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Abstract: Cyber-physical system security presents unique challenges to conventional measurement
science and technology. Anomaly detection in software-assisted physical systems, such as those
employed in additive manufacturing or in DNA synthesis, is often hampered by the limited available
parameter space of the underlying mechanism that is transducing the anomaly. As a result, the
formulation of anomaly detection for such systems often leads to inverse or ill-posed problems,
requiring statistical treatments. Here, we present Bayesian inference of unknown parameters as-
sociated with a generic actuator considered as a representative vital element of a cyber-physical
system. Via a series of experimental input-output measurements, a transfer function for the actuator
is obtained numerically, which serves as our model for the proposed method. Linear, nonlinear, and
delayed dynamics may be assumed for the actuator response. By devising a code-based malicious
signal, we study the efficacy of Bayesian inference for its potential to produce a detection, including
uncertainty quantification, with a remarkably small number of input data points. Our approach
should be adaptable to a variety of real-time cyber-physical anomaly detection scenarios.

Keywords: Bayesian estimation; cyber-physical security; dynamical systems; sensors and actuators

1. Introduction

Complex systems are known to pose significant difficulties to analytical modeling and
analysis. The multiple couplings and parameter dependencies drive the challenges even
into the computational domain, where coupling parameters are either unknown or lack
sufficient quantitative representations. These challenges are exacerbated when extending
the modeling considerations into a security regime where one attempts to predict, identify,
or prevent any deviations in the operation of the complex systems and networks. Sensors
and actuators, comprising key components of many scientific and technological systems,
are increasingly integrated with software and cyber systems to form complex systems [1].
The physics of sensors actively produce new concepts and solutions commensurate with the
evolving needs for in vivo, in vitro, in situ, and environmental measurements. Furthermore,
with emerging trends in metrology and artificial intelligence, and associated applications in
quantum sensing and edge computing [1], the horizon is teeming with countless powerful
interactive sensors and actuators. Consequently, cyber-physical system (CPS) security
for device protection and quality control is urgently needed across many industrial and
infrastructural systems.

The physical systems for which detection of malicious activities are needed are diverse.
For example, as energy consumption increases across the globe, effective exploitation of
transactive energy [2], that is, the peer-to-peer sharing and trading of energy, requires
safeguarding. Zhang et al. [3] recently developed cyber-attack models for transactive
energy, where detection of anomalies in the market and physical system measurements (e.g.,
voltage and frequency or other operational parameters of the system) are sought. Given the
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rapidly growing number of sensors and other subsystems (e.g., the components associated
with edge computing [1]), one may capitalize upon established physical theories known
for their ability to handle statistically large numbers of subsystems. In one such approach,
Tavolato et al. [4] employed kinetic gas theory to model anomaly detection in networks,
with which the system response may be investigated as a whole, rather than at the level of
individual subsystems. By modeling the system as a multi-agent network, Tavolato et al.
predicted and measured the CPS operation attributes and determined how they deviate
from each other. The deviation provides a basis to issue an alert regarding a potential
attack or malfunction. Other examples include context-sensitive modeling by Saez et al. [5],
in which physics-based and data-driven models were investigated for anomaly detection
for the given hardware or process. Such physics-based approaches require setting up
dynamic equations for the involved machines, data extraction, and signal processing.

Examples of important CPS classes include synthetic biology [6] and biotechnological
instruments and devices operating bioinformatics programs, such as DNA synthesizers.
A DNA synthesizer enables custom-building of sequences of oligonucleotides or short DNA
strands using the A, G, C, and T nucleobases. Recognizing the cybersecurity vulnerabilities
of DNA synthesis, recent investigations have addressed attack feasibility, as demonstrated
by Faezi et al. [7], who explored an acoustic side-channel attack methodology on DNA
synthesizers. Earlier studies by Nei et al. [8], who reported a security analysis of the DNA
processing pipeline, demonstrated DNA-based exploits as well. Exploring measurement
science and technology to devise novel experimental detection schemes is gaining promi-
nence, as noted in recent works by Gatlin et al. [9] and Yarnpolskiy et al. [10]. By monitoring
the electric currents supplied to actuators (printer motors) employed in a manufacturing
process, Gatlin et al. described anomaly detection by comparison to current consumption
during normal processes. Similar considerations have been reported by Ranabhat et al. [11],
with a focus on composite materials (e.g., carbon fiber-reinforced polymer) being used as
functional parts in safety-critical systems.

Here, we propose a Bayesian analysis of the response of a simple exemplar CPS. The
response is here taken to be in the form of time-series data acquired, for simplicity, from volt-
age measurements in typical electro-mechanical hardware components. To motivate further
work toward anomaly detection for CPS security, we estimate the frequency content of a
potentially malicious input. Our approach applies the inherent advantages of Bayesian
spectrum estimation to the specific use case of CPS, complementing previous Bayesian
research and application domains drawing on belief networks and game theory [12–14].

The article is organized as follows. In Section 2, we review some relevant definitions
and introduce an example generic CPS problem to be tackled with Bayesian inference. Here,
for the sake of presentation, we first introduce the CPS as a simple actuator modeled as a
damped driven harmonic oscillator, defining the difference between normal and anomalous
operation for our purposes. We then overview the Bayesian inference method, including
details of the MCMC sampling procedure that enables efficient numerical evaluation.
In Section 3, we introduce a real-life actuator as a case study; by measuring the input-output
signals from it, we obtain a system transfer function to be used as the model in the Bayesian
test. We then performed Bayesian inference on realistic output data using the obtained
transfer function. By estimating the ground truth frequency, we found exceptional accuracy
with our technique: sub-Hz discrimination with only around 5 ms of time samples. This
situation was made possible by the power of Bayesian spectrum estimation, which is able to
sift signals amid noise through a logical framework absent in typical fast Fourier transform
(FFT) approaches. This section ends by exploring the envisioned scenario in which the
Bayesian results are summarized into a single number—the anomaly probability—which is
provided to the user for decision making. Section 4 concludes the paper.
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2. Problem Formulation

Cyber-attacks, traditionally targeting information technology systems, lead to theft
and tampering of non-physical digital entities, such as data and intellectual property. A CPS
constitutes an arrangement of cyber (e.g., data and algorithms) and physical components
(e.g., actuators and machine parts). Thus, unlike traditional cyber-attacks, attacks targeting
CPS also compromise a physical system. A CPS can be an elaborate mixture of many
components, the formulation of which represents a complex problem requiring knowledge
about the underlying statics and dynamics, often leading to coupled nonlinear systems of
partial differential equations, representing a multi-physics problem. This problem becomes
quickly more complicated by incorporating stochastic and memory effects (e.g., noise and
delayed feedback), requiring stochastic delay differential equations [15]. Integration of
sensor dynamics, data, and system information and knowledge can aid in devising new
anomaly detection approaches. An example of a specialized but important CPS is a 3D
printer employed in additive manufacturing. Here, we begin by discussing a more generic
CPS, simply modeled as a noisy and driven linear second-order system. Clearly, this is
a highly simplified case study, but it allows us to explore the complexity of the resulting
problem so that generalization toward more practically relevant problems can be made.

2.1. SHO Actuator

To set up our basic analysis use-case, we first note that many components of machines
and industrial systems are designated to perform some form of harmonic or anharmonic
movement. The resulting actuation is often measured using sensors, the output data of
which may be used to impose constraints or control on the actuators. A CPS may therefore
include smart networked subsystems with embedded sensors, processors, and actuators
that sense and interact with the physical world in real-time. Naturally, the mathematical
description of the resulting dynamics can quickly become complicated, requiring many
interrelated and coupled partial differential equations (PDEs). Without a model-based,
analytical, numerical, or computational solution, devising security measures against mal-
function will be challenging. Quite often, the dynamics of complicated systems may be
described by invoking simpler subsystems, which in many cases can be approximated by
harmonic motion so that the equation of a simple harmonic oscillator (SHO) can be used—a
second-order ordinary differential equation (ODE). Often, some aspects of more compli-
cated PDEs can be reduced ODEs as well. Therefore, an SHO forms a natural first step to
studying more complicated dynamical systems, such as a CPS. In the simpler discrete form,
an SHO describes the motion of a particle of mass m at a given position y and time t. When
a force is applied to the particle, it responds elastically according to Hooke’s law, perhaps
accompanied by a damping mechanism proportional to the particle velocity.

2.2. A Simplified CPS Model

The proposed anomaly detection approach requires both measurement data and a
system model. The overall CPS configuration is shown in Figure 1, where an actuator
generically shows the physical system, intended to guide the description of our approach.
We assume our system to be composed of a single damped harmonic oscillator of mass m,
damping γ, and stiffness k. The actuator is driven by a time t dependent force g(t), which
is composed of a deterministic and a stochastic part, f (t) and ξ(t), respectively, with the
latter representing effects on the actuator that can only be described probabilistically. We
assume the actuator state y = y(t) obeys the Langevin equation:

L0y(t) = g(t) = b0ξ(t) + b1 f (t), (1)

where L0 = ∂2
t + 2Γ∂t + ω2

0 is the harmonic oscillator differential operator; Γ = γ/(2m),
ω0 =

√
k/m, and b0 and b1 are constants. The function ξ represents thermal white noise

so that:
〈ξ(t)〉 = 0, and 〈ξ(t)ξ(t′)〉 = δ(t− t′), (2)
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i.e., zero mean and delta-function correlated. Denoting the frequency by ω, and taking the
Fourier transform of Equation (1), gives:

Y(ω) = χ(ω)G(ω) =
F{b0ξ(t) + b1 f (t)}(ω)

ω2
0 − 2iΓω−ω2

, (3)

where χ(ω) is the complex susceptibility (transfer function) describing the frequency re-
sponse of the system, and G(ω) describes the driving force in the Fourier domain. Then for
f (t) = cos ωt, and employing the fluctuation-dissipation theorem (setting mb0 =

√
2γKBT,

where KB is the Boltzmann constant and T is the temperature) [16], the stationary state of
the actuator can be shown to be given by [17]:

〈y2(t)〉 = KBT
k

+ b2
1

[
2Γω sin(ωt) + (ω2

0 −ω2) cos(ωt)(
ω2 −ω2

0
)2

+ 4Γ2ω2

]2

. (4)

If one assumes that the system is in a stationary state, then a sudden tampering may lead
to a transient response, potentially followed by resumption of a stationary state. Since
application of the fluctuation-dissipation theorem assumes that the system is in equilibrium,
any out-of-equilibrium state leads to a deviation from the closed-form expression for
the noise.
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Figure 1. Schematic of the proposed Bayesian anomaly detection approach. A set of digital instruc-
tions may be converted to an analog input g(t) driving a linear or nonlinear actuator. Parameters x′i
(xi), i = 1, 2, . . . describe the actuator (actuator input). An array of sensors measure the input-output
relation and generate a transfer function χ, which is utilized as a model by the Bayesian algorithm.
The model and the outcome data y(t) are employed by the Bayesian algorithm to generate prob-
ability distributions for the parameters involved. Such an analysis has the potential to detect an
adversarial influence on the outcome from either a cyber or a cyber-physical attack (an example being
a modification of the G-code in 3D printing [18]).

The above considerations may be extended to nonlinear systems, although obtaining
a response function can be significantly more challenging. A promising nonlinear oscillator
model for the description of many actuators is the driven noisy Duffing equation, which is
obtained by modifying L0 → L0 + ay2(t), where a sets the strength of the nonlinearity. In
principle, one may link an algorithm for solving the differential equation as a "model" for the
Bayesian analysis. For example, the Duffing equation above may be solved numerically to
study the oscillator phase diagram [19] or the stochastic resonance [20]. In such cases where
the forward model is not in closed form—i.e., an explicit likelihood expression such as
Equation (7) below is not available—multilevel Monte Carlo techniques and their extensions
seem particularly promising to pursue [21,22]. Other scenarios amenable to treatment by
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the Bayesian method and of interest to actuator dynamics include systems where delays
(pure time delays, constant delays, phase shifts, etc.) cannot be neglected. Whether through
feedback with gain and delay, or through a delay coupling, the eigenfrequency spectrum of
the actuator will be affected. Nonlinear systems, including those due to delays, will be the
subject of future work.

2.3. Normal Versus Anomalous System Operation and Anomaly Detection

For the sake of presentation, we define an anomaly as follows. With reference to
Figure 1, a deviation from established or desired parameter ranges, either for those describ-
ing the input signal (x) or for those describing the actuator itself (x′), constitutes an anomaly
or an outlier event. Here, one may consider any plausible entry point for a source of
undesired operation or action that may affect a system parameter unfavorably. For a single
parameter, if the new value is outside an agreed-upon normal range, then a flag is raised.
For multiple altered parameters within nominal ranges, one may seek to analyze other
health assessors that may be sensitive to a bad combination of altered within-nominal-range
parameters. This approach is similar to the established threat or fault modeling techniques
in cybersecurity and process engineering [23,24].

An enormous body of work has been performed on statistical techniques and artificial
intelligence toward detection of system behavior, including those caused by malicious
sources. We now proceed to apply Bayesian reasoning to this significant problem.

2.4. Bayesian Model

We assume that a sensor measures and digitizes some output voltage y(t) at a fixed
time interval ∆t, so that a collection of N such data samples y = (y0, y1, . . . , yN−1) cor-
responds to observations at times tn = n∆t (n ∈ {0, 1, . . . , N − 1}). From these samples,
the goal is to estimate the underlying properties of the system and return the probability
that they deviate from an acceptable range of operation, thereby indicating tampering
or failure.

The Bayesian formalism offers a principled path to a unique answer for such a well-
posed problem [25]. In our case, we assume an attack surface covering the input signal to
the actuator (parameters x in Figure 1), but take the actuator itself as characterized and
secure; we make this assumption for clarity in the proof-of-principle examples here, but the
approach can readily be extended to arbitrary system parameters. Then, the probability
density π(x) given the N datapoints in y follows Bayes’ theorem as

π(x) =
1
Z Ly(x)π0(x) (5)

where the likelihood Ly(x) ∝ Pr(y|x) (the probability of observing data y given parameters
x); π0(x) is the prior distribution, which describes allowed values of x assumed before data
collection; and Z is a normalizing constant to ensure

∫
dx π(x) = 1, which need not be

computed in the numerical techniques below. In order to obtain an expression for Ly(x),
we first write the output waveform as

y(t) = A cos(ωt + α) + ε(t), (6)

with a noise term ε(t). This formula assumes (i) a single-frequency input signal, which is
carried to the output if the system is linear, and (ii) additive noise similar to that introduced
in Section 2.2. If we make the typical and conservative [26] assumption of white Gaussian
noise with variance σ2, then the samples yn = y(tn) are independent, and the likelihood
follows as

Ly(x) =
1

σN

N−1

∏
n=0

exp

{
− [yn − A cos(ωtn + α)]2

2σ2

}
, (7)
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enumerating all unknown parameters through x = (ω, A, α, σ). Finally, in order to impose
a minimal amount of prior knowledge, we assume that any value within a predefined
range for each parameter is equally probable, i.e.,

π0(x) ∝ 1(0,ωM)(ω)1(0,AM)(A)1(−π,π)(α)1(0,σM)(σ), (8)

where the indicator function 1(a,b)(x) equals one whenever x lies in the interval (a, b),
and zero otherwise.

Now, the four-dimensional integration required to compute parameter estimates from
the complete probability density π(x) [Equation (5)] cannot be performed analytically on
this combination of likelihood and prior—a typical situation in Bayesian inference—so
we invoke Markov chain Monte Carlo (MCMC) techniques [25,27] to numerically draw
R samples x(r) from π(x). Then, the Bayesian expectation of any function of x can be
estimated directly as

φB = 〈φ(x)〉 ≈ 1
R

R

∑
r=1

φ(x(r)), (9)

which is the optimal estimator in terms of attaining the minimum squared error with respect
to the ground truth, when averaged over all parameter values and possible outcomes [27].
Indeed, in addition to automatic uncertainty quantification, this optimality represents one
of the fundamental advantages of Bayesian methods in general and in practice can lead to
massive improvements in accuracy over more conventional methods—a feature that will
help explain some of the striking results in the spectrum estimation examples below.

As our specific MCMC procedure, we employed the preconditioned Crank–Nicolson
(pCN) algorithm [28], a special case of Metropolis–Hastings [29,30] which mitigates the
“curse of dimensionality”—the inherent acceptance rate reduction with dimension that
faces random walk techniques. The details of our pCN algorithm are beyond the scope
of the present study, but we point the reader to [31] for useful background on pCN in the
context of quantum state tomography, and to [32], where we incorporate the Markov chain
proposal of [33] to permit the use of pCN techniques on uniform priors, such as those
in Equation (8). In fact, the MCMC procedure followed here is identical to that in [32],
modified only with the different likelihood in Equation (7).

In the context of cyber-physical security, of critical importance is how our Bayesian
inference procedure performs with the number of samples N. In order to detect the
presence of an anomaly quickly and initiate appropriate countermeasures in real time, one
would like to obtain low-uncertainty estimates with as few samples as possible. Ultimately,
the number of samples required will depend on a variety of configuration- and application-
specific characteristics, including the system noise level and the relative cost of either an
undetected anomaly or a false alarm. Importantly, however, the mean-squared optimality
of the Bayesian mean holds for any fixed N, a feature which supplies strong theoretical
justifications for the estimator as a whole, while not obviating the need to address a variety
of questions in a specific platform.

3. Proof-of-Principle Example
3.1. Experimental Test CPS

An example of an actual but simple actuator is an electro-mechanical rotator with
a turning shaft that is controlled to elicit certain behavioral qualities, including angular
speed, torque, and the direction and distance of rotation. We instantiated this in a small
testbed that, consistently with Figure 1, translates discrete instructions into a series of pulse-
width-modulated (PWM) signals, one for each phase of the motor. Each PWM switches a
Darlington pair, which then closes a circuit and energizes the corresponding phase of the
motor, in turn rotating the shaft.
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To understand this system analytically, we applied a simple model for a representative
DC armature motor. With the definitions given in Table 1, we can represent the motor’s
primary action with the following Laplace s-domain equations:

Ia(s) =
Ea(s)− Eb(s)

Las + Ra
, (10)

T(s) = KT Ia(s), (11)

Ωm(s) =
T(s)

Jms + Bm
, (12)

which yield the motor’s steady state current Ia(s), torque T(s), and shaft angular speed
(in rad/s) Ωm(s), respectively. These can be combined into the following second-order
transfer function:

χ(s) =
Ωm(s)
Ea(s)

=
A

s2 + Bs + C
, (13)

where

A =
KT

La Jm
, (14)

B =
Ra Jm + NmLa

La Jm
, (15)

C =
KTKE + RaBm

La Jm
. (16)

The subscripts a and m indicate, respectively, variables pertaining to the armature’s electri-
cal dynamics and the motor’s mechanical dynamics.

Table 1. Experimental actuator parameters.

Variable Description

Ea Armature voltage
Eb Back EMF voltage
Ra Armature resistance
La Armature inductance
Jm Rotational inertia
Bm Viscous friction
KT Motor torque constant
KE Back EMF constant

Alternatively, we may numerically determine the corresponding transfer function
using measurement data acquired from our experiments. For our system’s input and
output signals, we selected, respectively, the PWM control signal and coil current flow from
a single phase of our testbed’s motor. We recovered both signals as voltage measurements
due to the use of a passive current transducer on the coil lead. Both the measured input
and output data are shown in Figure 2. Using this data, we could numerically obtain a
transfer function with a polynomial optimization algorithm [34]. Given the theory behind
Equation (13), we chose a generic second-order fit for χ(s) of the form:

χ(s) =
as + b

s2 + cs + d
, (17)

where (a, b, c, d) = (−39.65, 17.82, 5416, 348 600) (b and d are dimensionless; a and c are
measured in seconds). The system’s response to an arbitrary input, such as a harmonic
input of amplitude Ae, frequency ωe, and phase αe, expressed in the Laplace domain as
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G(s) =
(

ωe cos αe + s sin αe

s2 + ω2
e

)
Ae, (18)

may now be readily obtained from:

Y(s) = χ(s)G(s) =
(ωe cos αe + s sin αe)(as + b)

(s2 + ω2
e )(s2 + cs + d)

Ae, (19)

which when inverse-transformed, may be used to visualize the response, as shown in
Figure 3 for a frequency of ωe/2π = 150 Hz. It is worth noting that the variable s in
the Laplace transform is in general complex: s = sr + iω. When s is purely imaginary
s = iω, then the Laplace transform reduces to the Fourier transform. In addition to
analytical convenience, the choice of the transform can also be motivated by the existence
of a transform for a given function in one domain versus the other. (In a slight abuse of
notation, we use the same symbols for both Fourier and Laplace, letting the argument s or
ω show which transform is implied.)

9

Figure 2. Dynamics of the studied actuator. Shown are the experimentally measured output signal,
which is the actuator response to a periodic square-wave input signal, and the simulated output of
Equation (19) given the same input signal.

0.06 0.08 0.1 0.12
tn [s]

−5

5

y n
 [V

]

−0.05

0.05Input Output

Figure 3. Estimated output data for the considered actuator, given an example input, using the
generated transfer function [Equation (17)].

3.2. Bayesian Inference Results

We simulated the output for input sinewaves of varying frequencies from 140 to
160 Hz, with a sensor sampling rate of 10 kHz (∆t = 100 µs) and output noise standard
deviation of σG = 0.5 mV. Plots of all data vectors y appear in Figure 4. Each curve
corresponds to a specific ground truth frequency fG = ωG/2π ∈ {140, 141, . . . , 160} Hz
(see legend in Figure 5). Dotted vertical lines delineate the different sample sets considered
for inference; e.g., N = 10 signifies that the first 10 samples starting with t0 = 0 s were
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included, and N = 200 that all 200 samples from 0 to 20 ms comprise y. Thus, a total of
105 MCMC inference results were separately obtained, accounting for all five values of N
and 21 frequencies.

Figure 4. Output voltage samples simulated from a stepper motor excited by 21 sinewaves with
frequencies evenly spaced from 140 to 160 Hz. Vertical dashed lines denote the total durations of
subsets with various numbers of samples N. (See legend in Figure 5 for the ground truth frequency
corresponding to each combination of color and line style.)

Figure 5. Marginal posterior distributions of excitation frequency, obtained by Bayesian inference of
the datasets in Figure 4 and grouped by the number of data samples N. The ground truth frequencies
for each curve appear in the legend.

For the prior, we took ωM/2π = 5 kHz (the maximum non-aliased frequency for
10 kHz sampling by the Nyquist theorem) and AM = σM = 100 mV to fully encompass
the voltage scale in our system. We kept R = 210 samples from a total chain length
of RT, where the thinning factor of T = 219 was found sufficient empirically to ensure
that all parameter means and variances had converged to final values. The sample sets
allowed estimates of any of the four parameters (ω, A, α, σ); yet for the purposes of this
test, we focused on frequency specifically. Taking the R samples {ω(r)} obtained for each
dataset, we computed an estimate of the marginal probability density for frequency using
the built-in kernel smoothing function in MATLAB [35]. Figure 5 plots all 21 probability
densities for each sample number N as a function of cyclic frequency f = ω/2π. While
the N = 10 case returned extremely broad distributions that were on top of each other
(a consequence of insufficient data to identify frequency), clear peaks appeared for just
N = 25 samples; at N = 50, the distribution peaks increased monotonically in accordance
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with the ground truth values; and for N = 100, all distributions were clearly separated at
sub-Hz precision levels.

From the perspective of conventional FFT analysis, these results are extraordinary:
the standard inverse relationship between total temporal span and frequency precision
suggests a resolution of ∼1 Hz should require ∼1 s of data, up to a constant of order unity.
However, the Bayesian estimates here accurately separated 1 Hz frequencies with less than
20 ms of samples; in fact, data comprising just over half a cycle (e.g., 5 ms) gave standard
deviations of 0.4 Hz or less in the retrieved posterior distributions. While surprising
from the perspective of many traditional Fourier analysis techniques, this behavior is
in fact well known and entirely consistent with previous analyses in Bayesian spectrum
estimation, as first described by Jaynes [26] and extended by Bretthorst [36]. Intuitively,
such improvements can be ascribed to the Bayesian model’s processing of noise that
automatically suppresses fluctuations on the order of σ. Indeed, manual inspection of
data such as those in Figure 4 certainly reveals clear differences between the curves that
should be resolvable by curve fitting: Bayes’ theorem can reach these and similar intuitive
conclusions mechanically, within a complete framework that incorporates all assumptions
in a logically consistent fashion.

3.3. Anomaly Detection

The highly accurate, low-error results above provide strong validation of our Bayesian
approach for parameter estimation from sensor data. Ultimately, though, the full probability
distributions in Figure 5 furnish more detail than necessary for anomaly detection, which
is interested in binary questions such as: Is the system operating as expected or not?

As an example, suppose that the device corresponding to the sensor outputs in Figure 4
is designed for operation at frequencies below f0 = ω0/2π = 150 Hz; any frequency above
this entails an anomalous state. From the R frequency samples {ω(r)} obtained in Bayesian
inference, this anomaly probability Pa = P(ω > ω0) can be estimated as

Pa ≈
1
R

R

∑
r=1

1(ω0,∞)(ω
(r)), (20)

i.e., the fraction of samples that exceed ω0. We computed Pa for all 105 inference cases
and plotted them in Figure 6 against ground truth frequency fG, grouped according to
number of time samples N. As a reference, a perfect detection curve with 100% accuracy
and no uncertainty would be a step function with Pa = 0 for all fG < 150 Hz and Pa = 1
for fG > 150 Hz.

Figure 6. Anomaly detection curves for each sample number N. The anomaly probability Pa is
the Bayesian-inferred probability that the excitation frequency exceeds 150 Hz, plotted against the
ground truth frequency.
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Unsurprisingly, given the full inference results above, N = 10 time samples were
insufficient to offer any meaningful estimate of an anomaly; this improved markedly at
N = 25 and was nearly ideal for N ≥ 50. Indeed, if we define Pa < 0.1 as high confidence
that an anomaly has not occurred, and Pa > 0.9 as high confidence that it has, the N = 25
tests returned high-confidence results for all cases except fG ∈ {148, 149, 150, 151}, and for
N ≥ 50, the only ground truth frequency inside the transition region was fG = 150 Hz—the
best performance possible under our test increments of 1 Hz.

To build these findings into a full anomaly detection scheme, one can define an
anomaly threshold Ta such that an alarm is sounded whenever Pa > Ta. With the null and
alternative hypotheses associated with “normal” and “anomalous” operation, respectively,
a type I error (false alarm) will thus occur whenever Pa > Ta but fG < 150 Hz, whereas a
type II error (missed detection) follows when Pa < Ta but fG > 150 Hz [37]. Considering
the N = 25 case in Figure 6, for example, Ta = 0.1 would admit type I errors for fG ∈
{148, 149} Hz, but no type II errors for any fG; by contrast, Ta = 0.9 would avoid all
type I errors, but experience a type II error at fG = 151 Hz. The probabilities for these
errors in practice would depend on the specific attack—i.e., the distribution of frequencies
an adversary selects compared to the distribution under normal operating conditions.
If available, such attack knowledge could be incorporated into specifying a significantly
more informative prior than the uniform one considered here, leading to even more efficient
anomaly detection (in terms of fewer samples N) than suggested by the results of Figure 6
with π0(x) from Equation (8).

Regardless of the prior used, we expect the general tradeoff between accuracy and
response time observed here to remain: with more samples N, the accuracy of steady-state
parameter estimation increases steadily, yet so does the danger of missing a transient attack
operating over a small number of samples only. In this regard, it would be interesting
to explore the asymptotic behavior of our approach, perhaps using techniques such as
those developed in the context of distributed denial-of-service attacks [38]. Nevertheless,
because the limit N → ∞ corresponds to an infinite record length, the asymptotic regime
is insensitive to attacks of finite duration, and therefore faces vulnerabilities to transients.
Accordingly, as we look toward applying our techniques in real-world systems, we suggest
first performing numerical tests to determine the number of samples N required to achieve
a detection curve of sufficient accuracy for any specific application. Then, inferences can
be made on each successive length-N chunk, permitting a running update of the system’s
state and thus facilitating responses to anomalies on time scales as short as the fundamental
N∆t record length, which, as shown in our examples here, can be remarkably smaller than
with non-Bayesian methods.

4. Discussion

Given the simplistic use case, which works well as a proof of concept for the use of
our Bayesian method for anomaly detection, further investigations are warranted. The pre-
sented results could pave the way to future work for evaluating the robustness of the
approach, e.g., comparisons to a basic FFT when there is a change in the conditions by intro-
ducing a slight nonlinearity in the model, a change in the noise distributions, or temporal
correlations in the noise processes.

From a computational side, our use of pCN was motivated by its ease of implementa-
tion and our familiarity with it in previous work [31,32]. Yet it is possible that other MCMC
methods could prove more efficient; in this application, potentially promising approaches
include parallelized coupled chains [21,39], affine-invariant samplers [40], and posterior
approximations [41]. Alternatively, one could draw on the analytical procedures outlined
in the foundational work on Bayesian spectrum estimation, where, subject to reasonable
approximations, nuisance parameters can be integrated out of the posterior distribution to
leave a function of frequency only [26,36]. With such a one-dimensional posterior, direct
numerical integration becomes a viable option, obviating the need for MCMC at all and
making real-time estimation vastly more computationally efficient. Exploring the extent
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to which these simplifications can be applied to interesting cyber-physical problems will
prove a crucial direction for future research.

Author Contributions: Conceptualization, A.P.; Formal analysis, J.M.L.; Investigation, K.J.H.L. and
J.A.D.; Project administration, J.A.D.; Writing – review and editing, J.M.L., A.P., S.Y. and J.A.D. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Laboratory Directed Research and Development Program
at Oak Ridge National Laboratory (ORNL) under U.S. Department of Energy grant number DE-FG2-
13ER41967.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data used in this study available from the authors upon reasonable
request.

Acknowledgments: J.M.L. acknowledges support from the U.S. Department of Energy, Office of
Science, Advanced Scientific Computing Research, through the Quantum Algorithm Teams Program.
This work was performed in part at Oak Ridge National Laboratory, operated by UT-Battelle for the
U.S. Department of Energy under contract number DE-AC05-00OR22725.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Passian, A.; Imam, N. Nanosystems, edge computing, and the next generation computing systems. Sensors 2019, 19, 4048.

[CrossRef] [PubMed]
2. Huang, Q.; Amin, W.; Umer, K.; Gooi, H.B.; Eddy, F.Y.S.; Afzal, M.; Shahzadi, M.; Khan, A.A.; Ahmad, S.A. A review of transactive

energy systems: Concept and implementation. Energy Rep. 2021, 7, 7804–7824. [CrossRef]
3. Zhang, Y.; Krishnan, V.V.G.; Pi, J.; Kaur, K.; Srivastava, A.; Hahn, A.; Suresh, S. Cyber Physical Security Analytics for Transactive

Energy Systems. IEEE Trans. Smart Grid 2020, 11, 931–941. [CrossRef]
4. Tavolato, P.; Scholnast, H.; Tavolato-Wotzl, C. Analytical modelling of cyber-physical systems: Applying kinetic gas theory to

anomaly detection in networks. J. Comput. Virol. Hacking Tech. 2020, 16, 93–101. [CrossRef]
5. Saez, M.A.; Maturana, F.P.; Barton, K.; Tilbury, D.M. Context-Sensitive Modeling and Analysis of Cyber-Physical Manufacturing

Systems for Anomaly Detection and Diagnosis. IEEE Trans. Autom. Sci. Eng. 2020, 17, 29–40. [CrossRef]
6. National Academies of Sciences, Engineering, and Medicine. Biodefense in the Age of Synthetic Biology; National Academies Press:

Washington, DC, USA, 2018.
7. Faezi, S.; Chhetri, S.R.; Malawade, A.V.; Chaput, J.C.; Grover, W.; Brisk, P.; Al Faruque, M.A. Oligo-Snoop: A Non-Invasive Side

Channel Attack Against DNA Synthesis Machines. In Proceedings of the Network and Distributed Systems Security Symposium
(NDSS 2019), San Diego, CA, USA, 24–27 February 2019; p. 5B.1.

8. Ney, P.; Koscher, K.; Organick, L.; Ceze, L.; Kohno, T. Computer Security, Privacy, and DNA Sequencing: Compromising
Computers with Synthesized DNA, Privacy Leaks, and More. In Proceedings of the 26th USENIX Security Symposium (USENIX
Security 17), Vancouver, BC, Canada, 16–18 August 2017; pp. 765–779.

9. Gatlin, J.; Belikovetsky, S.; Moore, S.B.; Solewicz, Y.; Elovici, Y.; Yampolskiy, M. Detecting Sabotage Attacks in Additive
Manufacturing Using Actuator Power Signatures. IEEE Access 2019, 7, 133421–133432. [CrossRef]

10. Yarnpolskiy, M.; King, W.E.; Gatlin, J.; Belikovetsky, S.; Brown, A.; Skjellum, A.; Elovici, Y. Security of additive manufacturing:
Attack taxonomy and survey. Addit. Manuf. 2018, 21, 431–457.

11. Ranabhat, B.; Clements, J.; Gatlin, J.; Hsiao, K.T.; Yampolskiy, M. Optimal sabotage attack on composite material parts. Int. J. Crit.
Infrastruct. Protect. 2019, 26, 100301. [CrossRef]

12. Liu, X.; Zhang, J.; Zhu, P.; Tan, Q.; Yin, W. Quantitative cyber-physical security analysis methodology for industrial control
systems based on incomplete information Bayesian game. Comput. Secur. 2021, 102, 102138. [CrossRef]

13. Li, S.C.; Zhao, S.S.; Yuan, Y.; Sun, Q.D.; Zhang, K.W. Dynamic Security Risk Evaluation via Hybrid Bayesian Risk Graph in
Cyber-Physical Social Systems. IEEE Trans. Comput. Soc. Syst. 2018, 5, 1133–1141. [CrossRef]

14. Kornecki, A.J.; Subramanian, N.; Zalewski, J. Studying Interrelationships of Safety and Security for Software Assurance in
Cyber-Physical Systems: Approach Based on Bayesian Belief Networks. In Proceedings of the 2013 Federated Conference on
Computer Science and Information Systems, Krakow, Poland, 8–11 September 2013; pp. 1393–1399.

15. Passian, A.; Lereu, A.; Yi, D.; Barhen, S.; Thundat, T. Stochastic excitation and delayed oscillation of a micro-oscillator. Phys. Rev.
B 2007, 75, 233403. [CrossRef]

16. Passian, A.; Protopopescu, V.; Thundat, T. Fluctuation and dissipation of a stochastic micro-oscillator under delayed feedback.
J. Appl. Phys. 2006, 100, 114314. [CrossRef]

http://doi.org/10.3390/s19184048
http://www.ncbi.nlm.nih.gov/pubmed/31546907
http://dx.doi.org/10.1016/j.egyr.2021.05.037
http://dx.doi.org/10.1109/TSG.2019.2928168
http://dx.doi.org/10.1007/s11416-020-00349-9
http://dx.doi.org/10.1109/TASE.2019.2918562
http://dx.doi.org/10.1109/ACCESS.2019.2928005
http://dx.doi.org/10.1016/j.ijcip.2019.05.004
http://dx.doi.org/10.1016/j.cose.2020.102138
http://dx.doi.org/10.1109/TCSS.2018.2858440
http://dx.doi.org/10.1103/PhysRevB.75.233403
http://dx.doi.org/10.1063/1.2365378


Sensors 2022, 22, 6112 13 of 13

17. Yaghoubi, M.; Foulaadvand, M.E.; Bérut, A.; Luczka, J. Energetics of a driven Brownian harmonic oscillator. J. Stat. Mech. 2017,
2017, 113206. [CrossRef]

18. Straub, J. An approach to detecting deliberately introduced defects and microdefects in 3D printed objects. Proc. SPIE 2017,
10203, 102030L.

19. Srinivasan, S. Duffing Oscillator. MATLAB Central File Exchange. 2014. Available online: www.mathworks.com/matlabcentral/
fileexchange/44987-duffing-oscillator (accessed on 7 July 2022).

20. Ralich, R. Stochastic Resonance in the Duffing Oscillator with MATLAB. MATLAB Central File Exchange. 2013. Available online:
https://www.mathworks.com/matlabcentral/fileexchange/35479-stochastic-resonance-in-the-duffing-oscillator-with-matlab
(accessed on 7 July 2022).

21. Heng, J.; Jasra, A.; Law, K.J.H.; Tarakanov, A. On Unbiased Estimation for Discretized Models. arXiv 2021, arXiv:2102.12230.
22. Jasra, A.; Law, K.J.; Yu, F. Randomized multilevel Monte Carlo for embarrassingly parallel inference. arXiv 2021, arXiv:2107.01913.
23. Martins, G.; Bhatia, S.; Koutsoukos, X.; Stouffer, K.; Tang, C.; Candell, R. Towards a systematic threat modeling approach for

cyber-physical systems. In Proceedings of the Resilience Week (RWS), Philadelphia, PA, USA, 18–20 August 2015; pp. 114–119.
24. Lazarova-Molnar, S.; Niloofar, P.; Barta, G.K. Data-driven fault tree modeling for reliability assessment of cyber-physical systems.

In Proceedings of the Winter Simulation Conference (WSC), Orlando, FL, USA, 14–18 December 2020; pp. 2719–2730.
25. MacKay, D.J.C. Information Theory, Inference, and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003.
26. Jaynes, E.T. Bayesian Spectrum and Chirp Analysis. In Maximum-Entropy and Bayesian Spectral Analysis and Estimation Problems;

Smith, C.R., Erickson, G.J., Eds.; Reidel: Dordrecht, The Netherlands, 1987; pp. 1–37.
27. Robert, C.P.; Casella, G. Monte Carlo Statistical Methods; Springer: New York, NY, USA, 1999.
28. Cotter, S.L.; Roberts, G.O.; Stuart, A.M.; White, D. MCMC methods for functions: Modifying old algorithms to make them faster.

Stat. Sci. 2013, 28, 424–446. [CrossRef]
29. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of State Calculations by Fast Computing

Machines. J. Chem. Phys. 1953, 21, 1087–1092. [CrossRef]
30. Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109.

[CrossRef]
31. Lukens, J.M.; Law, K.J.H.; Jasra, A.; Lougovski, P. A practical and efficient approach for Bayesian quantum state estimation. New

J. Phys. 2020, 22, 063038. [CrossRef]
32. Lukens, J.M.; Passian, A. Bayesian inference for plasmonic nanometrology. Phys. Rev. A 2021, 104, 053501. [CrossRef]
33. Vollmer, S.J. Dimension-Independent MCMC Sampling for Inverse Problems with Non-Gaussian Priors. SIAM/ASA J. Uncertain.

Quantif. 2015, 3, 535–561. [CrossRef]
34. MathWorks. tfest. 2022. Available online: www.mathworks.com/help/ident/ref/tfest.html (accessed on 7 July 2022).
35. MathWorks. ksdensity. 2022. Available online: www.mathworks.com/help/stats/ksdensity.html (accessed on 7 July 2022).
36. Bretthorst, G.L. Bayesian Spectrum Analysis and Parameter Estimation; Springer: Berlin/Heidelberg, Germany, 1988.
37. Casella, G.; Berger, R.L. Statistical Inference, 2nd ed.; Duxbury: Pacific Grove, CA, USA, 2002.
38. Ramtin, A.R.; Nain, P.; Menasche, D.S.; Towsley, D.; de Souza e Silva, E. Fundamental scaling laws of covert DDoS attacks.

Perform. Eval. 2021, 151, 102236. [CrossRef]
39. Jacob, P.E.; O’Leary, J.; Atchadé, Y.F. Unbiased Markov chain Monte Carlo methods with couplings. J. R. Stat. Soc. B 2020,

82, 543–600. [CrossRef]
40. Goodman, J.; Weare, J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 2010, 5, 65–80. [CrossRef]
41. Huang, D.Z.; Huang, J.; Reich, S.; Stuart, A.M. Efficient derivative-free Bayesian inference for large-scale inverse problems. arXiv

2022, arXiv:2204.04386.

http://dx.doi.org/10.1088/1742-5468/aa9346
www.mathworks.com/matlabcentral/fileexchange/44987-duffing-oscillator
www.mathworks.com/matlabcentral/fileexchange/44987-duffing-oscillator
https://www.mathworks.com/matlabcentral/fileexchange/35479-stochastic-resonance-in-the-duffing-oscillator-with-matlab
http://dx.doi.org/10.1214/13-STS421
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1088/1367-2630/ab8efa
http://dx.doi.org/10.1103/PhysRevA.104.053501
http://dx.doi.org/10.1137/130929904
www.mathworks.com/help/ident/ref/tfest.html
www.mathworks.com/help/stats/ksdensity.html
http://dx.doi.org/10.1016/j.peva.2021.102236
http://dx.doi.org/10.1111/rssb.12336
http://dx.doi.org/10.2140/camcos.2010.5.65

	Introduction
	Problem Formulation
	SHO Actuator
	A Simplified CPS Model
	Normal Versus Anomalous System Operation and Anomaly Detection
	Bayesian Model

	Proof-of-Principle Example
	Experimental Test CPS
	Bayesian Inference Results
	Anomaly Detection

	Discussion
	References

