ)−1(bn − µ), (6)

Varc|b[c] = Σc − Σ>c P>(PΣcP> + Ψ)−1PΣc. (7)

The expected value Ec|b[cn] and the variance Varc|b[c] are calculated using the joint
distribution of the shared features cn and fMRI data bn, similarly to the calculation in
Equation (4). However, the joint distribution is defined on the basis of the marginal
probability distribution p(bn). The joint distribution is taken by logarithm. We calculate
the expected value Ec|b[cn] and the variance Varc|b[c] using the exponential part of the
joint matrix distribution for the second-order and first-order terms [36]. Furthermore, the
second-order moment Ec|b[cnc>n ] is calculated as follows:

Ec|b[cnc>n ] = Varc|b[c] + Ec|b[cn]Ec|b[cn]
>. (8)

The parameters Pi, ρ2
i , and Σc are updated to maximize the expected value R(θ, θold)

by (θ, θold ∼ {Pi, ρ2
i , Σc}) in the maximization step of the EM algorithm. Note that θold

is a fixed parameter in the expectation step. The expected value R(θ, θold) is expressed
as follows:

R(θ, θold) =
1
N

N

∑
n=1

∫
p(cn|bn; θold) log p(bn, cn; θ)dcn

=
1
N

N

∑
n=1

∫
p(cn|bn; θold)

(
log p(bn|cn; θ)

+ log p(cn; θ)
)
dcn

=
N

∑
n=1

Ec|b
[

log p(bn|cn; θ) + log p(cn; θ)
]
. (9)

In the above equation, the transformation is performed with respect to θ. A term
with only θold as parameters can be regarded as a constant and is excluded from the
expectation value R in the maximization step. The expected value R(θ, θold) is calculated
using partial derivatives with respect to the parameters {Pi, ρ2

i , Σc} and maximized. The
updated parameters Pnew

i , ρnew2

i and Σnew
c are defined as follows:

Pnew
i = Ai(A>i Ai)

−1/2, (10)

Ai =
1
2
( N

∑
n=1

(bi,n − µi)Ec|b[cn]
>), (11)

ρnew2

i =
1

Ndi

N

∑
n=1

(
||bi,n − µi||2 − 2(bi,n − µi)

>

Pnew
i Ec|b[cn] + tr(Ec|b[cnc>n ])

)
, (12)

Σnew
c =

1
N

N

∑
n=1

Ec|b[cnc>n ]. (13)

Each parameter is updated using the expected value Ec|b[cn] and the variance Varc|b[c]
in the expectation step of the EM algorithm. We repeatedly calculated both steps to update
the model parameters Pnew

i , ρnew2

i and Σnew
c . Finally, the shared features cn can be calculated

using the following equation:

cn = P−1(bn − µ). (14)
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In addition, shared features of each subject can be extracted as follows:

ci,n = P−1
i (bi,n − µi), (15)

where ci,n denotes the shared features in the ith subject. We can extract shared features
following the Gaussian distribution, and the extracted features are effective for estimating
visual features due to the robustness of noise.

Similarly, we used the PGM to extract individual features Hi = [hi,1, · · · , hi,N ] ∈
Rdind×N from the fMRI data Bi (dind being the dimension of the individual features). We
also introduce the Gaussian distribution as a prior distribution of the individual features
Hi into the following minimization problem, and the prior distribution of the individual
features hi,n is given as follows:

min
P′i ,Hi

‖Bi − P′i Hi‖2
F s.t. P′i

>P′i = I, (16)

where P′i ∈ Rdi×dind denotes the projection matrix that transforms the fMRI data Bi to the
individual features Hi. The prior distribution of the shared features hi,n and the conditional
Gaussian distribution p(bi,n|hi,n) are given as follows:

p(hi,n) ∼ N (0, Σ′
hi
), (17)

p(bi,n|hi,n) ∼ N (P′i hi,n + µi, ρ′i
2 I), (18)

where Σ′hi
∈ Rdind×dind denotes the covariance matrix of hi,n, and ρ′i

2 denotes the variance
of Bi. The marginal probability distributions p(bi,n) and bi,n are represented as follows:

p(bi,n) ∼ N (µi, P′Σ′
hi

P′> + Ψ′i), (19)

bi,n = P′hi,n + µi + ε′i , (20)

where ε′i ∼ N (0, Ψ′i) represents an error term. Note that Ψ′ = diag(ρ′i
2 I) ∈ Rdi×di , and

ρ′i
2 denotes the variance of Bi. We can extract the individual features hi,n following the

calculation steps of the shared features cn using the EM algorithm. The obvious difference
between individual features and the shared features cn is that it is not necessary to combine
these parameters in multiple subjects. Finally, the individual features hi,n can be calculated
using the following equation:

hi,n = P′−1(bi,n − µi). (21)

2.1.2. Step 2: Construction of Visual Decoder

In step 2, we trained the visual decoder that convert shared and individual features
into visual features V = [v1, · · · , vN ] ∈ Rdv×N (dv being the dimensions of the visual
features). We calculated projection matrices Pcom,i ∈ Rdv×dcom and Pind,i ∈ Rdv×dind . The
following minimization problem was computed with respect to the projection matrices
Pcom,i and Pind,i:

min
Pcom,i ,Pind,i

‖V − (Pcom,iCi + Pind,i Hi)‖2
F

+ λcom,i‖Pcom,i‖2
F + λind,i‖Pind,i‖2

F,
(22)

where λcom,i and λind,i represent regularization parameters. By repeating the partial deriva-
tives with respect to Pcom,i and Pind,i, we can simply obtain the following optimal projections:

Pcom,i = (V − Pind,i Hi)Ci
>(CiCi

> + λcom,i I)−1, (23)

Pind,i = (V − Pcom,iCi)H>i (Hi H>i + λind,i I)
−1. (24)
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2.2. Test Phase: Estimation of Visual Features of Seen Image

The test phase consisted of two steps. In the first step, we extracted shared and
individual features using the developed PGM. In the second step, we estimated visual
features using shared and individual features using the constructed visual decoder.

2.2.1. Step 1: Extraction of Shared and Individual Features

We extracted the shared features ctest,i using the parameters of the PGM as follows:

ctest,i = P−1
i (btest,i − µi), (25)

where btest,i ∈ Rdi denotes fMRI data for the ith subject in the test phase. The shared
features could be extracted as each subject’s feature. Similarly, individual features htest,i
were extracted as follows:

htest,i = P′i
−1(btest,i − µi). (26)

Both features followed a Gaussian distribution, and we can extract effective features
from fMRI data.

2.2.2. Step 2: Estimation of Visual Features

Visual features were estimated using shared and individual features using the trained
visual decoder as follows:

vest,i = Pcom,ictest,i + Pind,ihtest,i, (27)

where vest,i denotes the visual features estimated using visual decoders in the ith subject.
In Equation (27), visual features are estimated from shared and individual features using
each projection matrix corresponding to the features.

3. Experimental Results

This section presents the experimental results of the image category estimation. In
Section 3.1, the datasets used in constructing the proposed method are explained. In
Section 3.2, the experimental conditions are described. In Section 3.3, the comparison
methods are explained. In Section 3.4, the experimental results are presented.

3.1. Dataset

In this experiment, we used the fMRI data (approximately 4500-dimensional vectors)
published in a previous study [8]. fMRI data comprise data on visual cortex activities
of five subjects while observing images with measuring equipment (Siemens MAGNE-
TOM Prisma (https://www.siemens-healthineers.com/jp/magnetic-resonance-imaging/
research-systems/magnetom-prisma (accessed on 10 August 2022))). To obtain fMRI data
in [8], four males and one female between the ages of 23 and 38 were chosen as the subjects,
and the functional localizer [38–40] and the standard retinotopy [4,41] experiments were
conducted to identify the visual cortex of each subject. There were 1200 seen images of
150 categories collected in ImageNet [42] (eight images per category). We used these images
as pairs of fMRI data.

We performed cross-validation to examine the effectiveness of the proposed method
through unbiased experiments. Due to the significant burden on the subject during brain
activity acquisition, preparing several samples for the fMRI dataset is difficult. Therefore,
as shown in Figure 3, we divided these 1200 pairs into 900, 150, and 150 pairs as training,
validation, and test data, respectively. All categories were equally divided into the training,
validation, and test data. In addition, we applied 7-fold cross-validation to 1050 pairs
consisting of training and test data, respectively. If the training and validation data are
interchanged, as is widely done in the machine learning field, the validity of the proposed
method on small amounts of test data would be verified.

https://www.siemens-healthineers.com/jp/magnetic-resonance-imaging/research-systems/magnetom-prisma
https://www.siemens-healthineers.com/jp/magnetic-resonance-imaging/research-systems/magnetom-prisma
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Figure 3. Overview of fMRI datasets of five subjects. We divided a total of 1200 seen images corre-
sponding to measured fMRI data into 900, 150, and 150 images as training, test, and validation data,
respectively. The validation data were fixed, and 7-fold cross-validation was applied to 1050 pairs of
the training and test data. For category estimation, we used the candidate visual features averaged
from other images belonging to the same seen category. Thus, the seen images were not included in
the test and validation data.

First, 4096-dimensional visual features were extracted from VGG19 [43]. VGG19 was
generally pre-trained for the 1000 categories in ImageNet, and the fully connected layers
that extracted visual features were selected farther from the output. Furthermore, the
principal component analysis (PCA) [44] was applied to the visual features. The visual
features have high dimensions, and we used PCA to prevent overfitting. We selected the
cumulative contribution ratio of PCA as 0.8 (the dimensions of visual features applied PCA
dv, being approximately 70).

3.2. Experimental Conditions

The estimated accuracy was evaluated by image category estimation. CNNs are mostly
trained for image categorization, and category estimation is an appropriate evaluation
metric for the representation ability of visual features extracted from a pre-trained CNN.
Among the categories of seen images of the fMRI data used in this experiment, some
were not used for the pre-trained CNN classifiers. Therefore, we evaluated the estimated
accuracy using visual features. Figure 4 shows an overview of category estimation. The
image category ranks of the estimated and candidate visual features indicate categories via
VGG19 based on the correlations. We selected from 10,000 categories in the fMRI dataset
and calculated averaged visual features in each category as candidate visual features. Note
that of the 10,000 categories, 150 image categories were used in the fMRI dataset in the
test phase. Candidate visual features were 5–10 images chosen at random from each
category. The ranks of the estimated visual features and 10,000 candidate visual features
were calculated and rearranged in descending order; the ground truth (GT) rank was
defined as the image category rank. Finally, the confidence category score S was calculated
from the image category rank G as follows:

S =
M− G
M− 1

, (28)
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where M represents the total number of image categories, and we set M to 10,000 in this
experiment. The confidence category score S approaches 1 for better image category ranks
G and 0 for worse. The confidence category scores were averaged in 150 test data points,
7-fold cross-validation sets, and five subjects. We used this metric for the experiment
evaluation.

Figure 4. Overview of the scheme of category estimation. In the training phase, the relationship
between a seen image and the corresponding fMRI data in each subject was learned. In the test
phase, we estimated visual features using fMRI data based on the learned relationship. However, the
visual features to be compared were computed from images chosen at random from ImageNet. These
other images were 5–10 samples in each category, and we selected 10,000 categories from ImageNet.
The 10,000 categories included 150 image categories belonging to the fMRI data in the test phase.
We defined candidate visual features, averaged visual features, extracted from these other images
in each category, and compared them with estimated visual features from fMRI data. Finally, we
calculated the correlations between the estimated and candidate visual features, and the accuracy of
the estimations was evaluated with the seen image category as the ground truth (GT).
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3.3. Comparison Methods

We compared the proposed method (hereafter denoted as PM) with several compar-
ison methods (hereafter denoted as CMs) based on the evaluation metric to validate the
effectiveness of the PM. The CMs have seven patterns. Two CMs use multi-subject fMRI
data and five CMs use single-subject fMRI data.

Multi-subject probabilistic generative model (MSPGM):

MSPGM is a method based on the PGM, and PM uses multi-subject fMRI data. Visual
features are estimated from shared features using ridge regression [45]. We set the
number of dimensions in the latent space to the same number of dimensions of the
PM and searched for {0.1, 1, 10} in the regularization parameter of ridge regression.

Multi-view Bayesian generative model for multi-subject fMRI Data (MVBGM-MS):

MVBGM-MS [46] exhibited state-of-the-art performance in the field of brain decoding
for visual cognitive contents. MVBGM-MS uses multi-subject fMRI data, and the
generative model estimates visual features via the latent space. MVBGM-MS uses
visual features, multi-subject fMRI data, and semantic features extracted by inputting
image category names into Word2vec [47] to improve accuracy. Therefore, for a fair
evaluation of the PM, we used MVBGM-MS without semantic features. We set the
number of dimensions in the latent space in the same manner as in the previous
study [46].

Single-subject probabilistic generative model (SSPGM):

The SSPGM method is based on fMRI data and uses single-subject fMRI data. Visual
features are estimated from individual features using ridge regression. We set the
number of dimensions in the latent space to the same number of dimensions of the PM
and searched for {0.1, 1, 10} in the regularization parameter of the ridge regression.

Sparse linear regression (SLR):

SLR [8] is a baseline method in the field of brain decoding for visual cognitive contents
and directly estimated visual features from fMRI data. We estimated visual features
by using voxels consisting of fMRI data with a high correlation to the features. Voxels
were selected in the order of increasing correlation, and the total number of voxels
to be selected was set as a hyperparameter. We searched the number of voxels for
{50, 100, 200, 400, 500, 1000}.

Canonical correlation analysis (CCA):

CCA [48] is a baseline method for calculating the latent space from multi-modal fea-
tures. Visual features and fMRI data are converted into features belonging to the latent
space, and accuracy is evaluated in the space. We searched for {10, 20, 30, 40, 50, dv}
in the number of dimensions in the latent space.

Bayesian CCA (BCCA):

The BCCA [49] method is an extension of CCA that adopts Bayesian learning. BCCA
is a generative model. The latent space consists of visual features and fMRI data,
and visual features can be estimated from fMRI data via the space. We searched for
{10, 20, 30, 40, 50, dv} in the number of dimensions in the latent space.

Deep CCA (Deep CCA):

The Deep CCA [50] method is also an extension of CCA that adopts deep learn-
ing. Similarly to CCA, visual features and fMRI data are converted into features
belonging to the latent space, and accuracy is evaluated in the space. We searched for
{10, 20, 30, 40, 50, dv} in the number of dimensions in the latent space.
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3.4. Results and Discussion
3.4.1. Estimation Performance Evaluation

Table 1 shows the accuracy of the category estimation in the PM and CMs. Note
that the average scores of 150 test images were calculated according to each subject as the
evaluation metric. These scores range from 0 to 1, and large values indicate superiority. In
the PM, MSPGM, and SSPGM, we set dcom, dind, and the number of iterations in the EM
algorithm to 100, 100, and 10. In addition, in the PM’s visual decoder, we searched each
regularization parameter λcom,i and λind,i for {0.1, 1, 10}.

Table 1. Confidence category scores were averaged for 150 test images and five subjects in the PM
and all CMs (The best scores for each subject, and the averages of all subjects are shown in bold).

Subject1 Subject2 Subject3 Subject4 Subject5 Average

Proposed Method (PM) 0.756 0.806 0.867 0.860 0.778 0.813

MSPGM 0.744 0.801 0.857 0.850 0.771 0.805

MVBGM-MS [46] 0.793 0.764 0.832 0.814 0.756 0.792

SSPGM 0.696 0.802 0.859 0.851 0.763 0.794

SLR [8] 0.772 0.734 0.817 0.809 0.711 0.769

CCA [48] 0.706 0.723 0.796 0.782 0.705 0.742

BCCA [49] 0.661 0.762 0.835 0.824 0.740 0.764

Deep CCA [50] 0.622 0.697 0.792 0.755 0.685 0.710

In Table 1, the scores, of most subjects and the averages of five subjects in the PM are
superior to those in MVBGM-MS and MSPGM based on multi-subject fMRI data. The PM’s
superior scores indicate its effectiveness in distinguishing between shared and individual
features in multi-subject fMRI data. Furthermore, MVBGM-MS is state-of-the-art, but the
PM outperformed it. The scores of all subjects and the averages of the PM are superior to
those of SSPGM, SLR, CCA, Deep CCA, and BCCA based on single-subject fMRI data. The
SSPGM method is based on the PGM and PM, and its effectiveness in combining shared
and individual features is exhibited. The effectiveness of the PM in estimating the visual
features of seen images from fMRI data was confirmed compared with SLR, and based
on the quantitative accuracy of the PM, it is reliable. Moreover, compared with CCA and
Deep CCA, our method can derive their latent spaces successfully. In particular, the PM
significantly outperformed Deep CCA, which is the only model that incorporates deep
learning among the CMs. Deep CCA is also inferior to simple CCA in terms of score. Deep
learning may not be compatible with fMRI data, for which only a small sample size is
available. Furthermore, compared with BCCA as a generative model, we can confirm the
superiority of our generative model for extracting shared and individual features.

3.4.2. Qualitative Evaluation

Figure 5 shows the qualitative evaluation of PM and MVBGM-MS, SLR, CCA, BCCA,
and Deep CCA, which are methods based on other studies [8,46,48–51]. For the image
categories of “shirt” and “saddle”, the PM has the best confidence category scores for most
subjects. These results demonstrate the effectiveness of the PGM as a feature extractor and
the idea of using shared and individual features.

Figure 6 shows the qualitative evaluation of the PM, MSPGM, and SSPGM based on
our PGM. For the image category of “hand calculator”, PM has the best confidence category
scores for most subjects. However, for the image category of “obelisk”, MSPGM has the
best confidence category scores for most subjects. These results indicate that although
the PGM can extract valid shared features, there exists a possibility that it cannot extract
individual features. Due to its characteristics, the PGM is superior in extracting shared
features from multi-subject fMRI data. For the image categories “spectacles” and “camera
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tripod”, all methods did not achieve sufficient confidence category scores compared with
the quantitative evaluation in most subjects in Table 1. These images contained multiple
objects, and a subject’s gaze may not be focused on a single object during fMRI data
acquisition. In addition, for the category of “camera tripod”, a part of a human face also
appears in the image, which may have affected the subjects’ cognition. Category estimation
may still be a difficult task when seeing images containing multiple objects or objects not
related to the image categories.

Figure 5. Examples of the category estimation results of PM and five CMs (MVBGM-MS, SLR, CCA,
BCCA, and Deep CCA) in the quantitative evaluation. The confidence category scores range from 0
to 1, and the best scores for each subject are shown in bold.
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Figure 6. Examples of the category estimation results of PM and two CMs (MSPGM and SSPGM)
based on PGM. The confidence category scores range from 0 to 1, and the best scores for each subject
are shown in bold.

4. Conclusions and Future Work

In this article, we proposed a method for estimating visual information from multi-
subject fMRI data obtained while subjects observed images. The PM estimated visual
features using shared features in multi-subject fMRI data and individual features in single-
subject fMRI data. The PGMs were constructed with respect to each feature from fMRI data
and used as effective feature extractors. In addition, we constructed the visual decoder
using the shared and individual features to estimate visual features. The experimental
results verified the effectiveness of the proposed approaches. Although fMRI data tend to
contain measured noises and large individual differences compared with other biological
activities, such as an eye gaze, this experiment confirmed the effectiveness of combining
multi-subject fMRI data. These findings validated the use of machine learning for biological
activity analysis with time and physical factor constraints.

Apart from the increase in the sample size due to the expansion of the fMRI dataset,
using modalities other than fMRI data may provide a hint as to how to improve the
accuracy. In particular, introducing other information that represents an image, such as
image captions, is expected to improve the results. For example, some theories suggest
estimating visual features directly from fMRI data and caption features using an image
captioning model (caption features) or constructing a latent space combining fMRI data
and visual and caption features to improve expressive ability. The human brain contains
regions specialized for object recognition related to an image category and regions related
to lower-order information, such as object color and shape [41]. Although visual features
extracted using a CNN contain information specific to image category classification, they
may not contain sufficient information, such as an image color and shape. Therefore,
the introduction of image captions that can represent the colors and shapes in images is
considered an effective method for extracting information related to images in fMRI data
obtained while subjects see the images.
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Appendix A

Table A1 presents a list of the variables used in Section 2.

Table A1. List of variables used for the proposed method in the training and test phases corresponds
to Sections 2.1 and 2.2.

Section 2.1.1: Construction of PGM

bi,n fMRI data corresponding to nth image in ith subject
Bi fMRI data in ith subject (Bi = [bi,1, · · · , bi,N ])
cn Shared features corresponding to nth image
C Shared features (C = [c1, · · · , cN ])
Pi Projection matrix that transforms fMRI data in ith subject into shared features
I Identity matrix
Σc Covariance matrix of shared features
µi Mean of fMRI data in ith subject
ρ2

i Variance of fMRI data in ith subject
bn Concatenated fMRI data corresponding to nth image for total J subjects
µ Concatenated mean µi for total J subjects
P Concatenated projection matrix Pi for total J subjects
ε Error term of shared features
Ψ Joint covariance
E Expected value of expectation maximization (EM) algorithm
Var Variance of EM algorithm
R Expected value in maximization step of EM algorithm
Pi

new Updated projection matrix that transforms fMRI data in ith subject
ρnew2

i Updated variance of fMRI data in ith subject
Σnew

c Updated covariance matrix of shared features
ci,n Estimated shared features corresponding to nth image in ith subject
J Number of subjects
N Number of seen images
n Index of seen images (n = 1, . . . , N)
i Index of subjects (i = 1, . . . , J)
dcom Dimensions of shared features
di Dimensions of fMRI data in ith subject

https://github.com/KamitaniLab/GenericObjectDecoding
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Table A1. Cont.

dall Sum of dimensions for total J subjects
θ Updated PGM parameters (θ ∼ {Pnew

i , ρnew2

i , Σnew
c })

θold PGM parameters before update (θold ∼ {Pi, ρ2
i , Σc})

hi,n Individual features corresponding to nth image in ith subject
Hi Individual features in ith subject (Hi = [hi,1, · · · , hi,N ])
Pi
′ Projection matrix that transforms fMRI data in ith subject into individual features

ρ′i2 Variance of fMRI data in ith subject
Σ′hi

Covariance matrix of individual features
Ψ′i Joint covariance in ith subject
ε′i Error term of individual features in ith subject
dind Dimensions of individual features

Section 2.1.2: Construction of visual decoder

vn Visual features of nth image
V Visual features (V = [v1, · · · , vN ])
Ci Estimated shared features in ith subject (Ci = [ci,1, · · · , ci,N ])
Pcom,i Projection matrix that transforms shared features into visual features in ith subject
Pind,i Projection matrix that transforms individual features into visual features in ith subject
λcom,i Regularization parameter corresponding to shared features in ith subject
λind,i Regularization parameter corresponding to individual features in ith subject
dv Dimensions of visual features

Section 2.2.1: Extraction of shared and individual features

btest,i fMRI data in ith subject
ctest,i Shared features in ith subject
htest,i Individual features in ith subject

Section 2.2.2: Estimation of visual features

vest,i Estimated visual features by visual decoder in ith subject
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