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Abstract: Most commercial cadence-measurement systems in road cycling are strictly limited in
their function to the measurement of cadence. Other relevant signals, such as roll angle, inclination
or a round kick evaluation, cannot be measured with them. This work proposes an alternative
cadence-measurement system with less of the mentioned restrictions, without the need for distinct
cadence-measurement apparatus attached to the pedal and shaft of the road bicycle. The proposed
design applies an inertial measurement unit (IMU) to the seating pole of the bike. In an experiment,
the motion data were gathered. A total of four different road cyclists participated in this study to
collect different datasets for neural network training and evaluation. In total, over 10 h of road
cycling data were recorded and used to train the neural network. The network’s aim was to detect
each revolution of the crank within the data. The evaluation of the data has shown that using pure
accelerometer data from all three axes led to the best result in combination with the proposed network
architecture. A working proof of concept was achieved with an accuracy of approximately 95%
on test data. As the proof of concept can also be seen as a new method for measuring cadence,
the method was compared with the ground truth. Comparing the ground truth and the predicted
cadence, it can be stated that for the relevant range of 50 rpm and above, the prediction over-predicts
the cadence with approximately 0.9 rpm with a standard deviation of 2.05 rpm. The results indicate
that the proposed design is fully functioning and can be seen as an alternative method to detect the
cadence of a road cyclist.

Keywords: sensor platform; cadence; wearable; machine learning; convolutional neural network;
road cycling

1. Introduction

In road cycling, cadence is a metric of high interest [1,2]. Over recent decades, this
metric has been studied widely to relate it to cycling performance and efficiency [3–6].
The state-of-the-art approach [7] in most studies and in commercial cadence-measurement
systems uses a Hall-effect sensor [8,9] in combination with a permanent magnet. The
Hall-effect sensor is mounted on the bike frame and produces a voltage signal that is
proportional to the strength of the magnetic field it is in. A permanent magnet is fixed
on the crank or the pedal in such a way that during a whole revolution of the crank, the
magnet triggers the sensor only once. This way, the revolutions of the crank can be counted
and hence the cadence calculated.

Although this setup is simple and widely used, a drawback exists. This approach is
strictly limited to measuring cadence. Other relevant variables such as speed, crank angle,
roll and pitch angle, power and torque output or round kick evaluation cannot be measured,
though all of them affect the cadence. More advanced measurement systems can measure
the power and torque output [10–13] with strain gauges in addition to cadence. The use of
devices based on this method comes with high costs in comparison to the Hall-effect sensor
system. Alternatively, cadence can be measured with inertial measurement units. These
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so-called IMUs detect linear acceleration in multiple directions using accelerometers. In
addition, they employ gyroscopes to measure rotational acceleration. For an overview of
IMU technologies and applications, see [14]. Companies such as Wahoo or Saris provide
IMU-based speed and cadence-measurement systems. These systems also serve as cadence
sensors in the studies of Matyja et al. and Gallagher et al. [15,16]. The positioning of the
sensors on the bike is strictly limited to the crank arm or the wheel hub for the given
products. This position, however, places some restrictions on the sensor that is used. The
positioning of a smartwatch or a smartphone on the crank arm, which would make the
extra sensor obsolete, is not reasonable. For that reason, a new position of the IMU on
the bike is of interest. The new position should allow cadence detection and enable the
possibility of using a smart device.

In parallel, cycling has become increasingly digital over recent decades. Not only has
training become more digital with the increase in popularity of direct-drive trainers and
platforms such as Zwift, but also performance measurements have become more digital,
and with it, more advanced. For example, the introduction of wearables to a broad group
of athletes have allowed performance metrics, such as VO2max, heart rate, SpO2 and many
more, to become widely accessible [17–19]. Another device that has aided the digitalisation
of cycling is the IMU. It has been used in a variety of studies to assess for example cycling
performance. Evans et al. worked on an efficient saddle position for triathlon using an IMU-
based system [20]. Marin-Perianu et al. and Maio et al. both worked on estimating cyclists’
lower limb positions using IMUs [21,22]. Several studies have measured surface roughness
while cycling with an IMU-based system [23–25]. Most notably, Ref. [23] mentions that
the pedalling signal is filtered from the data to analyse the vibrations caused by the road
using independent component analysis (ICA), yet it is not actively analysed. To the authors’
best knowledge, current literature does not show how to measure the pedalling signal or
cadence using an IMU in positions other than the pedals, crank arm or wheel hub.

As cadence is a measure of high interest and IMUs are presently ubiquitous in sports,
this work presents a working prototype and a proof of concept of a cadence-measurement
system for road cycling based on an inertial measurement unit, where the IMU is mounted
on a less exposed position on the bike. The goal of this work is therefore to show that an
IMU mounted in such a position is still capable of measuring cadence. It is emphasized that,
to our best knowledge, this has neither been attempted nor successfully proven before. To
determine the cadence from the IMU signal, a machine-learning approach is taken, hence
the cadence-measurement method is called IMU-ML method in this paper.

The rest of this paper is structured as follows: first, the method for collecting data
is shown. Then, the analysis of the data using neural networks is explained. Finally, the
performance of the neural network is analysed, and the IMU-ML method is compared to
the ground truth.

2. Methods

To provide a proof of concept for the IMU-based cadence-measurement system of
road bikes, it is necessary to gather data from both the IMU on the saddle tube and the
state-of-the-art approach with a Hall-effect sensor and a permanent magnet. First, a sensor
platform was chosen, configured and programmed to be used as data logger during the
experimental bike rides. After the data were gathered using this platform, an algorithm
had to be developed that takes the IMU data as input and calculates the corresponding
cadence as output, according to the ground truth of the Hall-effect sensor. To make the
methods section concise, we split it into a hardware/firmware experiment and software.

2.1. Hardware/Firmware

At the beginning of the data-gathering stage, a data logger was developed that records
the IMU data and the Hall-effect sensor data in a synchronized fashion with a sufficiently
high sampling rate. At the same time, the data logger had to be lightweight, programmable
and small. In other sports such as tennis and American football, the requirements are
similar. Based on the paper by [26,27], the sensor platform for this work has been chosen.
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Nevertheless, adaption to hardware and firmware had to be made for the specific needs in
the experiment.

The sensor platform in this work is based on the SensorTile [28], which contains the
IMU. Figure 1 shows the sensor platform with marked components and the connection to
the Hall-effect sensor [29]. The SensorTile module is soldered to the SensorTile Cradle board,
which provides power via the battery and the micro-SD card slot to the microcontroller
system. To measure the cadence with the standard state-of-the-art approach, the signal of
the Hall-effect sensor has been processed as well. As it is an analog signal, it is connected to
the internal analog-to-digital converter (ADC) of the microcontroller. The sensors in Table 1
are connected to the MCU via the SensorTile module PCB.

Table 1. IMU and sensors connected to the SensorTile module and their main characteristics.

Device Description Interfaces Zero-Level Offset

STM32L476JG ARM Cortex-M4
32-bit microcontroller

I2C, SPI,
UART, ADC, etc.

-

LSM6DSM 3D accelerometer (up to ±16 g), 3D gyroscope (up to ±2000° s−1) I2C, SPI
±40 mg,
±2° s−1

LSM303AGR 3D accelerometer (not used),
3D magnetometer (up to ±50 G) I2C, SPI

±40 mg,
±60 mG

LPS22HB pressure sensor (up to 1260 hPa absolute pressure range) I2C, SPI 0.0075 hPa (RMS)
DRV5053VA analog bipolar Hall-effect sensor (−90 mV/mT sensitivity) analog 1.02 V (typical)

Figure 1. The hardware block diagram with the SensorTile module (A) which contains the IMU, the
SensorTile Cradle board in top (B) and bottom view (C) [28] and the Hall-effect sensor (D) [29]. The
connecting cable between Hall-effect sensor and SensorTile module has the supply voltage in red, the
ground in black, the analogous Hall-effect sensor output in violet, and a spare wire in green.

The setup and mounting of the hardware was undertaken according to Figure 2 for all
cyclists and bikes during the experiment.

The measured data were stored in a *.csv file on the attached micro-SD card. The given
experimental setup enabled the recording of the following data

• Time since startup in ms (T),
• Accelerometer X axis in mg (AccX),
• Accelerometer Y axis in mg (AccY),
• Accelerometer Z axis in mg (AccZ),
• Gyroscope X axis in m° s−1 (GyroX),
• Gyroscope Y axis in m° s−1 (GyroY),
• Gyroscope Z axis in m° s−1 (GyroZ),
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• Magnetometer X axis in mG (MagX),
• Magnetometer Y axis in mG (MagY),
• Magnetometer Z axis in mG (MagZ),
• Air pressure in mbar (P),
• Hall Effect as raw ADC 12-bit value (Hall)

Figure 2. The experimental setup for the measurement of the motion data and the cadence signal.
The IMU is fixed to the saddle tube with the given orientation. The Hall-effect sensor is fixed on the
frame opposite the permanent magnet on the crank arm.

Based on the hardware setup, the firmware had to fit the needs of the experiment. The
firmware on the microcontroller is based on the STSW-STLKT01-DataLog example [30]
provided by STMicroelectronics. It is based on FreeRTOS (free real-time operating system)
and works with two threads—one used to collect and sample the data and the other one to
store it on the micro-SD card. The thread responsible for data sampling is set to a higher
priority. The scheduling between the two threads is undertaken as in the example project
of STMicroelectronics.

Based on the example, further adaption of the firmware was necessary. The initializa-
tion routine was rewritten so the timer of the data logger was able to sample with up to
1 kHz. Although the authors expected the cadence in the range of several Hz maximum, a
high sampling rate presents possibilities at the data-processing stage. The Hall-effect sensor
used the internal 12-bit ADC, which had to be configured in the initialization routine. In
addition, the IMU and the pressure sensor required a specific configuration, which was
covered in the initialization routine. During this routine, the sensors were set as listed
in Table 2.

Table 2. Sensor devices and their settings as configured in the initialization routine prior to the start
of a measurement.

Device Sensor Setting

LSM6DSM Accelerometer ±2 g
LSM6DSM LGyroscope ±2000° s−1

LSM303AGR Magnetometer ±50 Gauss
LPS22HB Barometer 260 hPa to 1260 hPa absolute pressure range
DRV5053VA Hall effect Provides raw 12-bit unsigned ADC values

With the adaptions in the initialization routine done, the recording and saving of each
sample on the SD card was slightly altered as well. All sensors were recorded and saved
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with a comprehensive time stamp in a *.csv file. Since threading was used, the time between
samples was not constant, but never exceeded 20 ms. The aforementioned pressure sensor
was initialized, recorded, and saved, but, due to non-reliable measurement results, no
longer considered for the final dataset.

From a firmware sequence perspective, the initialization routine is triggered directly
after the data logger is switched on. After initialization, the data logger automatically starts
collecting data if a micro-SD card is available. The recording stops automatically after a
defined time span, which was chosen to be one hour for the experiment.

2.2. Experiment

With the data logger ready, an experiment was carried out to gather data. All par-
ticipants were instructed to use a trigger routine at the beginning of each ride. To ensure
that the final dataset consists of the activity of road cycling only, the start of the bike
ride had to be marked within the gathered data of the experiment. To do so, the magnet
excites the Hall-effect sensor for at least five seconds, just by putting the crank arm in the
respective position. This enables a defined trimming of the data as a saturated signal from
the Hall-effect sensor for at least five seconds does not occur during a normal ride with a
road bicycle.

As the goal was to provide a proof of concept, the group of participants, chosen to
do experiments, was small. In total, four road cyclists comprising males and females with
an age ranging from 23 to 57 made a total of 13 rides leading to 642 min of data. All
participants were instructed to ride any route they want. No restrictions were imposed on
the routes ridden. However, in practice, virtually all rides were performed in the vicinity of
the city of Innsbruck. Therefore, participants encountered relatively good-quality asphalt
roads and significant height differences leading to a varied cadence dataset. Before the
experiment took place, it was approved by the ethics committee of the MCI. All participants
signed a consent form.

2.3. Data Preparation

After the data-gathering stage, an algorithm had to be developed so the cadence could
be derived based on the IMU data. The authors chose a supervised machine-learning
approach as found in many other sport-related studies such as [26,27,31], due to their
good performance. To this end, the individual pedal strikes that the Hall-effect sensor
detects were used as the ground truth. As the Hall-effect sensor and the IMU sensor are
processed on the same hardware, the timesteps are synchronized. This, in turn, provides
labels (pedal strikes) for the IMU data-streams at every given time, and avoids the need for
manual labelling.

As a first step, the raw data had to be processed to become a suitable dataset for the
network. This was undertaken with a Python script programmed and run inside JUPITER

NOTEBOOK [32]. The script took care of importing the raw data, trimming, reshaping and
normalizing it. Data were also checked for whether they suited the requirements for a
neural network development. An analysis of the Hall-effect sensor signal showed that it
rarely is greater than 0. Indeed, the normalized Hall-effect sensor only outputs 1 when the
pedal passes the sensor. This leads to a mean value of the signal over all rides of close to 0.
In addition, the data also showed a variety of timesteps between samples. Two measures
have been taken to avoid further problems with the gathered data.

To overcome the timestep issue, all sensor signals have been resampled to 50 Hz
by calculating the mean value of all given values for the respective signals within 20 ms
windows. This way, a constant sampling rate was achieved based on signals that had
no constant sampling time, but were recorded so at least one value was recorded in each
20 ms window.

To avoid a highly unbalanced dataset and reduce the noise in the signal, the Hall-effect
sensor signal was adjusted. The Hall-effect sensor signal was processed with the peakfinder
function from the Python library scipy [33] to extract the peaks created by the permanent
magnet on the crank. After the peaks were identified, a convolution of a 260 ms wide
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impulse was undertaken, so each original peak in the pedal stroke signal became a 260 ms
wide impulse with an amplitude of 1. Therefore, the resulting signal is either 0 or 1. After
this adaption, the mean value of the pedal stroke signal was approximately 0.22, so the
optimizer is forced to consider the impulses in its training to achieve accuracies for the
prediction better than 78 %. If the signal’s value is considered to be a label, it can be said
that 22 % of all labels are of Class 1, and 78 % are of Class 0.

For training, validation, and testing the network, the data were split into training
(70%), validation (15%), and test (15%) datasets.

2.4. Network Architecture

As the data were processed and split to suit the training process of a neural net-
work, a network was designed, developed, validated and tested in a second step. A com-
mon approach for time series classification is the so-called convolutional neural network
(CNN, [34]) with a long short-term memory (LSTM, [35]) approach [36–38]. The authors
chose to use this approach to provide proof of concept. The purpose of this network is to
generate a pedal stroke pattern comparable to the values provided by the preprocessed
Hall-effect sensor signal. Therefore, the IMU data are the network’s input, and the pedal
stroke signal represents the output.

Figure 3 shows the final structure of the used network, containing two convolutional
layers followed by an LSTM layer. Primarily, convolutional layers are used as feature
extraction layers. The development of the features over time is interpreted by the LSTM.
Dense layers are used to combine either input signals, to create a wider spectrum of
possibilities for the convolutional layers, or to summarize the outputs of the LSTM to one
output. As can be seen in Figure 3, only three input signals (acceleration in X, Y, and Z)
were considered for the final network from the 11 available. The question marks in Figure 3
symbolise the unknown batch size at the creation of the neural network. This means that
the network can accept any number of samples in a given dataset. The rectified linear
unit (ReLU) [39] was the commonly used activation function for all layers, except for the
last dense layer, which used a sigmoid activation function. This structure led to 110,209
trainable parameters. During the training stage, the Adam optimizer [40] was used with
mean squared error (MSE) as a loss function, which was computed as

MSE =
1
n

n

∑
i=1

(pi − p̂i)
2, (1)

with n the number of data points, pi the processed pedal stroke signal from the Hall-effect
sensor (ground truth), and p̂i the predicted pedal stroke signal from the network. In
addition to the MSE, a binary accuracy was computed as the ratio between the number of
correct predictions to the total number of predictions. To this end, the continuous prediction
produced by the network is mapped to a binary output using a threshold value of 0.5, i.e.,
any value above this threshold is mapped to 1 and any value below is mapped to 0.

128*50*N batch

Dense layer

64*50*N batch

Dense layer

64*30*N batch

Convolutional layer

64*15*N batch
Pooling
layer

32*13*N batch
Convolutional

layer

24*N batch

LSTM layer 64*N batch

Dense
layer

32*N batch

Dense
layer

1*N batch

Output
layer

Figure 3. Structure of the neural network model, with layer types and sizes as indicated. Nbatch
symbolises the variable dimension based on the number of batches.
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Neural networks are well known to show poor generalization behaviour when trained
incorrectly. This effect is termed overfitting, and must be prevented. Several methods exist;
see [41] for an overview. We opt for an approach that terminates the network training
before it converges, based on validation performance [42,43]. This so-called ’early stopping’
was implemented via a callback that tracks the minimal validation loss with a patience of
one epoch.

Since the goal is to develop a working prototype and a proof of concept of a cadence-
measurement system for road cycling based on an inertial measurement unit in a less
exposed position on the bike, the last step had to be the comparison of the ground truth
with the IMU-ML system. To do so, the cadence is calculated in the same way for both
systems using

c = nump/60, (2)

with c as cadence and nump as number of peaks, with a moving window approach.

3. Results

To recap, the IMU-ML network described in the previous section is used to predict a
pedal stroke signal comparable to that of the Hall-effect sensor based on the IMU data. To
show the performance of the IMU-ML, this section compares its performance to the ground
truth recorded with the Hall-effect sensor. First, the performance of the neural network is
shown in Table 3.

Table 3. Neural network evaluation showing the loss (MSE) and accuracy (Binary) for the final
network for the training, validation, and test datasets.

Loss Accuracy Val_loss Val_acc. Test_loss Test_acc.

0.0525 0.9291 0.0551 0.9264 0.0367 0.9506

The performance shows that the accuracy is high for both the training validation and
test set. Therefore, overfitting was prevented due to the early stopping callback. At the
same time, the accuracy does not directly reflect if the IMU-ML method performs well
as a cadence-measurement system. Table 3 just shows that the pedal stroke signal can be
predicted quite well. Figure 4 gives an example of the pedal stroke signal as predicted. It
can be seen that the network output corresponds well with the sensor signal. In addition,
the grey dashed line indicates the binary threshold as used in the binary accuracy metric.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2
Sensor Signal
Predicted Signal
Binary Threshold

Figure 4. Pedal stroke signal from the Hall-effect sensor after pre-processing versus the output signal
predicted by the network. The binary threshold indicates the threshold used to decide if the network
output is mapped to 0 or 1.
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The calculation of the cadence using (2) and the pedal stroke signal needs to be applied
on both the ground truth signal and the predicted signal. Figure 5 shows the comparison
of the calculated cadence of the ground truth and the IMU-ML method.

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

Cadence Sensor

Predicted Cadence Network

1400 1500 1600 1700 1800 1900 2000 2100 2200 2300
0

20

40

60

80

100

Cadence Sensor

Predicted Cadence Network

(a) (b)

Figure 5. Neural network evaluation: true cadence as measured with the Hall-effect sensor versus
predicted cadence from the network. (a) Comparison for a large section from the test dataset.
(b) Comparison for a zoomed section from the test dataset.

The cadence signals that are shown in Figure 5 come from the test dataset. The
initial goal of providing a proof of concept is directly supported due to a very close
estimation of the ground truth cadence with the IMU-ML method. For better visibility and
a better analysis, two Bland–Altmann diagrams show the comparison in more detail. See
Figure 6a,b for a more detailed comparison of the two methods.

All the given values in this paragraph are in comparison to the ground truth method.
The overall performance of the IMU-ML method for predicting c comes with a mean
over-prediction of 1.95 rpm and a standard deviation of 5.05 rpm considering the whole
range of the dataset. Considering only the most relevant range of 50 rpm and above,
the IMU-ML method predicts c with approximately 0.9 rpm too high on average with a
standard deviation 2.05 rpm.

0 20 40 60 80 100

-10

0

10

20

30

40

50 60 70 80 90 100
-10

-5

0

5

10

15

(a) (b)

Figure 6. Bland–Altmann diagrams for the comparison of the IMU-ML method with the Hall-
effect sensor used as ground truth. (a) Comparison for the entire cadence range in the dataset.
(b) Comparison for 50 rpm and above.

4. Discussion

A major limitation of the experiment, and therefore also for the results, lies in the
limited number of participants. With only four participants, the collected dataset is not
as comprehensive as it should be for a commercial system. Nevertheless, the goal was to
create a proof of concept. The goal was met, as it can be argued that the cadence could be
retained from the IMU data with sufficient accuracy. The method can be applied to a wider
dataset, resulting in a similar or even better performance.
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The participants in the study were not restricted in their cycling routes. The result
was that all the participants chose a route on asphalt. Therefore, it must be said that the
trained network may perform worse on other surfaces, as the motion of a cyclist and the
bike will change.

In the network-development process, the input signals to the network were deter-
mined. The question was which signal contained information on cadence and to what
extent. Based on an initial assumption that accelerations and spin rates have the biggest
correlation to the cadence signal (see Appendix A for a singular value decomposition of the
data), an ablation study focused on these signals as single inputs and as combined inputs.
Table 4 shows their performance for validation and testing.

Table 4. Neural network evaluation showing the loss (MSE) and accuracy (Binary) for network using
various sensors as input for the training, validation and test datasets.

Input Sensor Validation Loss Validation Accuracy Test Loss Test Accuracy

Accelerometer 0.0551 0.9264 0.0367 0.9506
Gyroscope 0.3805 0.8731 0.3561 0.8859
Accel. and Gyro. 0.2860 0.8902 0.2817 0.8910

It can be argued that spin rate and acceleration correlate well with the cadence signal.
The combination of both sensor signals as input to the network also achieves high accuracy,
but has the drawback of a much higher number of trainable parameters. For that reason,
it was not further developed, as the performance of the accelerometer alone was already
sufficiently accurate to support the initial goal to provide a proof of concept.

The structure of the network as given in Figure 3 might not be optimal. Additionally,
accuracy as a performance metric on an unbalanced dataset with a binary label can be
considered improvable. Additionally, with the concept of hyper-parameter optimization,
the network structure could be optimized. Using the F1 score as a performance metric
or binary, cross entropy as a loss function might lead to better results. As the goal was
to provide the proof of concept for the IMU-ML method and not the development of an
optimal neural network, this was not in the scope of the article.

The IMU-ML method performs well in the range of 50 rpm and above, as shown in
Figure 6b. As this range is strongly represented in the dataset, it is only a logical result. For
a better performance in the whole range, more versatile data must be gathered.

Figure 6a shows some outliers that were mainly overpredicted. These outliers show
that the network is not able to process all the IMU data in a reasonable way. The reason for
these outliers might lie in the split of the training, validation and test dataset. It is possible
that the motion patterns that were mispredicted, have not been part of the training and
validation dataset. Therefore, the network does not perform well when predicting the
cadence for some of these motion patterns. This is also true for new IMU data of other
cyclists compared to the ones that participated in the experiment.

5. Conclusions

The present work has described the development of a cadence-measurement system.
This system is based on an IMU combined with a CNN-LSTM network. The novelty of
this work is two-fold. First, the IMU is mounted behind the seat post as opposed to in an
exposed position on the crank. Second, to our best knowledge, deducting cadence from an
IMU signal using a CNN-LSTM network has not been shown before. All results considered,
it can be stated that the initial goal of the study was met. The IMU-ML method is sufficiently
accurate to state the principle functioning of this proposed cadence-measurement tool. For
the entire dataset, the method over-predicts the cadence with 1.95 ± 5.05 rpm. However,
when only considering the most relevant range of 50 rpm and above, the method is more
accurate with an over-prediction of 0.9 ± 2.05 rpm.

The method shown could be extended to use IMUs present in devices such as smart-
phones or smartwatches. This is supported by the fact that this method does not require
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the IMU to be mounted on the crank. In addition, an IMU could be integrated into a bike
component such as a saddle or a handlebar.

The authors believe that the IMU signal contains far more information than just
cadence. It is not unlikely that further cycling metrics could be deducted with a similar ap-
proach. Hence, we suggest further research should focus on identifying such performance
metrics and show their correlation to cycling efficiency and skill level. At the same time,
the IMU-ML method must be further developed, and further research must be done consid-
ering the robustness of the cadence prediction. This is possible by including more cyclists
on various routes and terrains covering a wide range of scenarios and cadence range.
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Abbreviations
The following abbreviations are used in this manuscript:

ADC analog digital converter
CNN convolutional neural network
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i.e. id est
ICA independent component analysis
IMU inertial measurement unit
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MCI Management Center Innsbruck
MCU microcontroller unit
ML machine learning
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ReLu rectified linear unit

Appendix A. Singular Value Decomposition of the IMU Data

To gain a better insight into the recorded data, a singular value decomposition (SVD)
was performed. To this end, the m × n matrix M was filled with the re-centered measure-
ment data. That is to say, we subtracted the mean of each column to re-center it around the
origin such that the rows m represent the data points at different time instances tm and the
columns n contain the IMU variables:
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M =


AccXt1 AccYt1 AccZt1 GyroXt1 GyroYt1 GyroZt1 MagXt1 MagYt1 MagZt1

AccXt2 AccYt2 AccZt2 GyroXt2 GyroYt2 GyroZt2 MagXt2 MagYt2 MagZt2
...

...
...

...
...

...
...

...
...

AccXtm AccYtm AccZtm GyroXtm GyroYtm GyroZtm MagXtm MagYtm MagZtm

 (A1)

The matrix M was then decomposed as

M = UΣVT , (A2)

using SVD. As m � n, the full matrices U and Σ are too large to print. The 9 × 9 matrix V
is still comprehensible and reads

V =



−0.01 −0.09 0.99 0.09 −0.07 0.01 0.00 −0.00 0.00
0.03 −0.22 −0.08 −0.11 −0.96 −0.01 0.05 −0.01 0.00
−0.03 −0.97 −0.07 0.04 0.22 0.00 −0.01 0.00 0.01
−0.00 −0.00 −0.00 −0.00 −0.03 −0.00 −0.76 -0.65 0.05
−0.00 −0.01 −0.00 −0.00 0.00 −0.01 0.06 −0.14 −0.99
0.00 0.00 −0.00 0.01 0.04 0.02 0.65 −0.74 0.15
−1.00 0.02 −0.02 0.02 −0.03 0.06 0.00 0.00 −0.00
−0.05 0.01 −0.02 0.30 −0.02 −0.95 0.01 −0.01 0.01
0.04 0.02 −0.10 0.94 −0.10 0.30 −0.01 0.00 −0.01


(A3)

where the extreme values per column have been marked in bold. The definition of the SVD
implies that the matrix M can be written as

M =
i=n

∑
i=1

σiuivT
i , (A4)

where σi are the singular values of M, ui are the columns of U and vi are the columns of V.
As most of the columns in (A3) contain a value close to 1 or −1, it can be concluded that
the principal directions align closely with the original columns of M. As an example, the
product u1vT

1 will yield a matrix with all entries close to zero except for those in the 7th
column, which corresponds to the magnetometer x axis signal MagX. For completeness,
the singular values of M and the corresponding signals based on V are listed in Table A1.

Table A1. Singular values of the re-centered data matrix M in (A1) with the corresponding signals
based on the columns of V.

Component Singular Value Corresponding Signal

σ1 71.36 MagX
σ2 39.85 AccZ
σ3 34.26 AccX
σ4 31.00 MagZ
σ5 26.95 AccY
σ6 8.33 MagY
σ7 5.09 GyroX/GyroZ
σ8 3.26 GyroZ/GyroX
σ9 2.10 GyroY

To conclude, it should be mentioned that the singular values in essence show which
signals contain the largest variation. However, this does not mean that the signals with
the largest variation also have the most predictive value. Hence, the ablation study was
performed as shown in the discussion.
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