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Abstract: As smart devices and mobile positioning technologies improve, location-based services
(LBS) have grown in popularity. The LBS environment provides considerable convenience to users,
but it also poses a significant threat to their privacy. A large number of research works have emerged to
protect users’ privacy. Dummy-based location privacy protection solutions have been widely adopted
for their simplicity and enhanced privacy protection results, but there are few reviews on dummy-
based location privacy protection. Or, for existing works, some focus on aspects of cryptography,
anonymity, or other comprehensive reviews that do not provide enough reviews on dummy-based
privacy protection. In this paper, the authors provide a review of dummy-based location privacy
protection techniques for location-based services. More specifically, the connection between the
level of privacy protection, the quality of service, and the system overhead is summarized. The
difference and connection between various location privacy protection techniques are also described.
The dummy-based attack models are presented. Then, the algorithms for dummy location selection
are analyzed and evaluated. Finally, we thoroughly evaluate different dummy location selection
methods and arrive at a highly useful evaluation result. This result is valuable both to users and
researchers who are studying this field.

Keywords: location privacy; privacy protection; dummy location

1. Introduction

In the United States, a large majority (90%) of smartphone owners used location-based
services [1]. Locations are being used more frequently than ever before since the global
pandemic. For example, the government should keep a record of every location ever
visited, and track the whereabouts of people who have tested positive for COVID-19 to
determine where the virus is likely to spread next [2]. Furthermore, location-based services
will continue to gain attention and become more widely used in the future. According to
Federica Laricchia, the annual worldwide blue-tooth location service device shipments
reached 183 million units in 2021, with yearly shipments expected to reach 568 million units
in 2026 [3].

While location-based services are widely used and provide significant convenience to
users and society, they also pose a significant threat to privacy. According to risk-based
security [4], the total amount of global data leakage in 2021 has reached 22 billion, which is
about 14.5 billion less than in 2020. However, such an amount also quantifies the second
highest year for confidential data leakage since 2005. As shown in Figure 1, a survey
conducted by the China Consumers Association [5] in 2018 found that more than 80% of
respondents had experienced personal information leakage. Moreover, it is common for
mobile apps to collect excessive amounts of personal information, while location data have
evolved into a type of profitable resource.
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Figure 1. Permissions to install and use mobile apps.

In most cases, location data are linked to other sensitive attributes, such as health
status, home address, behavioral habits, and other privacy concerns. As a result, protecting
the location information of smartphone users, specially those who use location-based
services, is critical and urgent.

Dummy refers to the method of adding multiple dummy locations and sending them
to the LBS server along with the real query location to blur the real location. Domestic and
foreign researchers have proposed a variety of location privacy protection schemes based
on dummy. For example, Kido et al. proposed the first dummy-based location privacy
protection techniques in the literature [6]. They generated dummy locations at random
using the random walk model. Hara et al. [7] designed a method for selecting dummies
that takes real-world constraints into account, such as excluding places where people are
unlikely to exist. Niu B. [8] proposed a Cir-dummy- and Grid-dummy-based dummy
location selection algorithm. Shu C. [9] proposed two new dummy selection algorithms,
MaxMinDistDS and Simp-MaxMinDistDS, that take both the location semantic diversity
and the physical dispersion into account.

There are numerous dummy-based schemes being made to deal with location privacy.
However, reviews for dummy-based schemes are relatively rare, and some focus on aspects
relating to cryptography [10], anonymity [11], or other comprehensive reviews [12], which
focus on the whole picture, but there are not enough review on dummy-based privacy
protection. In addition, these reviews fail to clarify the relationship between the level
of privacy (LoP), the quality of service (QoS), and system overhead. These are struggle
to explain the difference and relationship between dummy and other location privacy
protection techniques, as well as analyze and summarize the dummy location attack model
and how to choose dummies. Therefore, such studies cannot help readers understand
the up-to-date challenges of dummy-based privacy protection brought on by attackers’
expanding background knowledge and the intersection between LBS and other emerging
technologies.

In this paper, we make a review of dummy-based location privacy protection tech-
niques for location-based services. The main contributions are as follows.

• First, we distinguish the relationship between the LoP, the QoS, and the system
overhead. Additionally, we make an overall comparison of several representative
methods of location privacy protection techniques. Then, we describe the merits of
dummy-based location privacy protection on LBS. Meanwhile, a summary of the major
attacks on dummy-based location privacy protection techniques is also included.

• Second, we systematically and comprehensively analyze and summarize the ways
of selecting dummies on three aspects, namely the query probability, the physical
dispersion, and the semantic diversity of locations.

• Third, we provide an overview of the methods for achieving query probability, phys-
ical dispersion, and semantic diversity while choosing dummies. Furthermore, we
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make comparative analysis to indicate the different privacy protection advantages of
different selection rules when choosing dummies. Results of this comparative analysis
can be of benefit both to users and researchers who are studying this field.

The remainder of this paper is organized as follows. Section 2 gives an overview
of location privacy protection, and Section 3 provides a summary of the attack model of
dummy-based location privacy protection techniques. Section 4 describes the system archi-
tecture and privacy protection methods, and also gives a detailed analysis and summary of
how to choose a dummy location. Finally, in Section 5, we conclude our work.

2. Overview of Location Privacy Protection

In this section, we first introduce the key issues in location privacy protection and
location privacy protection techniques. Then, we describe the difference and connec-
tion of various location privacy protection techniques, and finally make a comparison
between them.

2.1. Location Privacy Protection

When users use LBS, their location privacy is compromised to some degree due to
dishonest or semi-trusted LBS servers serving private interests. Nonetheless, because
location privacy is closely related to explicit sensitive information, other implicit sensitive
information about users is also leaked. Take, for example, John. He has been feeling uneasy
lately, so he decides to go to the hospital to find out what’s wrong with his body. However,
because he does not want others to know about his medical condition, the hospital’s
location is important to him. In reality, “where are you staying” reveals the privacy of
“what are you doing”. Similarly, the user’s historical location data expose the locations he
frequently shows up at, and the routes he travels a lot by, which leads to his home address,
behavioral habits, work nature, and other sensitive information he cares about potentially
being leaked [13]. Therefore, there is no doubt that it is definitely vital to protect a user’s
location privacy.

2.2. Key Issues of Location Privacy Protection

When it comes to location privacy protection, it is naturally necessary to consider the
connection between LoP, QoS, and the system overhead [14].

2.2.1. Issue on the Relationship between LoP and QoS

In location privacy protection, high LoP and QoS cannot be satisfied at the same time.
To obtain location services, users must submit their location to the service provider in
some way, which risks exposing their private information. Many techniques, such as using
cloaking areas instead of the real location, adding noise to the real location, and so on,
sacrifice some degree of location accuracy for higher LoP. However, if the location accuracy
is too low to meet users’ demands, availability will suffer, and privacy protection will
be rendered ineffective. Furthermore, the requirements for location service quality vary
depending on the user. Users who request to query a specific point of interest will be more
concerned with QoS. Users seeking hospital location service, on the other hand, will be
more concerned with their location information. As a result, they are willing to sacrifice
some service quality in exchange for a higher LoP. Therefore, understanding the relationship
between QoS and LoP is one of the most crucial matters in location privacy protection.

2.2.2. Issue on the Relationship between QoS and System Overhead

With the advent of the “fast” era, people are more concerned with speed, even when
it comes to location privacy protection. People desire faster response times and lower
latency. When a user initiates a query request, the user experience will suffer if the response
time is too slow. However, the majority of existing studies improve LoP without taking
system overhead into account, or at the expense of a significant increase in system overhead
to achieve a minor improvement in LoP. Simultaneously, the costs of communication,
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storage, and computation, as well as the loss of precision, all have an impact on the user
experience due to the limited resources on the user’s device. For example, a large amount
of computation cost slows down the processing speed of mobile devices, a large amount
of communication cost raises the extra cost for users, and a large amount of electricity
overhead affects outdoor use of mobile devices, ultimately hindering the development of
location service [15]. Understanding the relationship between LoP and the system overhead
is therefore another critical issue in location privacy protection.

2.3. Location Privacy Protection Techniques

Researchers proposed numerous approaches to protect location privacy, such as [16–19].
In general, location privacy protection techniques can be divided into four categories [20]:
obfuscation [21], encryption [22–24], cache and collaboration [25], and anonymity mecha-
nisms [26].

2.3.1. Location Privacy Protection Techniques Based on Obfuscation

Location privacy protection techniques based on obfuscation refer to the necessary
disruption to the original location information in an LBS query in order to prevent the
attacker from obtaining the user’s true location while also ensuring that the user can acquire
unrestricted services. Dummy [6], spatial cloaking [27,28], differential privacy [29], and
other obfuscation techniques can reduce the accuracy of location information. The dummy
method adds multiple dummies and sends them to the LBS server along with the real query
location to blur the real location. To protect users’ location privacy, Li et al. [30] proposed
an attribute-aware privacy protection scheme (APS). The Voronoi dividing algorithm
(VDA) and the dummy determining algorithm (DDA) are two algorithms included in
APS. The VDA algorithm divides the local map into different Voronoi polygons to ensure
that the selected dummy locations are scattered, whereas the DDA algorithm chooses
dummy locations based on the four-color mapping theorem to ensure that dummy locations
differ in attributes. The classical dummy method, which was later extended to trajectory,
is frequently used to solve the single location problem. Ni et al. [31] proposed an R-
constrained dummy trajectory-based privacy-preserving algorithm (RcDT). The generated
dummy locations are in a specific range close to the real location because the generating
range R of the dummy location is constrained. Furthermore, by constraining the exposure
risk of each dummy location and trajectory, dummy trajectories with a higher similarity to
the real trajectory are generated. Differential privacy protects location privacy by adding
an appropriate number of noises to the returned value of the query function [29]. Several
recent studies [32,33] have investigated the use of differential privacy in location protection.
The concept of protecting user locations within a radius R, whose privacy level is dependent
on R, is formally defined by the term of geographical indiscernibility [32]. To increase
the user’s LoP, controlled random noise is added to their location. In general, using the
obfuscation strategy will result in a significant loss of precision in query results.

2.3.2. Location Privacy Protection Techniques Based on Encryption

To achieve the privacy goals, the cryptographic approach adopts encryption technol-
ogy to make the user’s query content and location information completely transparent to
the LBS server. While ensuring QoS, this technique does not reveal any user’s location
information, ensuring stricter privacy protection. Private information retrieval (PIR) [34,35]
is a popular encryption method. PIR prevents the server (the database owner) from deter-
mining the user’s point of interest and drawing additional conclusions about the client’s
private information by ensuring that the server (the database owner) cannot determine the
correct query object when the user requests the database. Paulet et al. [34] obtained and
decrypted location data using a PIR-based protocol. The user’s location information was
kept private because the server was unable to determine it. The PIR method ensures the
confidentiality of the entire communication process (user request, information retrieval,
and result return process). However, the issue of over-collected storage and computation
overhead in PIR needs to be investigated further. The primary challenge in using PIR
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is developing a good retrieval strategy and index structure. However, because the LBS
server must store the entire map information of the local map, the server’s limited storage
space as well as retrieval efficiency make PIR only applicable to a small space range at the
present time.

2.3.3. Location Privacy Protection Techniques Based on Collaboration and Cache

Collaboration and caching cut down the time spent communicating with the LBS server
as much as possible in order to limit exposure to location-sensitive information. Domingo-
ferrer et al. [36] proposed a cooperative method for disturbing users’ location information
by adding Gaussian noise. This method requests disturbed location information from other
users and then forms a cloaking region according to that information. Rather than using
the true location, the anonymous group’s density center, formed by cooperative users, is
used as the anchor point to replace it and launch query requests. Shokri et al. [37] proposed
an effective collaborative location privacy protection approach. Zhang et al. [38] proposed
a cache and spatial K-anonymity-based privacy enhancement technique.

This strategy employs a multi-level caching method to reduce the possibility of user
location information being disclosed. Niu et al. [39] created a privacy protection algorithm
using dummy locations and cache awareness. The research on privacy protection tech-
niques based on caching and collaboration focuses on three main areas: reducing cache
overhead, improving the cache hit ratio and location privacy, and quantifying the QoS level.
Another consideration is how to reduce the expensive communication cost caused by such
a collaborative technique architecture.

2.3.4. Location Privacy Protection Techniques Based on Anonymity

Methods based on anonymity to protect location privacy, such as k-anonymity and
mix-zone, protect privacy by breaking the link between user identity and location data.
The k-anonymity [40] technique ensures that the user’s location information cannot be
differentiated from that of other k− 1 users through generalization. As a result, attackers
have a 1/k chance of discovering users’ true location. Stajano et al. [41] proposed the
Mix-zone, which differs from the k-anonymity scheme. Attackers are unable to precisely
pinpoint the user’s real location by frequently changing the user’s name or pseudonym in
the anonymity area. In a variety of settings, anonymous approaches have been thoroughly
researched and tested. However, this strategy raises concerns because maintaining the
same level of anonymity in different scenarios is difficult.

The relationship between location privacy, location privacy protection techniques,
obfuscation, and dummy generation is depicted in Figure 2. Table 1 compares existing
location privacy protection techniques in terms of LoP, outlining their main advantages
and disadvantages. The system overhead of the four location-based privacy protection
techniques is compared in Table 2. Given that different privacy protection techniques
provide different benefits, we must adopt location privacy protection methods that are
appropriate for the given application in order to protect the user’s location privacy.

Table 1. The comparison among four privacy protection techniques.

LPPT 1 RM 2 LoP 3 TTP

Obfuscation
Dummy

Spatial Cloaking low yes
Differential Privacy

Encryption PIR high no

Collaboration and
Cache medium no

Anonymity K-anonymity medium yesMix-zone
1 LPPT:location privacy protection techniques. 2 RM: representative method. 3 LoP: the level of protection privacy.
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Figure 2. The relationship among location privacy, location privacy protection techniques, the
obfuscation, and dummy location.

Table 2. The cost of four privacy protection techniques.

LPPT Precision Loss Communication
Cost

Computation
Cost Storage Cost

Obfuscation high low low low

Encryption low low high medium

Collaboration
and Cache medium high low high

Anonymity medium medium high medium

Dummy is an important obfuscation method that has stimulated the interest of re-
searchers both at home and abroad. This is becayse it is simple to implement, does not
require a trusted third party, and can protect location privacy while maintaining accuracy.
Furthermore, we can see that dummy has other advantages over other privacy protections
in Tables 1 and 2, such as low communication costs, low computation costs, and low
storage costs.

3. Dummy-Based Attack Model

Malicious attackers aim to exploit various types of external information to find sen-
sitive information about users, in addition to processing queries using various privacy
protection mechanisms. However, the user’s location contains inherent “side information”,
such as route information, human flow, and population distribution of the geographical
region where the user is located [39,42]. Furthermore, attackers can obtain background
knowledge in a variety of ways, including collaborative information systems, publicly
available data aggregation, data brokers, data mining, and so on, in the age of Big Data and
the Internet of Things.

Based on the attacker’s prior knowledge in two dimensions, namely temporal infor-
mation and context information, attacks can be classified into context dimension attacks
and temporal dimension attacks [43]. In the former case, the attacker only has a single
snapshot of a user’s location, whereas in the latter case, the attacker has several locations
collected over time or even a trajectory. We only consider the attack model on the context
dimension in this paper because time is not taken into account. The most common threat to
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dummy-based location privacy protection techniques is background knowledge attacks in
the context dimension. Such attacks can be classified into three types based on the attackers’
prior knowledge: location-distributed attack, probability-distributed attack, and semantic
similarity attack. This section will summarize the attack model of dummy-based location
privacy protection techniques.

3.1. Location-Distributed Attack

The location distribution attack is a type of attack method in which the attacker
explores the location distribution characteristics in the user-specified cloaking area. It is
classified into three types. One is that the location distribution of the cloaking area is overly
concentrated, resulting in a small hidden area. For example, all of the locations are in the
same neighborhood. However, although it successfully blurs users’ real locations, users’
location privacy cannot be adequately protected. Regarding the second type, the user’s
true location is in the middle of the entire cloaking region, and the attacker can significantly
reduce the user’s range [44]. For instance, all of the dummy positions are centered on the
real location. In the third type, the real cloaking area shrinks as a result of the uneven
location distribution caused by the attacker’s exclusion of some locations, which fails to
meet the theoretical cloaking requirements. For example, if the majority of locations are
distributed in a concentrated manner while one or two or a small portion of them are
distributed in a relatively scattered manner, attackers can easily filter out those locations,
reducing the original privacy protection intensity [45].

3.2. Probability-Distributed Attack

The probability distributed attack is defined as the attacker calculating historical query
probability information by collecting historical service request records for all locations
within a specific geographical region and over a specific time period [46]. When the
probability distribution in the anonymous set generated by the user’s query request is
uneven, the attacker filters out the dummy locations with a large gap, resulting in a failure
to achieve the true location privacy protection effect. If the chosen dummy locations set
includes several dummy locations in the middle of the lake with zero query probability, the
attacker can simply deduce that they are dummy locations and filter them out.

3.3. Semantic Similarity Attack

The semantic similarity attack refers to the attacker’s speculation on the privacy
information of users by parsing semantic information of locations in cloaking regions, such
as behavior habits, health status, and professional attributes [47]. As long as all dummies’
query probabilities and the real location of the user’s query probability are equal or close,
attackers can easily infer user behavior if all dummies in cloaking areas belong to the same
kind of semantics.

4. Dummy-Based Location Privacy Protection Techniques

In this section, we outline the two system architectures of dummy-based location
privacy protection techniques, then review the dummy-based location privacy protection
techniques, and finally analyze and summarize how the dummy-based location privacy
protection techniques choose dummies to handle background knowledge attacks.

4.1. System Architectures of Dummy-Based Location Privacy Protection

Dummy generation system architectures can be divided into two types: architecture
with a third party and architecture without a third party, depending on whether a third
party is deployed or not [48].

4.1.1. Architecture with a Third Party

This architecture consists of users, a third party, and an LBS server. One or more servers
represent a third party [49,50], and these are the servers that generate the dummy location
set for the query user in order to mask the true location. Figure 3 depicts a third-party
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architecture. The primary responsibility of the third party is to collect and process user
query requests, protect sensitive location information using privacy protection techniques,
and then forward the processed query requests to the LBS server. After receiving these
requests from the third party, the LBS server retrieves the database and transmits the
matching result sets to the third-party servers. Finally, the requesting users receive the
result sets from the third-party servers. Third-party servers, for example, create a cloaking
zone with multiple users, and all users in the zone submit the same query to LBS. In this
case, the LBS server is unable to determine who initiated the query and, as a result, is
unable to find out which location is the original requesting location.

results

Users Third Party LBS Server

1u

2u

3u

( )1
q u

2( )q u

3( )
q u

( )tq u

Figure 3. The architecture with a third party.

Obtaining a completely trustworthy third party, on the other hand, is difficult, and
the “honest but curious” third party is vulnerable to a single point of attack and other
vulnerabilities. As a result, the researchers have proposed an architecture that does not rely
on a third party.

4.1.2. Architecture without a Third Party

Figure 4 depicts the architecture in the absence of a third party, which consists of users
and an LBS server.

results

LBS Server Users

2( )q u

1( )q u

3( )q u

( )tq u

2u

1u

3u

Figure 4. The architecture without a third party.

The architecture requires that mobile devices carried by users have certain computa-
tional and storage capabilities that can be used to select dummy locations, create cloaking
areas, and save map data within a certain range. The non-third-party architecture can be
divided into two types based on whether or not users collaborate. In the first type, users’
location information is concealed in accordance with their privacy requirements [51]. For
example, the Apple differential privacy team uses local differential privacy [52]. Users’ per-
sonal data can be randomized on their devices before being uploaded to the server, which
can improve the user experience without infringing on privacy. In the second type, users
collaborate for the sake of secrecy [53]. Tor, for example, is a volunteer-run distributed relay
network that enables users to conceal their location while providing a variety of services.
When using this method of obscuring through user collaboration, it is important to consider
the additional communication cost between users as well as the risk of collusion attack [54].

4.2. The Dummy-Based Location Privacy Protection Techniques

The dummy-based location privacy protection techniques select many dummy loca-
tions (assuming k− 1 dummies) and send the same query request to the LBS server with
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the real location, making it difficult for the LBS server to distinguish the real ones from
those k locations. However, if those dummies are chosen at random or without taking into
account the attacker’s background knowledge, some of the dummy locations will be too
large for the attacker to filter out, and the theoretical LoP will be impossible to achieve.
Figure 5 shows a cloaking zone with k = 8 users. The colorful one represents the user’s
true location, whereas the black ones represent the user’s chosen dummy locations. The k
locations cover the cloaking area.

@l
 @}

 

@}
 

＿
＿

 

@}
 

@}
 

@}
 

@}
 

@}
 

Figure 5. A cloaking area with k = 8 users.

In general, the higher the k value, the greater the privacy protection; otherwise, the
lower the privacy security. When the value of k increases, the corresponding QoS decreases
and the system overhead increases.

4.3. Algorithms of Dummy Location Selection

Researchers proposed a variety of approaches in the dummy-based locations’ selection
to withstand the background knowledge attack, such as [55]. The main work of these
studies is to choose appropriate dummy locations to construct a candidate set that protects
users’ privacy effectively. The aim of dummy-based location privacy protection is to
camouflage the user’s real location in the dummy locations concentration; thus, the quality
of these selected candidate dummies is crucial to attaining the desired level of location
privacy in the overall system. As a result, it is critical to reduce the distinguishability of
real and dummy locations in all aspects; that is, we must choose dummy locations that can
satisfy user desires while also protecting user privacy. In this subsection, we summarize
and discuss the rules on dummy selection for dummy-based location privacy protection
techniques.

4.3.1. Take the Historical Query Probability of Locations into Consideration

The popularity of a location within a geographic location area over time is reflected
by its historical query probability. The ratio of the number of times a location is queried
to the total number of times all locations are requested in the global geographical area is
used to calculate the historical query probability of a location in a certain period of time.
For example, the following is the calculation formula for the historical query probability of
location i inside a specific geographical area over time:

qi =
times o f queries in location i

times o f queries in all locations
, (1)

Because the LBS server has background information such as historical query probabil-
ity of map locations, the server filters out dummy locations with obvious differences based
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on the probability distribution information of the candidate set, and thus the expected level
of privacy protection cannot be achieved.

If the server filters out m dummy locations, the likelihood of identifying the user’s
dummy location increases from 1

k to 1
k−m . In the entire map space, Figure 6 depicts the

distribution of all locations and their historical query probability. Each little grid cell in the
diagram represents a location. Varied shadow shapes portray different historical query
probabilities, and the sum of the probabilities of all locations initiating query requests in the
entire grid space is 1. Location A represents the user’s real location, whereas B, C , and D
are the dummy locations that have been chosen. Because their historical query probability
is smaller than the real location’s or even zero, the server can easily filter these dummy
locations out.

Real location Dummy location

D

B

C

A

0.0156

0.0192

0.0246

0.0477

0.0023

0

0.0156

0.0192

0.0246

0.0477

0.0023

0

0.0156

0.0192

0.0246

0.0477

0.0023

0

Real location Dummy location

D

B

C

A

0.0156

0.0192

0.0246

0.0477

0.0023

0

Figure 6. The historical query probability distribution of all locations.

Hara et al. [7] developed a dummy location selection algorithm that considers real-
world environmental constraints and avoids dummy locations in inaccessible locations,
such as the middle of a lake. However, this method only eliminates a small number of
impossible locations, those where qi = 0. As a result, the dummy quality is poor, as is the
LoP. In order to improve the quality of dummies and the LoP, the DLS algorithm chooses
dummy locations that have the same probability as the real ones. It not only keeps these
q = 0 locations at bay, but it also reduces the difference in query probability between the
real ones and dummies. In the literature [56], the greedy algorithm idea is used to select
dummy locations so that the new location set composed of each new dummy location and
the previously selected dummy locations have the best hiding effect. Other authors [57,58]
have employed an information entropy-based method, with the historical query probability
as a variable, to choose dummy locations. In [57,58], the set of dummy locations with
the highest entropy value acts as the final set of candidate dummy locations. Because
the historical query probability of each location over time is insufficient to convey the
prevalence of each location, [59] introduced the concept of “current query probability”,
which was used to replace historical query probability as the criterion for selecting dummy
locations. Users choose different geographical regions for different time periods, with
each location’s current query probability being different. As a result, the “historical query
probability” is more diverse, posing a greater challenge to attackers.

4.3.2. Taking the Physical Dispersion of Locations into Consideration

The physical dispersion between locations describes the spatial distribution of loca-
tions. The obscuring of users’ true locations will also perform poorly if an attacker learns
this background knowledge in order to carry out location distribution attacks on them. As
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a result, selecting dummy locations solely on historical query probability is insufficient. In
practical applications, physical dispersion between locations should be highlighted.

If the physical dispersion between locations is too small, the cloaking area will be too
small. The cloaking area, as shown in Figure 7a, is small, allowing the attacker to quickly
deduce that the real user is in a very small area. As a result, something like Figure 7b would
be preferable because it provides a larger cloaking area for the real user. Simultaneously,
the query probability of those chosen dummy locations is not too far off from the user’s
actual location. As a result, when selecting dummy locations, the spatial distribution of the
k− 1 dummy locations and the real ones should be guaranteed, while the historical query
probability should be the same or similar.

Real location Dummy location Real location Dummy locationReal location Dummy location Real location Dummy location

(a) small area

Real location Dummy location Real location Dummy locationReal location Dummy location Real location Dummy location

(b) large area

Figure 7. The physical dispersion situation between dummies and the real location.

To meet the requirements of physical dispersion of locations, Niu B. et al. [8] proposed
a method for selecting candidate locations based on virtual circles and virtual grids. Because
the user’s true location is likely to be close to the center of the local map, the virtual circle
algorithm may have performed poorly in terms of privacy. To provide a more obscured
area, a virtual grid-based algorithm was introduced, which ensures that candidate locations
are distributed fairly evenly around the true location and that the size of the cloaking area
meets user needs.

In order to achieve physical dispersion between locations, Niu B et al. proposed the
enhanced DLS algorithm in reference [42]. They argued that the product of locational
distances was more accurate in depicting locational dispersion than the sum of locational
distances. As Figure 8 shows, CA + CB = DA + DB while CA · CB > DA · DB; as a result,
we would prefer to choose C over D from the perspective of privacy. They used a multi-
objective optimization model as well, where the probability and physical dispersion of
locations are considered simultaneously to pick the best candidate set of dummy locations.

In addition to the previous research on location dispersion in physical space, there are
numerous studies on how to portray the physical distance, such as the effective distance [60]
or the road network distance [61,62], between two locations. The idea of effective distance
was developed by Xu et al. [60] to characterize the distribution features of locations, and
the effective distance between these two locations was defined as the shortest distance
between the current location and any other location. Consider real user ur and any other
user ui; their coordinates are (xr, yr) and (xi, yi), resulting in an effective distance of

d(ur, ui) = min | ur, ui |= min
√
(xr − xi)2 + (yr − yi)2 (2)

It is apparent from the effective distance calculation formula that the essence of the
effective distance specified by them is the Euclidean distance. Despite the fact that the
article is based on a real-world road network, Euclidean distance is nevertheless employed
to measure location distribution features. Chen et al. [62] proposed a privacy protection
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method for the road network in response to the fact that the distance between any two
points in real life is not a simple linear distance (Euclidean distance), and that users’
activities are more restricted to the planned road. This approach requires that the number
of road sections in the selected dummy sites satisfy the value given by the user in order
to attain the purpose of physical dispersion between the selected dummy locations when
picking dummy locations. This road network, however, is an undigraph road network
model, which is insufficiently realistic for real-world road network simulation, as illustrated
in Figure 9a. Zhou Changli et al. proposed a location privacy protection approach based on
the digraph road network architecture (as shown in Figure 9b), in which an anchor point
(dummy location) was used to replace users’ real locations when initiating query requests.
However, when choosing the anchor point, the historical query probability of the anchor
and its geographical spatial distribution link with a real user were not taken into account.

D

C

BA

D

C

BA

Figure 8. The enhanced DLS.
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v1 v2 v3

v4

v5

v7v6 v8
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(a) undigraph road network

v1 v2 v3

v4

v5

v7v6 v8

v9

v1 v2 v3

v4

v5

v7v6 v8

v9

v1 v2 v3

v4

v5

v7v6 v8

v9

(b) digraph road network

Figure 9. Undigraph/digraph road network.

4.3.3. Taking the Semantic Diversity of Locations into Consideration

A location’s semantic information refers to its semantic properties, such as hospitals,
restaurants, banks, schools, parks, and so on. Semantic features can be extracted using
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context information. The greater the number of location semantic features collected, the
more accurate the semantic categorization, and the greater the ability to protect users’
location privacy. Consider the semantics of a user’s location for “hospital” which implies
semantic information on the user’s health, professional property, and so on. Because the
user’s state of health or professional attributes belong to the users of the important content
of privacy, semantic information must be considered when selecting dummy locations.

Bostanipour [63] presented a method for combining obfuscation location information
with semantic information to ensure that many semantically identical locations are cloaked,
therefore preventing attackers from performing semantic inference attacks. The locations
derived using this method, on the other hand, are semantically related to those of real
users. For example, the real user’s semantic tag is “Pizza Place”, but the cloaking region
includes venues such as “Noodle House” and “Hamburger Palace”, all of which belong
to the parent semantic tag “Restaurant”. As a result, such a method is still vulnerable to
semantic inference attacks.

In order to achieve semantic diversity, each location in the candidate dummy set
should have a diverse set of semantic properties as much as possible. While representing
semantic differences between locations is a challenge, Zeng et al. proposed the similarity of
two semantic location types using Euclidian distance to calculate [64]. Tian et al. measure
semantic distance based on the intersection and union of a location’s semantic attributes:

semdist(A, B) =
[semA ∪ semB]− [semA ∩ semB]

semA ∪ semB
(3)

This then transforms the results to show semantic similarity [65]. Using Euclidean
distance and the relationship between sets to quantify semantic difference not only con-
sumes a lot of effort but also weakens the algorithm’s efficiency. Another author [9] created
a location semantic tree (LST) to arrange all locations, as shown in Figure 10, in order to
achieve semantic similarity control that can serve the tailored needs of users and increase
the efficiency of algorithm execution. The most fundamental semantic information is stored
in the leaf nodes of the location semantic tree, and the hop number between the leaf nodes
is used to calculate the semantic distance, which is then used to calculate the semantic
difference degree. This approach can rapidly find and categorize the semantic associations
of all locations in a specified geographical area.

Local Map

Healthy Care Public Care
Education,Science 

and Culture Others

Education Science CultureParkPower SystemTransportHospitalMedicine

Grafton 
Pharmacy

University College 
Hospital

 University of 
London

University College 
London

... ... ... ... ...

... ... ... ...

Local Map

Healthy Care Public Care
Education,Science 

and Culture Others

Education Science CultureParkPower SystemTransportHospitalMedicine

Grafton 
Pharmacy

University College 
Hospital

 University of 
London

University College 
London

... ... ... ... ...

... ... ... ...

Figure 10. The location semantic tree.

When there are many different semantic varieties in a given geographical area and
there are crossover circumstances, the depth and breadth of the semantic tree grow quite
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large, decreasing search efficiency. As a result, the location semantic tree is not ideal for
such scenarios.

4.4. Summary

In general, we classify the existing dummy location selection methods into three
categories according to the types of attacks they can defend against, as shown in Table 3.
The first category of selection method can successfully defend against the probability
similarity attack. The second category of the selection method can effectively prevent
physical distribution attacks launched by attackers on the distribution pattern of locations.
The third category of selection method can make it difficult for attackers trying to obtain
cracking clues from the semantic information of locations. Different methods have different
characteristics, and we can select relatively appropriate methods according to our own
needs and purposes when using these methods to select dummies to construct dummy
location’s set.

Table 3. Selection methods of dummy on query probability similarity, physical dispersion and
semantic diversity.

Category Reference Methods of Selection

Query probability similarity

[7] avoids dummies with qi = 0

[42] dummies have the same
probability as the real ones

[58] information entropy-based
[59] current query probability

Physical dispersion

[8] virtual circles and virtual
grids

[42] the product of locational
distances

[60] the effective distance
[62] the road network distance

Semantic diversity

[9] location semantic tree
[64] Euclidian distance

[65] the intersection and union of a
location’s semantic attributes

An overall comparison of random selection and other selection schemes that consider
different factors when selecting dummies is shown in Table 4. In Table 4, we observe
that different schemes can choose different system structures and take different factors
into account to design different schemes according to their own purposes and needs. As
a consequence, the types of attacks they can defend against are not the same, and, of
course, the corresponding computational overheads are somewhat different. Dummy
location selection methods that take into account query probability, physical dispersion,
and semantic diversity yield better security than random selection with a relatively small
computational overhead. Furthermore, depending on different selection factors, the attacks
that can be defended against are varied when selecting a dummy location. When a dummy
location is chosen, the more factors are taken into account, the better the privacy protection
effects of the scheme are strengthened, while the difference in computing overhead is not
readily apparent. As a result, schemes increasingly seek to take more factors into account
when selecting dummies. They are no longer always based on a single factor, such as [21,66],
which incorporates two factors, and three factors are considered simultaneously in the
literature [46]. As the research goes further, new factors are discovered and considered,
and new rules are established in [67,68].
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Table 4. Summary of dummy selection.

Selection Method Reference CO a
Architecture Attack

TTP Non-TTP AoQ b AoD c AoS d

Random Selection [6] O(k log k)
√

Considering Q [42] O(k)
√ √

Considering D [7] Null
√ √

Considering S
[62] Null

√ √

[64] Null
√ √

Considering Q+D

[8] O(k)
√ √ √

[9] O(log k)
√ √ √

[58] O(α log2 α)
√ √ √

[60] O(k2 + I JU)
√ √ √

Considering D+S [59] O(k)
√ √ √

Considering Q+S [65] O(It · k)
√ √ √

All of them [18] O(log N)
√ √ √ √

a CO: the computation overhead. b AoQ: the attack of query probability; Q: Query probability. c AoD: the
attack of location distribution; D: Location distribution. d AoS: the attack of semantic similarity; S: Semantic
similarity. Notes: k: the number of dummies; α: (ω + m) log(ω + m), ω = (maxtier− 1)(1− e)m, m: the number
of dummies candidate set, maxtier: the max times of iteration; I J: an area is divided into I J cells; U: the number
of services; It: the times of iteration; N: the total number of users in the region to be clocked.

5. Conclusions

In this article, we provide a review of dummy-based location privacy protection tech-
niques for LBS. First, we distinguished the relationship between the LoP, QoS, and system
overhead. At the same time, we made an overall comparison of several representative
methods of location privacy protection techniques. We described the merits of dummy-
based location privacy protection on LBS. Meanwhile, a summary of the major attacks on
dummy-based location privacy protection techniques was also included.

Second, we systematically and comprehensively analyzed and summarizde the ways
of selecting dummies on three aspects, namely the query probability, the physical dispersion,
and the semantic diversity of locations.

Third, we provided an overview of the methods for achieving query probability,
physical dispersion, and semantic diversity while choosing dummies. Furthermore, the
different privacy protection advantages of different selection rules when choosing dummies
can be seen from a comparative analysis. The results of this comparative analysis can benefit
both users and researchers who are studying this field. When the requesting service needs
to construct a hiding area that hides their true location, the user can refer to this comparative
evaluation to choose a dummy-based location privacy protection method that better meets
their needs. Moreover, researchers studying this area can gain a better understanding of
dummy-based privacy protection schemes from the results of this comparative analysis.
They can also get to know the challenges posed by the expanding background knowledge
of attackers and the intersection between LBS and other emerging technologies.

Dummy location selection approaches that took into account new circumstances in
the selection of dummies emerged as research progressed. There are still some significant
issues to be resolved and perfected in the area of dummy location selection.

First, as new technologies such as social networks, edge computing, and federal
learning have been advanced, new privacy concerns have also emerged.

• Because location acquisition technology is becoming more widely available, it is
now possible to add geo-information to already-existing social networks, which has
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facilitated in the emergence and expansion of LBSN. LBSN, a combination of LBS
and social networks, involves a range of personal private information, such as shared
common locations, personal interests, daily behaviors and activities, etc. [69].

• LBS@E [70] delocalizes LBSs and retrieves local information from nearby edge servers
around them instead of the cloud. Consequently, it tackles the location privacy
problem innovatively. However, LBS@E brings new challenges to location privacy.
Mobile users can still be localized to specific privacy areas jointly covered by edge
servers accessed by mobile users. The small privacy area puts the mobile user’s
location at risk of similarity.

• Ref. [71] uses federated learning to select the best location privacy protection mecha-
nism (LPPM) for each user according to the real location and the user’s configuration,
which avoids the direct use of the real location information. Nevertheless, it is vulner-
able to poisoning attacks and untrusted users who intend to add a backdoor to the
model [72] or defend against attacks on model information leakage [73].

Second, existing dummy-based solutions do not account for all aspects of real-world
privacy protection [74], and there is a significant gap between theoretical and real-world
privacy protection effects. According to Sun et al. [75], attackers can also rule out impossible
dummy locations by determining whether users can reach the query location in a reasonable
amount of time from their current location.

Third, dummy-based approaches that focus on the spatio-temporal correlation of
location are commonly used in trajectory privacy protection, which poses new challenges
in trajectory privacy. Zhao [76] assumes that all users(dummies) involved are trustworthy
and report their real locations. However, it is often not the case in reality. There are
untrusted users who conduct location injection attacks (LIAs) in continuous LBS queries.
Zhen [77] found that the trajectory data were published without proper processing. A great
amount of work has been devoted to merging one’s own trajectories with those of others,
without protecting the semantic information about the location. In continuous LBS queries,
users can obfuscate their true query location by selecting dummy locations and predicted
locations, thus improving their privacy. However, selecting a large number of dummies
for each query can increase the query cost of the system and influence the accuracy of the
predicted location [78].
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