
Citation: Deng, C.; Chen, S.; Zhang,

Y.; Zhang, Q.; Chen, F. ULMR: An

Unsupervised Learning Framework

for Mismatch Removal. Sensors 2022,

22, 6110. https://doi.org/10.3390/

s22166110

Academic Editors: Zhaoyang Wang,

Hieu Nguyen and Minh P. Vo

Received: 14 June 2022

Accepted: 13 August 2022

Published: 16 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

ULMR: An Unsupervised Learning Framework for
Mismatch Removal
Cailong Deng 1 , Shiyu Chen 2,3,4,*, Yong Zhang 5,6 , Qixin Zhang 2 and Feiyan Chen 2,3

1 School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
2 School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
3 Henan Engineering Research Center for Big Data of Remote Sensing and Intelligent Analysis in Huaihe River

Basin, Xinyang Normal University, Xinyang 464000, China
4 Key Laboratory for National Geographic Census and Monitoring, National Administration of Surveying,

Mapping and Geoinformation, Wuhan University, Wuhan 430079, China
5 Visiontek Research, 6 Phoenix Avenue, Wuhan 430205, China
6 School of Electronics and Information Engineering, Wuzhou University, Wuzhou 543003, China
* Correspondence: csy_hy@xynu.edu.cn

Abstract: Due to radiometric and geometric distortions between images, mismatches are inevitable.
Thus, a mismatch removal process is required for improving matching accuracy. Although deep
learning methods have been proved to outperform handcraft methods in specific scenarios, including
image identification and point cloud classification, most learning methods are supervised and are
susceptible to incorrect labeling, and labeling data is a time-consuming task. This paper takes
advantage of deep reinforcement leaning (DRL) and proposes a framework named unsupervised
learning for mismatch removal (ULMR). Resorting to DRL, ULMR firstly scores each state–action pair
guided by the output of classification network; then, it calculates the policy gradient of the expected
reward; finally, through maximizing the expected reward of state–action pairings, the optimal
network can be obtained. Compared to supervised learning methods (e.g., NM-Net and LFGC),
unsupervised learning methods (e.g., ULCM), and handcraft methods (e.g., RANSAC, GMS), ULMR
can obtain higher precision, more remaining correct matches, and fewer remaining false matches in
testing experiments. Moreover, ULMR shows greater stability, better accuracy, and higher quality in
application experiments, demonstrating reduced sampling times and higher compatibility with other
classification networks in ablation experiments, indicating its great potential for further use.

Keywords: unsupervised learning; mismatch removal; reinforcement learning; policy gradient;
expected reward

1. Introduction

Obtaining reliable matching points between image pairs is one of the core tasks in
the field of computer vision and photogrammetry [1]. However, inevitable geometric and
radiometric heterogenization between images results in considerable mismatches [2], which
reduce the reliability of matching results and eventually lower the accuracy of vision tasks,
including image fusion, change detection, 3D reconstruction, and aerial triangulation [3].
Thus, a preprocessing procedure for mismatch removal should be applied to the initial
matching results for improving reliability and accuracy. Based on the approach to obtaining
the optimal transformation model for removing mismatches, existing research can be
generally divided into two classes: handcrafted methods and deep-learning-based methods.

Handcrafted methods iteratively acquire transformation models with global or local
invariance between matched points [4]. Random sample consensus (RANSAC) [5] is
one of the most representative handcrafted methods for mismatch removal. It calculates
an optimal global model to constrain matching points by iteratively samplings, and has
three main steps: (1) randomly sampling a minimal point pair set from the initial point

Sensors 2022, 22, 6110. https://doi.org/10.3390/s22166110 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22166110
https://doi.org/10.3390/s22166110
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8151-8183
https://orcid.org/0000-0003-0230-1395
https://doi.org/10.3390/s22166110
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22166110?type=check_update&version=1

Sensors 2022, 22, 6110 2 of 18

pair set and computing the global geometric model (e.g., a fundamental matrix) based
on a geometric solver (e.g., eight-point algorithm [6,7]); (2) estimating the point pairs in
accordance with the computed model to construct a consensus set; (3) iteratively sampling a
minimal set and constructing a consensus set in step (1) and (2) until a predefined threshold
of sampling times is reached, and the correct match set is the maximal consensus, i.e., the
subset that contains the most point pairs. The subsequent RANSAC-based methods, such
as maximum likelihood estimation sample consensus (MLESAC) [8], progressive sample
consensus (PROSAC) [9], differentiable RANSAC (DSAC) [10], marginalizing sample
consensus (MAGSAC++) [11], and graph-cut RANSAC (GC-RANSAC) [12], aim to give a
precise estimation of the probability distribution of matching inliers (i.e., correct matches)
and reduce sampling times. Nevertheless, the number of samplings increases with the
matching outlier rate, and RANSAC-based methods cannot find an outlier-free consensus
set within a certain sampling number when the outlier rate is beyond a critical value [9,13].

Apart from RANSAC-based methods, other handcrafted methods are usually based
on the assumption that local structures between images do not vary freely, due to physical
constraints [14–18]. Thus, the local transformation model between neighbor matches can
be approximated by a set of functions, and matching outliers are the point pairs that do not
obey the local model [18–20]. Locality preserving matching (LPM) [16], grid-based motion
statistics (GMS) [17], and neighborhood manifold representation consensus (NMRC) [18]
are three typical locality-based methods. Specifically, LPM relaxes the geometric model
by the regularized Euclidean distance; GMS gives a more simplified approximation than
LPM, utilizing the number of neighbors to separate matching inliers from outliers; NMRC
preserves the local neighborhood structures of matching inliers by low-dimension manifold,
and uses iterative filtering based on neighborhood similarity to filter out outliers. However,
these locality-based methods cannot obtain reliable matches, or even any matches, when
the number of matching points is small or matching outliers are not randomly distributed,
since locality-based methods are essentially statistics-based methods.

In recent years, deep-learning-based methods have paved a new way to solve the
mismatch removal problem, and commonly outperform handcrafted methods [4,21,22]. Es-
sentially, the mismatch removal problem is a binary classification problem. Deep-learning-
based methods mine implicitly global or local information between matched points and
classify the matching points as correct matches or mismatches based on deep neural net-
works (DNNs) [23,24]. If a pair of matching points is considered as a four-dimensional
point, the initial matches form a set of four-dimensional point clouds, and networks with
permutation invariance (such as PointNet [25] and PointNet++ [26]) can be used to separate
correct matches from mismatches. To improve the stability and generalization, techniques
for regularization and normalization [27–31] can be used in DNNs to better mine global or
local information to classify the point clouds. For example, learning to find good correspon-
dences (LFGC) [21] obtains global information by processing each point independently
within a strategy of context normalization, and simultaneously minimizes the classification
loss and fundamental matrix regression loss to optimize the classification network. The
neighbor mining network (NM-Net) [22] mines k nearest compatible neighbors through a
grouping module, and applies a ResNet block containing instance normalization [27] and
batch normalization [28] to generate global and local features for classification and regres-
sion. The coordinate embedding network (CE-Net) [23] applies an attention mechanism [32]
to aggregate global and local geometric information from matching inliers while ignor-
ing matching outliers. Attentive context networks (ACNe) [33] combine local and global
attention mechanisms and use attentive context normalization to learn the fundamental
matrix for removing mismatches. There are sometimes numerous network parameters
in these supervised methods, and cconsiderable labeled training data is required to train
the networks to avoid overfitting [34]. Labeling data is a time-consuming task, and label
errors are usually present. Erroneous labels lower performance, and in turn, futher labeled
training data is required to improve the performance [35,36].

Sensors 2022, 22, 6110 3 of 18

The labeling problem can be tackled by training a DNN in an unsupervised manner.
Specifically, a classification network can first be used to output the matching probabilities of
point pairs without labels, with the summation of these probabilities indicating the number
of correct matches; then, the optimal network can be obtained by maximizing the summa-
tion, and can be used to separate matching inliers from outliers. Unsupervised learning
of consensus maximization (ULCM) [37] trains PointNet by learning the maximization
of the above summation with a regularization term. Due to the unsmooth loss function,
ULCM can only be trained in matching sets with a constant outlier rate. Neural-guided
RANSAC (NGRANSAC) [13] maximizes the expectation number of correct matches and
can be trained in matching sets with arbitrary outlier rates; the expectation is differentiable
if the probability distribution function (PDF) of matching inliers is continuous [38,39]. How-
ever, NGRANSAC still needs a supervised pre-training process to guarantee and speed up
convergence, which leaves NGRANSAC not completely immune to erroneous labels.

The above problems of deep-learning-based methods can be handled by developing an
unsupervised learning mode to train a network to separate matching outliers from inliers.
Solving the mismatch removal problem can be viewed as playing a video game, where
deep reinforcement learning (DRL) can be applied and surpass human performance [40,41].
Unsupervised learning can be easily implemented within the framework of DRL [42,43]. From
the perspective of DRL, the classification network outputs a “policy”, and the best “policy”
can guide the “player” to take actions to obtain the largest number of correct matches from
the initial matching point set. Nevertheless, several issues should be addressed before
DRL can be applied to train a classification network in an unsupervised manner: firstly,
the video game screens evolve with the game state and player actions, whereas the initial
matching sets remain constant; secondly, the game system automatically generates the
reward for a player action in a particular game state (named a state–action pair), whereas
there is no such reliable scoring system for the state–action pair guided by the classification
network in the mismatch removal problem.

To achieve the unsupervised classification of matching outliers and inliers, we pro-
pose a framework named unsupervised learning for mismatch removal (ULMR), from the
perspective of DRL. The proposed method has four main merits: (1) ULMR is unsuper-
vised and outperforms handcrafted methods (such as RANSAC and GMS), supervised
learning methods (such as LFGC and NM-Net), and the unsupervised method (ULCM)
(Sections 3.3 and 3.4); (2) ULMR can fill the learning gap to play games and solve the mis-
match removal problem via DRL, i.e., it maximizes the expected reward of a state–action
pair rather than that of an episode (Sections 2.1–2.3); (3) ULMR presents a reliable way
to score every state–action pair guided by the classification network, the scoring process
is unsupervised and does not require labels of training data (Section 2.4); (4) ULMR is a
universal unsupervised learning framework for mismatch removal, having high compati-
bility with different classification networks including PointNet, NM-Net, and LFGC-Net
(Section 3.5). Overall, within the framework of DRL, ULMR can train and optimize different
classification networks in an unsupervised manner, directly based on the initial matching
point set without labels and with different outlier rates; ULMR can extract more high
quality correct matches from initial matches via fewer samplings.

2. Methodology

Within the framework of DRL, a DNN can be trained in an unsupervised manner to
maximize the accumulated reward of state–action pairs. Inspired by the reward mechanism
of DRL, we aimed to develop an unsupervised learning framework for solving the mismatch
removal problem. In this section, the basic framework of DRL is firstly presented through
learning to play games (Section 2.1); then, the principle of learning to remove mismatches
via DRL is illustrated and analyzed (Section 2.2); finally, within the framework of DRL, we
give a detailed description of sampling subsets by the Monte Carlo method (Section 2.3) and
scoring of the sampled subsets (Section 2.4) for unsupervised learning of mismatch removal.

Sensors 2022, 22, 6110 4 of 18

2.1. Basic Framework of DRL

Unsupervised learning for playing games is a classic application of DRL [40,41]. DRL
generally consists of four basic ingredients in the process of training a deep network to
play games (as shown in Figure 1): the game state s generated by the game system, the
game policy θ generated by a DNN π, the action a is guided by the game policy θ and the
reward r of the state–action pair (a|s).

Sensors 2022, 22, x FOR PEER REVIEW 4 of 19

presented through learning to play games (Section 2.1); then, the principle of learning to
remove mismatches via DRL is illustrated and analyzed (Section 2.2); finally, within the
framework of DRL, we give a detailed description of sampling subsets by the Monte Carlo
method (Section 2.3) and scoring of the sampled subsets (Section 2.4) for unsupervised
learning of mismatch removal.

2.1. Basic Framework of DRL
Unsupervised learning for playing games is a classic application of DRL [40,41]. DRL

generally consists of four basic ingredients in the process of training a deep network to
play games (as shown in Figure 1): the game state s generated by the game system, the
game policy θ generated by a DNN π, the action a is guided by the game policy θ and the
reward r of the state–action pair (a|s).

Figure 1. Schematic plot of applying DRL to play a video game. MC is short for Monte Carlo sam-
pling, rt is the reward of the state–action pair (at|st), the box at the top shows the objective function
(Equation (3)).

In the general case of learning to play games via DRL, training data are the game
states. The current game state st will be input into the game policy DNN π, and the net-
work π will output a game policy θt, namely θt = π(st;ω), where ω are parameters of net-
work π. Then the “player” (sampling methods sometimes act as the “player”) takes action
at with the given state st under the guidance of game policy θt. Subsequently, the game
system gives a reward rt for the state–action pair (at|st), and then the game enters a new
state st+1. As the process evolves, an episode τ = {(a1|s1),(a2|s2),…,(at|st)} and the accumu-
lated reward of τ can be obtained:

T

t tt
R τ = r a s

=1
() () (1)

where R(τ) is the accumulated reward, T is the total number of state–action pairs in an
episode τ, r(at|st) is the reward of the state–action pair (at|st).

Intuitively, the optimal game policy network parameters ω can be obtained by max-
imizing R(τ). While the episode τ involves a sampling process such as Monte Carlo (MC)
sampling [44], the gradient of R(τ) with respect to the game policy θt is invalid. Therefore,
the gradient-based methods cannot be used directly to maximize R(τ). Alternatively, we
can treat the episode τ as a randomly generated sequence and maximize the expected
reward of τ, since the gradient of the expected reward is valid while the PDF of τ is a

Figure 1. Schematic plot of applying DRL to play a video game. MC is short for Monte Carlo
sampling, rt is the reward of the state–action pair (at|st), the box at the top shows the objective
function (Equation (3)).

In the general case of learning to play games via DRL, training data are the game states.
The current game state st will be input into the game policy DNN π, and the network π
will output a game policy θt, namely θt = π(st;ω), where ω are parameters of network π.
Then the “player” (sampling methods sometimes act as the “player”) takes action at with
the given state st under the guidance of game policy θt. Subsequently, the game system
gives a reward rt for the state–action pair (at|st), and then the game enters a new state st+1.
As the process evolves, an episode τ = {(a1|s1),(a2|s2), . . . ,(at|st)} and the accumulated
reward of τ can be obtained:

R(τ) = ∑T
t=1 r(at|st) (1)

where R(τ) is the accumulated reward, T is the total number of state–action pairs in an
episode τ, r(at|st) is the reward of the state–action pair (at|st).

Intuitively, the optimal game policy network parameters ω can be obtained by maxi-
mizing R(τ). While the episode τ involves a sampling process such as Monte Carlo (MC)
sampling [44], the gradient of R(τ) with respect to the game policy θt is invalid. Therefore,
the gradient-based methods cannot be used directly to maximize R(τ). Alternatively, we
can treat the episode τ as a randomly generated sequence and maximize the expected
reward of τ, since the gradient of the expected reward is valid while the PDF of τ is a
continuous function of θt [38]. Next, we will show that p(τ) is essentially a continuous
function of θt.

It can be assumed that the current game state st+1 only depends on st and is indepen-
dent of st−1. the PDF of episode τ can be described by a Markov decision process [45]:

p(τ) = p(s1)
T

∏
t=1

p(at|st ; θt)p(st+1|st , at) (2)

Sensors 2022, 22, 6110 5 of 18

where p(s1) is the probability of state s1 when taking no actions, p(at|st;θt) is the probability
of the state–action pair (at|st) under the guidance of game policy θt, and p(st+1|st,at) is the
state transition probability from st to st+1 under the condition of action at. Moreover, the
game policy θt is the parameter of probability distribution p(at|st;θt), thus p(τ) is a function
of θt. Note that p(st+1|st,at) and p(s1) are determined by the game system and independent
of θt, and θt is a continuous output of DNN π. Thus, p(τ) is a continuous function of θt,
and the gradient of the expected reward is valid. Given Equation (2), the expected reward
of an episode τ can be expressed as:

R = Eτ∼p(τ)[R(τ)] =
T

∑
t=1

E(at |st)∼p(at |st ;θt)(r(at|st)) (3)

where R is the expected reward of an episode; τ~p(τ) means sampling an episode from
p(τ); and (at|st)~p(at|st;θt) means sampling a state–action pair (at|st) from p(at|st;θt). To
maximize the objective function Equation (3), we should calculate the gradient of the
expected reward R with respect to θt (named as policy gradient) [46]:

∂R
∂θt

=
T

∑
t=1

Eat∼pθt
(rt

∂ log pθt

∂θt
) (4)

where at, pθt , and rt are short for (at|st), p(at|st;θt), and r(at|st), respectively.
Based on the basic framework of DRL (Figure 1), we aimed to train a DNN for

mismatch removal in an unsupervised way. The analogies and differences between playing
games and removing mismatches are specified in the next section.

2.2. Learning to Remove Mismatches

DRL can be applied to solve the mismatch removal problem. As illustrated in Figure 2,
the state s can be viewed as the initial matched point pair set between stereo images; the
policy DNN π is a classification network which outputs a relative matching probability
(RMP) for every matched point pair (RMP is analogous to the game policy θ, here we
continue to use θ to denote RMP); action ak means sampling a subset from the matched
point pair set s, which is used to generate a hypothesis hk; reward rk is the score of the
state–action pair (ak|s) based on the hypothesis hk. The hypothesis is that matching inliers
conform to the transformation model, which was calculated via the sampled subset and
a geometric model solver (e.g., the fundamental matrix computed by the eight-point
algorithm), while matching outliers were not in accordance with the model.

Although the above-mentioned analogies are intuitive, there still exist some differences
between learning to remove mismatches and learning to play a video game. As shown
in Figure 1, the current state st+1 is conditioned by the last state–action pair (at|st), thus
the game states evolved in the training. As shown in Figure 2, in the process of learning
to remove mismatches, the state s was the initial matching point set which remained
unchanged regardless of every action. Thus, the number of state–action pairs in an episode
τ is 1, i.e., T = 1 in Equations (1) and (2); when applying DRL to remove mismatches,
it worked to maximize the expected reward of a state–action pair rather than that of an
episode. The objective function in Equation (3) and the policy gradient in Equation (4)
turn into:

R = E(a|s)∼p(a|s;θ)(r(a|s)) (5)

∂R
∂θ

= Ea∼pθ
(r

∂ log pθ

∂θ
) (6)

where a, pθ , r in Equation (6) is short for the state–action pair (a|s), the probability distribu-
tion function (PDF) p(a|s;θ), and reward r(a|s), respectively; a~pθ means that action a is
taken from the distribution p(a|s;θ).

Sensors 2022, 22, 6110 6 of 18

Sensors 2022, 22, x FOR PEER REVIEW 6 of 19

episode. The objective function in Equation (3) and the policy gradient in Equation (4)
turn into:

Figure 2. Schematic plot of learning to remove mismatches via DRL. The objective function (Equa-
tion (5)) is shown in the box at the top.

a s ~p a s;θ=R E r a s() ()(()) (5)

∂

∂

∂
∂

θ
θa~p

R
=

θ

p
θ

E r log() (6)

where a, pθ, r in Equation (6) is short for the state–action pair (a|s), the probability distri-
bution function (PDF) p(a|s;θ), and reward r(a|s), respectively; a~pθ means that action a is
taken from the distribution p(a|s;θ).

The policy gradient ∂

∂

R

θ
 in Equation (6) is the key for learning to remove mismatches.

Next will be presented the detailed processes of calculating the policy gradient, i.e., (1)
computing probability distribution pθ and sampling subsets from pθ, and (2) calculating
the reward r of the sampled subset and approximating the expectation by the mean.

2.3. Sampling Subsets by Monte Carlo
As mentioned in the above analogies, state–action pair (a|s) is the action a of sam-

pling a subset from matched point pair set s, with elements of the subset drawn from the
distribution p(a|s;θ). The problem of sampling a subset from a given distribution can be
addressed by MC sampling. As shown in Figure 2, the classification network π outputs
RMPs (namely a vector θ = (θ1, θ2, …, θn)) for the matching point pairs in the set s, and a
subset is drawn from the categorical distribution parametrized by θ [47]:

i

iCat(y θ) =θ| (7)

where yi is the i’th matching point pair in set s; θi is the i’th element in θ = (θ1, θ2, …, θn),
meaning the probability of sampling point pair yi from set s. With an independently iden-
tical distributed assumption, the sampled subset Ω can be obtained from the PDF pθ:

Figure 2. Schematic plot of learning to remove mismatches via DRL. The objective function
(Equation (5)) is shown in the box at the top.

The policy gradient ∂R
∂θ in Equation (6) is the key for learning to remove mismatches.

Next will be presented the detailed processes of calculating the policy gradient, i.e.,
(1) computing probability distribution pθ and sampling subsets from pθ , and (2) calcu-
lating the reward r of the sampled subset and approximating the expectation by the mean.

2.3. Sampling Subsets by Monte Carlo

As mentioned in the above analogies, state–action pair (a|s) is the action a of sampling
a subset from matched point pair set s, with elements of the subset drawn from the
distribution p(a|s;θ). The problem of sampling a subset from a given distribution can be
addressed by MC sampling. As shown in Figure 2, the classification network π outputs
RMPs (namely a vector θ = (θ1, θ2, . . . , θn)) for the matching point pairs in the set s, and a
subset is drawn from the categorical distribution parametrized by θ [47]:

Cat(yi

∣∣∣θ) = θi (7)

where yi is the i’th matching point pair in set s; θi is the i’th element in θ = (θ1, θ2, . . . ,
θn), meaning the probability of sampling point pair yi from set s. With an independently
identical distributed assumption, the sampled subset Ω can be obtained from the PDF pθ :

pθ =
m
Π
j=1

Cat(yj|θ) =
m
Π
j=1

θI(yj) (8)

where m is the number of elements in the sampled subset Ω; yj is a matched point pair in
the subset Ω; I(yj) is the operation of obtaining the index of yj in the initial matching point
set s.

When PDF pθ has been determined, MC can be applied to sample a subset Ω. The
sampling algorithm is illustrated in Algorithm 1. At the beginning of the sampling, there
was no prior information for the matching point pairs, and the classification network output
an approximately equal RMP for every matched point pair. Therefore, each matching pair
had an equal chance of being chosen (in this case, the sampling process is similar to
RANSAC); as the training progresses, the classification network outputs higher RMPs for

Sensors 2022, 22, 6110 7 of 18

matching inliers than mismatches, thus, matching inliers become prone to being sampled;
ultimately, Algorithm 1 can sample a subset containing m correct matches. Thus, the
proposed sampling algorithm can speed up training of the classification network.

Algorithm 1: Sampling a minimal subset Ω containing m pairs of matched points

Input: A point pair set s containing n pairs of points, and the RMPs θ (Equation (7))
Output: A sampled subset with the PDF pθ (Equation (8))
1 Initialize Ω as an empty list
for j = 1 to m

2 Draw independent random variables u1, . . . ,un from uniform distribution U(0,1)
3 Select one point pair yj with index i in set s,

where i = argmax
1≤i≤n

[log(ui/(1− ui))− loglog(1/ui)]

4 If yj is already in Ω, repeat step 2 and 3 until a new point pair is selected
5 Append yj to Ω

End
6 Return Ω

2.4. Scoring a Sampled Subset

As shown in Figure 1, the game system automatically generates scores for state–action
pairs, whereas there is no such a reliable scoring system for state–action pairs in the
mismatch removal problem. Once the sampled subset Ω has been obtained, the reward r of
a state–action pair (a|s) based on the corresponding hypothesis can be given as follows.
Firstly, a transformation model (e.g., fundamental matrix, essential matrix, or homography
matrix) is calculated based on the sampled subset Ω. Then the corresponding consensus
set C can be obtained by collecting the matching point pairs within a predefined back-
projective error threshold. Finally, the element number of consensus set C is the reward of
the state–action pair (a|s):

r = |C| (9)

where | · | is an element counter of a set. As the scoring process does not require labels of
training data, the process is unsupervised.

In general, the expectation shown in Equations (5) and (6) can be approximated by
the mean if there are plenty of samples. Algorithm 1 can be repeated N times to generate
N subsets, and the mean of the N sampled subsets can be utilized to approximate the
expectation. Therefore, Equation (6) can be computed as:

∂R
∂θ

=
1
N

N

∑
k=1

rk

∂(
m
∑

j=1
log θ

I(y(k)j)
)

∂θ
=

1
N

N

∑
k=1

(rk ×
m

∑
j=1

1

θ
I(y(k)j)

one_hot(I(y(k)j)) (10)

where rk is the reward of the k’th sampled subset Ωk; y(k)j is the j’th matching point pair in

the subset Ωk; I(y(k)j) is the operation of obtaining the index of y(k)j in matching point set s,

and θ
I(y(k)j) is the RMP of y(k)j ; one_hot(·) is a function that outputs a n dimensional vector

where an element is 1 in the corresponding dimension and the rest are 0 s. Thus, the policy
gradient ∂R

∂θ can be explicitly calculated by Equation (10) based on the scoring system and
the PDF pθ , making the classification network easier to tune.

Once the policy gradient has been computed (i.e., Equation (10)), the gradients of R
with respect to the network parameters ω can be computed by the chain rule:

∂R
∂ω

=
∂R
∂θ
· ∂θ

∂ω
(11)

Sensors 2022, 22, 6110 8 of 18

where ∂θ
∂ω is the gradient of RMPs with respect to ω, and can be obtained by a deep learning

framework such as Pytorch [48] or Tensorflow [49]. Finally, the network parameters can be
optimized in the training iterations:

ω(i+1) = ω(i) + η × ∂R
∂ω(i)

(12)

where i is the i’th iteration; η is the learning rate; ∂R
∂ω(i) is the gradient of R w.r.t. ω(i).

Equation (12) can be calculated by built-in framework methods such as stochastic gradient
descent (SGD) [50] and Adam [51]. Note that SGD and Adam achieve minimization, and
we should apply an opposite number for the reward r(a|s) when using the two methods to
maximize Equation (5).

3. Experiments

To evaluate the proposed ULMR, its implementation details are given first (Section 3.1),
followed by the compared benchmark algorithms and the training data (Section 3.2). Then,
these algorithms are rated in test experiments (Section 3.3) and application experiments
(Section 3.4). Finally, an ablation experiment was conducted for further testing of ULMR
(Section 3.5).

3.1. Implementation Details
3.1.1. Network Architecture

Theoretically, the proposed ULMR can be integrated with different classification
networks that have the merit of permutation invariance. For widely-used classification
networks such as PointNet, NM-Net, and LFGC-Net, source codes are available. We found
in our experiments that NM-Net performed slightly better in recall and precision (as shown
in Section 3.5) than the other two networks. Since recall and precision are the two key
parameters for the evaluation of mismatch removal, we choose NM-Net as the classification
network in ULMR.

We added a softmax operation after NM-Net, as the network π is expected to output
RMP for each matched point pair; the detailed network architecture used in ULMR is shown
in Figure 3. For a matched point pair set that consists of n matched points, the network
output an n-dimensional vector θ = (θ1, θ2, . . . , θn) indicating the matching reliability. Note
that ULMR is a universal framework for unsupervised learning of mismatch removal, and
it can be integrated with other classification networks such as PointNet or LFGC, which
can be seen in the ablation experiments.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 19

We added a softmax operation after NM-Net, as the network π is expected to output
RMP for each matched point pair; the detailed network architecture used in ULMR is
shown in Figure 3. For a matched point pair set that consists of n matched points, the
network output an n-dimensional vector θ = (θ1, θ2, …, θn) indicating the matching relia-
bility. Note that ULMR is a universal framework for unsupervised learning of mismatch
removal, and it can be integrated with other classification networks such as PointNet or
LFGC, which can be seen in the ablation experiments.

4
×n

×1

C
on

v(
4,

12
8)

In
pu

t:
M

at
ch

in
g

Se
t

12
8×

 n
×1

8
N

N
 g

ro
up

in
g

10
×

n×
8

C
on

v(
10

,1
28

)

12
8×

 n
×8

M
ax

po
ol

in
g(

8)

12
8×

 n
×1

R
es

-n
et

 b
lo

ck
×4

C
on

v(
12

8,
1)

12
8×

 n
×1

R
M

P
θ

1×
 n

×1

So
ft

m
ax

NM-Net backbone

Figure 3. Network architecture used in ULMR. Conv(i, o) represents a convolutional operation with
additional operations such as batch normalization and activation, the input data has i channels, and
the output data has o channels; Res-Net block × 4 represents four residual connected convolutional
networks; Maxpooling(i) represents a max pooling operation with inputted data that has i channels;
and 8NN grouping mines eight nearest neighbors’ information in a hierarchical structure.

3.1.2. Training and Predicting Pipelines
The training pipeline of ULMR is shown in Figure 4a: the input was the initial match-

ing set without labels, and NM-Net outputs RMP for every matching pair; then, depend-
ing on the RMPs, the MC algorithm (Algorithm 1) was applied to sample a subset consist-
ing of m point pairs from a categorical distribution parameterized by RMPs (Equations (7)
and (8)); next, the sampled subset was fed to a geometric model solver to generate a hy-
pothesis; finally, by thresholding the back-projective error (e.g., symmetric epipolar er-
ror), we obtained a consensus set, with the element number of the consensus set as the
reward (Equation (9)). In the above process, Equations (10)–(12) can be computed, and the
optimal parameters ω of NM-Net can be obtained by the training iterations. Note that the
optimal NM-Net was not used directly to distinguish outliers, since there is no reliable
threshold of RMP to separate inliers from outliers. As depicted in Figure 4b, based on the
optimized NM-Net, Algorithm 1 was repeated N times to generate N subsets and estimate
their corresponding hypotheses; then, N consensus sets were obtained based on the
thresholding; finally, the maximal consensus set with the most elements was considered
as the outlier free matching set.

Figure 3. Network architecture used in ULMR. Conv(i, o) represents a convolutional operation with
additional operations such as batch normalization and activation, the input data has i channels, and
the output data has o channels; Res-Net block × 4 represents four residual connected convolutional
networks; Maxpooling(i) represents a max pooling operation with inputted data that has i channels;
and 8NN grouping mines eight nearest neighbors’ information in a hierarchical structure.

3.1.2. Training and Predicting Pipelines

The training pipeline of ULMR is shown in Figure 4a: the input was the initial
matching set without labels, and NM-Net outputs RMP for every matching pair; then,

Sensors 2022, 22, 6110 9 of 18

depending on the RMPs, the MC algorithm (Algorithm 1) was applied to sample a sub-
set consisting of m point pairs from a categorical distribution parameterized by RMPs
(Equations (7) and (8)); next, the sampled subset was fed to a geometric model solver to
generate a hypothesis; finally, by thresholding the back-projective error (e.g., symmetric
epipolar error), we obtained a consensus set, with the element number of the consensus set
as the reward (Equation (9)). In the above process, Equations (10)–(12) can be computed,
and the optimal parameters ω of NM-Net can be obtained by the training iterations. Note
that the optimal NM-Net was not used directly to distinguish outliers, since there is no
reliable threshold of RMP to separate inliers from outliers. As depicted in Figure 4b, based
on the optimized NM-Net, Algorithm 1 was repeated N times to generate N subsets and
estimate their corresponding hypotheses; then, N consensus sets were obtained based on
the thresholding; finally, the maximal consensus set with the most elements was considered
as the outlier free matching set.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 19

(a) (b)

Figure 4. Training and predicting pipelines of ULMR. (a) Training pipeline, (b) Predicting pipeline.

3.1.3. Training Settings
We applied the epipolar constraint [52] to separate matching inliers from outliers,

and used the eight-point algorithm [6,7] as the geometric model solver to estimate hypoth-
eses of the fundamental matrices. It was necessary to sample a minimal subset consisting
of eight matched point pairs each time (namely m = 8). The epipolar error threshold [39]
for estimating consensus sets was 3.0 pixels. The sampling number N in Equation (10) was
100. The training batch size was 32, the training number of epochs was 60, the optimizer
was SGD [50], and the initial learning rate was 0.01 with a cosine annealing learning rate
decay, in which the period was 30 and the minimum learning rate was 0.

3.2. Benchmark Algorithms and Training Data
3.2.1. Benchmark Algorithms

We compared ULMR to handcrafted methods (RANSAC and GMS), supervised
methods (LFGC and NM-Net), and an unsupervised method (ULCM). All the deep learn-
ing methods were trained with the same dataset as ULMR. The key parameter settings of
the compared methods are listed in Table 1.

Table 1. Key parameter settings of the compared methods.

Method Code Resource (accessed on 1 June 2022) Key Parameter Setting

RANSAC
https://github.com/opencv/opencv/blob/4.x/modules/calib3d/src/fun-
dam.cpp

Epipolar error threshold: 3.0 pixels;
Maximum number of iterations: 2000

GC-RANSAC https://github.com/danini/graph-cut-ransac As above

GMS https://github.com/JiawangBian/GMS-Feature-Matcher
Grid size: 20 × 20; Number of neighbors: 9;

with rotation: true; With scale: true
LFGC https://github.com/vcg-uvic/learned-correspondence-release Default as in [21]

NM-Net https://github.com/sailor-z/NM-Net Default as in [22]
ULCM https://bitbucket.org/probstt/ulcm-public/src/master/ Default as in [37]
ACNe https://github.com/vcg-uvic/acne Inlier clustering type: combined

Figure 4. Training and predicting pipelines of ULMR. (a) Training pipeline, (b) Predicting pipeline.

3.1.3. Training Settings

We applied the epipolar constraint [52] to separate matching inliers from outliers, and
used the eight-point algorithm [6,7] as the geometric model solver to estimate hypotheses
of the fundamental matrices. It was necessary to sample a minimal subset consisting of
eight matched point pairs each time (namely m = 8). The epipolar error threshold [39] for
estimating consensus sets was 3.0 pixels. The sampling number N in Equation (10) was 100.
The training batch size was 32, the training number of epochs was 60, the optimizer was
SGD [50], and the initial learning rate was 0.01 with a cosine annealing learning rate decay,
in which the period was 30 and the minimum learning rate was 0.

3.2. Benchmark Algorithms and Training Data
3.2.1. Benchmark Algorithms

We compared ULMR to handcrafted methods (RANSAC and GMS), supervised meth-
ods (LFGC and NM-Net), and an unsupervised method (ULCM). All the deep learning
methods were trained with the same dataset as ULMR. The key parameter settings of the
compared methods are listed in Table 1.

Sensors 2022, 22, 6110 10 of 18

Table 1. Key parameter settings of the compared methods.

Method Code Resource (Accessed on 1 June 2022) Key Parameter Setting

RANSAC https://github.com/opencv/opencv/blob/4.x/modules/calib3
d/src/fundam.cpp

Epipolar error threshold: 3.0 pixels;
Maximum number of iterations: 2000

GC-RANSAC https://github.com/danini/graph-cut-ransac As above

GMS https://github.com/JiawangBian/GMS-Feature-Matcher Grid size: 20 × 20; Number of neighbors:
9; with rotation: true; With scale: true

LFGC https://github.com/vcg-uvic/learned-correspondence-release Default as in [21]

NM-Net https://github.com/sailor-z/NM-Net Default as in [22]

ULCM https://bitbucket.org/probstt/ulcm-public/src/master/ Default as in [37]

ACNe https://github.com/vcg-uvic/acne Inlier clustering type: combined

3.2.2. Training Data

The training data were brown_bm_1 in the SUN3D database [53] and st_peters_square
in the Yahoo YFCC100M database [54]. For supervised methods, we firstly extracted and
matched 2000 image keypoints for every image pair, using scale-invariant feature transform
(SIFT) [55]. Then, the structure from motion method (implemented in COLMAP [56])
was applied to obtain the pose for each image, and the accurate fundamental matrices
were estimated with the camera matrices. Finally, we labeled the matches with sym-
metric epipolar errors smaller than 3.0 pixels as inliers, and the rest of the matches as
outliers [21,22]. For ULCM, we calculated the inlier rate for the batched training point
pairs, and for our proposed URML, we labeled nothing and merely used the matched SIFT
keypoints for training.

3.3. Test Experiments of Real Scenario Images

Eight pairs of real scenario images were collected as the test dataset. As shown in
Figure 5, pairs one–three depicted indoor scenes with significant viewpoint changes, and
pairs four–seven were outdoor images with simultaneous viewpoint and scale changes;
furthermore, image pair seven was from an unmanned aerial vehicle (UAV), and pair
eight was sampled from macrophotography. Except for image pairs one and two from
Brachmann and Rother [13], and pairs seven and eight from the GL3d dataset [57], the
other image pairs were captured by mobile phone cameras.

The initial matches were obtained by SIFT (ratio testing [55] was not applied), the
number of initial matches in every image pair was 2000, the mean outlier rate of initial
matches was higher than 80%. The mismatch removal results for these methods are
presented visually in Figure 5, and the number of remaining correct matches (#RCM),
number of remaining false matches (#RFM), and precision (#RCM divided by the number
of remaining matches) are estimated in Figure 6.

Figures 5 and 6 visually demonstrate that the proposed ULMR obtained better preci-
sion and smaller #RFM than all the compared methods, and the RCMs were sufficient and
evenly distributed. First, ULMR achieved the best precision among the above methods;
as shown in Figure 6a, the mean precision of ULMR was close to 93.8% and the lowest
precision was still higher than 77.9%. Second, ULMR obtained the smallest #RFM. The
mean #RFM of ULMR was 8.0 and the largest #RFM was less than 15 (shown Figure 6c).
Third, though ULMR did not obtain the most #RCM in all experimental image pairs, the
#RCM of ULMR were all beyond 50 (shown Figure 6b), sufficient for particular applications
such as self-localization and aerotriangulation in photogrammetry. Furthermore, the even
distribution of ULMR’s RCM (shown in Figure 5) can make a contribution to improving
positional accuracy [3].

https://github.com/opencv/opencv/blob/4.x/modules/calib3d/src/fundam.cpp
https://github.com/opencv/opencv/blob/4.x/modules/calib3d/src/fundam.cpp
https://github.com/danini/graph-cut-ransac
https://github.com/JiawangBian/GMS-Feature-Matcher
https://github.com/vcg-uvic/learned-correspondence-release
https://github.com/sailor-z/NM-Net
https://bitbucket.org/probstt/ulcm-public/src/master/
https://github.com/vcg-uvic/acne

Sensors 2022, 22, 6110 11 of 18

Sensors 2022, 22, x FOR PEER REVIEW 12 of 19

degradative. For example, in image pairs five and six, all the matches have been filtered
out and no inlier is left.

The supervised methods, namely LFGC, NM-Net, and ACNe, also performed worse
than the proposed ULMR. Though the labeling method presented above is relatively ac-
curate and widely-used [21,22], labeling errors are inevitable as the epipolar constraint is
necessary but insufficient to separate all inliers from outliers. Label errors degrade stabil-
ity and result in poor performance of supervised methods. For the unsupervised method
used in ULCM, the inlier rate of batched training data is still required in advance. Essen-
tially, inlier rate labeling for training data also needs to classify matching inliers and out-
liers, thus ULCM encounters the same issue as supervised methods.

Figure 5. The mismatch removal results of real scenario images. By manually checking, RCM and
RFM are connected by green and red lines, respectively.
Figure 5. The mismatch removal results of real scenario images. By manually checking, RCM and
RFM are connected by green and red lines, respectively.

The better performance of ULMR can be mainly attributed to the merits derived
from RANSAC, i.e., finding the maximal consensus set by sampling. Meanwhile, ULMR
amends RANSAC’s uniform sampling to policy-guided sampling. The classification net-
work used in ULMR outputs higher RPMs for the matching inliers, which guarantees
ULMR’s production of good subsets for estimating precise fundamental matrices. The
precise fundamental matrices can promote the aggregation of maximum consensus sets.
Consequently, ULMR can obtain better experimental results when the mean outlier rate is
higher than 80%. RANSAC samples each matching inlier and outlier with equal probability,
and it cannot process the initial matches with a high outlier rate (e.g., higher than 80%).

Sensors 2022, 22, 6110 12 of 18

Although GC-RANSAC considers the spatial coherent structures of the matched points, its
improvements are limited compared to RANSAC.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 19

(a) (b) (c)

Figure 6. Quantitative mismatch removal results of real scenario images. (a) #Precision; (b) #RCM;
(c) #RFM.

3.4. Application Experiments of Real Tasks
The real task data was the Reichstag dataset containing 1174 image pairs in the Yahoo

YFCC100M dataset [54]; these images contain considerable changes of viewpoints, illumi-
nations, and scales. We applied the proposed ULMR to estimate the fundamental matrix
and compared the results with GMS, RANSAC, GC-RANSAC, NM-Net, LFGC, ACNe,
and ULCM. The workflow of the application experiments was as follows: firstly, SIFT was
adopted to extract 2000 initial matching points between each image pair without ratio test
[55], and the average outlier rate of initial matches was higher than 80%; then, the above
mismatch removal methods were applied to purify the initial matches; next, the eight-
point algorithm was applied to estimate fundamental matrices between the image pairs;
finally, we used positional accuracy to evaluate the performances of the methods.

For GMS, ULCM, NM-Net, LFGC, and ACNe, their purified results had lower preci-
sion and numerous matching outliers (as shown in Section 3.3), causing degenerated con-
figuration when using eight-point algorithm to estimate fundamental matrices. Therefore,

Figure 6. Quantitative mismatch removal results of real scenario images. (a) #Precision; (b) #RCM;
(c) #RFM.

GMS obtained the largest #RCM and the most desirable precision only in image
pair one with structured textures. Structured textures contain aggregated matching point
pairs which facilitate the precise estimation of motion; thus, GMS can separate outliers
from inliers. When there are insufficient structured textures, the performance of GMS is
degradative. For example, in image pairs five and six, all the matches have been filtered
out and no inlier is left.

The supervised methods, namely LFGC, NM-Net, and ACNe, also performed worse
than the proposed ULMR. Though the labeling method presented above is relatively
accurate and widely-used [21,22], labeling errors are inevitable as the epipolar constraint is
necessary but insufficient to separate all inliers from outliers. Label errors degrade stability
and result in poor performance of supervised methods. For the unsupervised method used
in ULCM, the inlier rate of batched training data is still required in advance. Essentially,
inlier rate labeling for training data also needs to classify matching inliers and outliers, thus
ULCM encounters the same issue as supervised methods.

Sensors 2022, 22, 6110 13 of 18

3.4. Application Experiments of Real Tasks

The real task data was the Reichstag dataset containing 1174 image pairs in the
Yahoo YFCC100M dataset [54]; these images contain considerable changes of viewpoints,
illuminations, and scales. We applied the proposed ULMR to estimate the fundamental
matrix and compared the results with GMS, RANSAC, GC-RANSAC, NM-Net, LFGC,
ACNe, and ULCM. The workflow of the application experiments was as follows: firstly,
SIFT was adopted to extract 2000 initial matching points between each image pair without
ratio test [55], and the average outlier rate of initial matches was higher than 80%; then,
the above mismatch removal methods were applied to purify the initial matches; next, the
eight-point algorithm was applied to estimate fundamental matrices between the image
pairs; finally, we used positional accuracy to evaluate the performances of the methods.

For GMS, ULCM, NM-Net, LFGC, and ACNe, their purified results had lower pre-
cision and numerous matching outliers (as shown in Section 3.3), causing degenerated
configuration when using eight-point algorithm to estimate fundamental matrices. There-
fore, a RANSAC-embedded eight-point algorithm was applied instead. Nevertheless, we
used pure ULMR for the application.

For each image pair with sufficient and valid matches after mismatch removal, we
estimated their MPA (mean positional accuracy), MaxPA (max positional accuracy), and
MedPA (median positional accuracy):

MPA =

√
(

nA
∑

i=1
d(yi, h))/nA

MaxPA = max({d(yi, h)|1 ≤ i ≤ nA})
MedPA = median({d(yi, h)|1 ≤ i ≤ nA})

(13)

where d(yi,h) is the symmetric epipolar error of matched point pair yi with given funda-
mental matrix h; nA is the number of remaining matches in an image pair; max({·}) and
median({·}) are the operators of obtaining the max and median elements from a set. MPA
gives the overall accuracy of the remaining matches; MaxPA shows the quality of the
remaining matches, larger MaxPA means there remains at least one matching outlier with
very poor positional accuracy; MedPA coupled with MPA verifies the accuracy stability of
the remaining matches. The results of application experiments are shown in Figure 7.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 19

a RANSAC-embedded eight-point algorithm was applied instead. Nevertheless, we used
pure ULMR for the application.

For each image pair with sufficient and valid matches after mismatch removal, we
estimated their MPA (mean positional accuracy), MaxPA (max positional accuracy), and
MedPA (median positional accuracy):

()

≤ ≤

≤ ≤

 i

i

i

nA

i
d y h nA

d y h i nA

d y h i nA

=1
MPA = (,)

MaxPA = max({ (,) 1 })

MedPA = median({ (,) 1 })

(13)

where d(yi,h) is the symmetric epipolar error of matched point pair yi with given funda-
mental matrix h; nA is the number of remaining matches in an image pair; ({})⋅max and

({})⋅median are the operators of obtaining the max and median elements from a set. MPA
gives the overall accuracy of the remaining matches; MaxPA shows the quality of the re-
maining matches, larger MaxPA means there remains at least one matching outlier with
very poor positional accuracy; MedPA coupled with MPA verifies the accuracy stability
of the remaining matches. The results of application experiments are shown in Figure 7.

(a) (b) (c)

Figure 7. Box plots of positional accuracy for the remaining matches. (a) MPA; (b) MedMPA; (c)
MaxPA.

Figure 7 shows that pure ULMR obtained the most desirable results among the above
methods. First, ULMR achieved the greatest stability; as shown in Figure 7a,b, ULMR had
the lowest box heights, indicating smaller fluctuations of MPA and MedPA. Second,
ULMR had the best accuracy; as illustrated in Figure 7a,b, its mean MPA, median MPA,
mean MedPA, and median MedPA were all the lowest. Third, the remaining matches ob-
tained by ULMR had the highest quality; as shown in Figure 7c, the MaxPA of ULMR had
the lowest upper bound (5.25 pixels), and the smallest mean MaxPA (3.69 pixels) and me-
dian MaxPA (3.86 pixels).

These RANSAC-integrated learning methods outstrip pure RANSAC; since Reichs-
tag dataset has an outlier rate higher than 80%, it is difficult for RANSAC to process. GMS
delivered higher performances than those learning-based methods apart from ULMR and
ACNe, as GMS is integrated with RANSAC and Reichstag consists of images formed by
building blocks with structured textures; meanwhile, ACNe performed slightly better
than GMS, as ACNe can extract more geometric information for removing mismatches
bases on local and global attention mechanisms.

3.5. Ablation Experiments
We use the same Reichstag dataset as in Section 3.4 to test the proposed ULMR in

ablation experiments; and the main concerns were the effect of sampling number and the

Figure 7. Box plots of positional accuracy for the remaining matches. (a) MPA; (b) MedMPA;
(c) MaxPA.

Figure 7 shows that pure ULMR obtained the most desirable results among the above
methods. First, ULMR achieved the greatest stability; as shown in Figure 7a,b, ULMR had
the lowest box heights, indicating smaller fluctuations of MPA and MedPA. Second, ULMR
had the best accuracy; as illustrated in Figure 7a,b, its mean MPA, median MPA, mean
MedPA, and median MedPA were all the lowest. Third, the remaining matches obtained by
ULMR had the highest quality; as shown in Figure 7c, the MaxPA of ULMR had the lowest

Sensors 2022, 22, 6110 14 of 18

upper bound (5.25 pixels), and the smallest mean MaxPA (3.69 pixels) and median MaxPA
(3.86 pixels).

These RANSAC-integrated learning methods outstrip pure RANSAC; since Reichstag
dataset has an outlier rate higher than 80%, it is difficult for RANSAC to process. GMS
delivered higher performances than those learning-based methods apart from ULMR and
ACNe, as GMS is integrated with RANSAC and Reichstag consists of images formed by
building blocks with structured textures; meanwhile, ACNe performed slightly better than
GMS, as ACNe can extract more geometric information for removing mismatches bases on
local and global attention mechanisms.

3.5. Ablation Experiments

We use the same Reichstag dataset as in Section 3.4 to test the proposed ULMR in
ablation experiments; and the main concerns were the effect of sampling number and
the compatibility of the ULMR framework with other classification networks. We used
precision, inlier recall, and outlier recall for the quantitative evaluations:

ir =
#RCM
#ICM

; or = 1− #RFM
#IFM

(14)

where ir and or are inlier recall and outlier recall, respectively; #ICM is the number of
initially correct matches; and #IFM is the number of initially false matches. Precision gives
an overall evaluation of mismatch removal methods and mainly determines positional
accuracy. However, precision may be biased when initial matches have a higher outlier
rate, as some poor methods can consider most of matches as outliers and still achieve
a high precision. Therefore, we used ir and or to compensate for the bias and give a
comprehensive evaluation.

3.5.1. Effect of Sampling Number

We scrutinized how precision, inlier recall, and outlier recall varied with the sampling
number; the compared results of ULMR and RANSAC are illustrated in Figure 8.

As shown in Figure 8, compared with RANSAC, ULMR drew fewer samplings while
achieving better performance. When the MC sampling number was 100, ULMR achieved
the highest precision (about 0.90), and the best tradeoff for outlier recall (about 0.98) and
inlier recall (about 0.30). In contrast, RANSAC achieved its optimal performance with
sampling number 1500, when precision, outlier recall, and inlier recall were approximately
0.87, 0.93 and 0.30, respectively. ULMR utilizes NM-Net to assign higher RMPs to correct
matches, thus a good subset with all correct matches is more likely to be obtained by the
sampling algorithm (i.e., Algorithm 1) from a limited number of samplings. Furthermore,
these characteristics of ULMR can speed up the training of the classification network. In
contrast, each matching inlier and outlier have an equivalent probability of being sampled
by RANSAC, so more sampling time is required to build an outlier-free subset.

3.5.2. Compatibility with Other Classification Networks

In Sections 3.3 and 3.4, we combined the ULMR framework with NM-Net. Theo-
retically, ULMR is a universal framework that can be integrated with other classification
networks, such as LFGC-Net (used in LFGC) or PointNet. We combined ULMR with
NM-Net, LFGC-Net, and PointNet to obtain three integrated methods (ULMR + NM-Net,
ULMR+LFGC-Net, ULMR + PointNet, respectively). Experimental results of the three
methods are shown in Figure 9.

It can be seen from Figure 9 that the three integrated methods all achieved excellent
precision, inlier recall, and outlier recall, which shows the high compatibility of the pro-
posed ULMR framework with other classification networks. ULMR + NM-Net performed
slightly better than ULMR + LFGC-Net and ULMR + PointNet, because NM-Net aggregates
more global and local information than PointNet or LFGC-Net [22].

Sensors 2022, 22, 6110 15 of 18

Sensors 2022, 22, x FOR PEER REVIEW 15 of 19

compatibility of the ULMR framework with other classification networks. We used preci-
sion, inlier recall, and outlier recall for the quantitative evaluations:

1= = −；ir or#RCM #RFM
#ICM #IFM (14)

where ir and or are inlier recall and outlier recall, respectively; #ICM is the number of
initially correct matches; and #IFM is the number of initially false matches. Precision gives
an overall evaluation of mismatch removal methods and mainly determines positional
accuracy. However, precision may be biased when initial matches have a higher outlier
rate, as some poor methods can consider most of matches as outliers and still achieve a
high precision. Therefore, we used ir and or to compensate for the bias and give a com-
prehensive evaluation.

3.5.1. Effect of Sampling Number
We scrutinized how precision, inlier recall, and outlier recall varied with the sam-

pling number; the compared results of ULMR and RANSAC are illustrated in Figure 8.

(a)

(b)

(c)

Figure 8. Boxplots of precision, inlier recall, and outlier recall of ULMR and RANSAC. (a) Precision;
(b) inlier recall; (c) outlier recall.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 19

Figure 8. Boxplots of precision, inlier recall, and outlier recall of ULMR and RANSAC. (a) Precision;
(b) inlier recall; (c) outlier recall.

As shown in Figure 8, compared with RANSAC, ULMR drew fewer samplings while
achieving better performance. When the MC sampling number was 100, ULMR achieved
the highest precision (about 0.90), and the best tradeoff for outlier recall (about 0.98) and
inlier recall (about 0.30). In contrast, RANSAC achieved its optimal performance with
sampling number 1500, when precision, outlier recall, and inlier recall were approxi-
mately 0.87, 0.93 and 0.30, respectively. ULMR utilizes NM-Net to assign higher RMPs to
correct matches, thus a good subset with all correct matches is more likely to be obtained
by the sampling algorithm (i.e., Algorithm 1) from a limited number of samplings. Fur-
thermore, these characteristics of ULMR can speed up the training of the classification
network. In contrast, each matching inlier and outlier have an equivalent probability of
being sampled by RANSAC, so more sampling time is required to build an outlier-free
subset.

3.5.2. Compatibility with Other Classification Networks
In Sections 3.3 and 3.4, we combined the ULMR framework with NM-Net. Theoreti-

cally, ULMR is a universal framework that can be integrated with other classification net-
works, such as LFGC-Net (used in LFGC) or PointNet. We combined ULMR with NM-
Net, LFGC-Net, and PointNet to obtain three integrated methods (ULMR + NM-Net,
ULMR+LFGC-Net, ULMR + PointNet, respectively). Experimental results of the three
methods are shown in Figure 9.

(a) (b) (c)

Figure 9. Boxplots of precision, inlier recall, and outlier recall for the three integrated methods. (a)
Precision; (b) inlier recall; (c) outlier recall.

It can be seen from Figure 9 that the three integrated methods all achieved excellent
precision, inlier recall, and outlier recall, which shows the high compatibility of the pro-
posed ULMR framework with other classification networks. ULMR + NM-Net performed
slightly better than ULMR + LFGC-Net and ULMR + PointNet, because NM-Net aggre-
gates more global and local information than PointNet or LFGC-Net [22].

4. Conclusions
This paper proposes an unsupervised learning method for mismatch removal

(named ULMR). Within the framework of DRL, ULMR was able to train networks in an
unsupervised manner and successfully separate mismatches from correct matches. Test

Figure 9. Boxplots of precision, inlier recall, and outlier recall for the three integrated methods.
(a) Precision; (b) inlier recall; (c) outlier recall.

Sensors 2022, 22, 6110 16 of 18

4. Conclusions

This paper proposes an unsupervised learning method for mismatch removal (named
ULMR). Within the framework of DRL, ULMR was able to train networks in an unsuper-
vised manner and successfully separate mismatches from correct matches. Test experiments
of real scenario images showed that the proposed ULMR had higher precision, attaining
more remaining correct matches, and fewer false matches compared with RANSAC and
GMS (handcrafted methods), LFGC and NM-Net (supervised learning methods), or ULCM
(unsupervised method). Moreover, in the application experiments of real tasks, ULMR
obtained better positional accuracy, greater stability, and higher quality than the above
compared methods. In addition, ablation experiments demonstrated that ULMR delivered
more stable results with a smaller number of samplings. Meanwhile, the ULMR frame-
work was shown to be highly compatible with widely used classification networks such
as PointNet, NM-Net, and LFGC-Net. Hence, potential for practical use of our proposed
ULMR can be expected. However, in order to score state–action pairs accurately and the
train a classification network in an unsupervised way, the strict geometric model between
image pairs must be known and determined in advance; otherwise, a reliable scoring
function cannot be obtained, and expert demonstration methods [58] may be required to
score state–action pairs, so ULMR becomes a supervised method.

Author Contributions: Conceptualization, C.D. and S.C.; methodology, C.D. and S.C.; validation,
S.C., C.D. and Y.Z.; formal analysis, Y.Z., Q.Z. and F.C.; visualization, Y.Z., Q.Z. and F.C.; writing—
original draft, C.D. and S.C.; writing—review & editing, Y.Z., Q.Z. and F.C.; supervision, S.C.; project
administration, S.C.; funding acquisition, S.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
number 41901402), Key Scientific Research Projects of Higher Education Institutions of Henan (grant
number: 20A420005), Key Laboratory for National Geographic Census and Monitoring, National
Administration of Surveying, Mapping and Geoinformation (grant number: 2018NGCM04), Program
for Innovative Research Team (in Science and Technology) in the University of Henan Province
(grant number: 22IRTSTHN010), and Nanhu Scholars Program for Young Scholars of XYNU (grant
number: 2019037).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used in this paper are public data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jin, Y.; Mishkin, D.; Mishchuk, A.; Matas, J.; Fua, P.; Yi, K.; Trulls, E. Image Matching Across Wide Baselines: From Paper to

Practice. Int. J. Comput. Vis. 2021, 129, 517–547. [CrossRef]
2. Jiang, X.; Ma, J.; Xiao, G.; Shao, Z.; Guo, X. A review of multimodal image matching: Methods and applications. Inf. Fusion. 2021,

73, 22–71. [CrossRef]
3. Yuan, X.; Chen, S.; Yuan, W.; Cai, Y. Poor textural image tie point matching via graph theory. ISPRS-J. Photogramm. Remote Sens.

2017, 129, 21–31. [CrossRef]
4. Ma, J.; Jiang, X.; Fan, A.; Jiang, J.; Yan, J. Image Matching from Handcrafted to Deep Features: A Survey. Int. J. Comput. Vis. 2021,

129, 23–79. [CrossRef]
5. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and

automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]
6. Longuet-Higgins, H.C. A computer algorithm for reconstructing a scene from two projections. Nature 1981, 293, 133–135.

[CrossRef]
7. Hartley, R.I. In defense of the eight-point algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 580–593. [CrossRef]
8. Torr, P.H.S.; Zisserman, A. MLESAC: A New Robust Estimator with Application to Estimating Image Geometry. Comput. Vis.

Image Underst. 2000, 78, 138–156. [CrossRef]
9. Chum, O.; Matas, J. Matching with PROSAC-progressive sample consensus. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 20–25 June 2005; pp. 220–226.

http://doi.org/10.1007/s11263-020-01385-0
http://doi.org/10.1016/j.inffus.2021.02.012
http://doi.org/10.1016/j.isprsjprs.2017.04.015
http://doi.org/10.1007/s11263-020-01359-2
http://doi.org/10.1145/358669.358692
http://doi.org/10.1038/293133a0
http://doi.org/10.1109/34.601246
http://doi.org/10.1006/cviu.1999.0832

Sensors 2022, 22, 6110 17 of 18

10. Brachmann, E.; Krull, A.; Nowozin, S.; Shotton, J.; Michel, F.; Gumhold, S.; Rother, C. DSAC-differentiable ransac for camera
localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,
21–26 July 2017; pp. 6684–6692.

11. Barath, D.; Noskova, J.; Ivashechkin, M.; Matas, J. MAGSAC++, a fast, reliable and accurate robust estimator. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1304–1312.

12. Barath, D.; Matas, J. Graph-Cut RANSAC. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 6733–6741.

13. Brachmann, E.; Rother, C. Neural-guided RANSAC: Learning where to sample model hypotheses. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 4322–4331.

14. Ma, J.; Zhao, J.; Tian, J.; Bai, X.; Tu, Z. Regularized vector field learning with sparse approximation for mismatch removal. Pattern
Recognit. 2013, 46, 3519–3532. [CrossRef]

15. Li, J.; Hu, Q.; Ai, M. LAM: Locality affine-invariant feature matching. ISPRS-J. Photogramm. Remote Sens. 2019, 154, 28–40.
[CrossRef]

16. Ma, J.; Zhao, J.; Jiang, J.; Zhou, H.; Guo, X. Locality preserving matching. Int. J. Comput. Vis. 2019, 127, 512–531. [CrossRef]
17. Bian, J.; Lin, W.; Matsushita, Y.; Yeung, S.; Nguyen, T.; Cheng, M. GMS: Grid-based motion statistics for fast, ultra-robust feature

correspondence. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 21–26 July 2017; pp. 4181–4190.

18. Ma, J.; Li, Z.; Zhang, K.; Shao, Z.; Xiao, G. Robust feature matching via neighborhood manifold representation consensus. ISPRS-J.
Photogramm. Remote Sens. 2022, 183, 196–209. [CrossRef]

19. Chen, J.; Yang, M.; Peng, C.; Luo, L.; Gong, W. Robust feature matching via local consensus. IEEE Trans. Geosci. Remote Sens. 2022,
60, 1–16. [CrossRef]

20. Mousavi, V.; Varshosaz, M.; Remondino, F.; Pirasteh, S.; Li, J. A Two-Step Descriptor-Based Keypoint Filtering Algorithm for
Robust Image Matching. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–21. [CrossRef]

21. Yi, K.M.; Trulls, E.; Ono, Y.; Lepetit, V.; Salzmann, M.; Fua, P. Learning to Find Good Correspondences. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 2666–2674.

22. Zhao, C.; Cao, Z.; Li, C.; Li, X.; Yang, J. NM-Net: Mining Reliable Neighbors for Robust Feature Correspondences. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 215–224.

23. Chen, S.; Niu, J.; Deng, C.; Zhang, Y.; Chen, F.; Xu, F. CE-Net: A Coordinate Embedding Network for Mismatching Removal.
IEEE Access 2021, 9, 147634–147648. [CrossRef]

24. Cavalli, L.; Larsson, V.; Oswald, M.; Sattler, T.; Pollefeys, M. AdaLAM: Revisiting Handcrafted Outlier Detection. arXiv 2020,
arXiv:2006.04250v1.

25. Qi, C.R.; Su, H.; Mo, K.; Guiba, L.J. PointNet: Deep learning on point sets for 3D classification and segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 652–660.

26. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings
of the Neural Information Processing Systems (NeurIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 1–10.

27. Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Instance normalization: The Missing Ingredient for Fast Stylization. arXiv 2016,
arXiv:1607.08022.

28. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015,
arXiv:1502.03167.

29. Moradi, R.; Berangi, R.; Minaei, B. A survey of regularization strategies for deep models. Artif. Intell. Rev. 2020, 53, 3947–3986.
[CrossRef]

30. Zheng, Q.; Yang, M.; Tian, X.; Jiang, N.; Wang, D. A Full Stage Data Augmentation Method in Deep Convolutional Neural
Network for Natural Image Classification. Discret. Dyn. Nat. Soc. 2020, 2, 1–11. [CrossRef]

31. Jin, B.; Cruz, L.; Goncalves, N. Deep Facial Diagnosis: Deep Transfer Learning from Face Recognition to Facial Diagnosis. IEEE
Access 2020, 8, 123649–123661. [CrossRef]

32. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.
arXiv 2017, arXiv:1706.03762v5.

33. Sun, W.; Jiang, W.; Trulls, E.; Tagliasacchi, A.; Yi, K. ACNe: Attentive Context Normalization for Robust Permutation Equivariant
Learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA,
13–19 June 2020; pp. 11283–11292.

34. Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012; pp. 71–72.
35. Frénay, B.; Verleysen, M. Classification in the presence of label noise: A survey. IEEE Trans. Neural Netw. Learn. Syst. 2013, 25,

845–869. [CrossRef] [PubMed]
36. Sukhbaatar, S.; Fergus, R. Learning from noisy labels with deep neural networks. arXiv 2014, arXiv:1406.2080.
37. Probst, T.; Paudel, D.P.; Chhatkuli, A.; Gool, L.V. Unsupervised learning of consensus maximization for 3D vision problems. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June
2019; pp. 929–938.

http://doi.org/10.1016/j.patcog.2013.05.017
http://doi.org/10.1016/j.isprsjprs.2019.05.006
http://doi.org/10.1007/s11263-018-1117-z
http://doi.org/10.1016/j.isprsjprs.2021.11.004
http://doi.org/10.1109/TGRS.2022.3151226
http://doi.org/10.1109/TGRS.2022.3188931
http://doi.org/10.1109/ACCESS.2021.3123942
http://doi.org/10.1007/s10462-019-09784-7
http://doi.org/10.1155/2020/4706576
http://doi.org/10.1109/ACCESS.2020.3005687
http://doi.org/10.1109/TNNLS.2013.2292894
http://www.ncbi.nlm.nih.gov/pubmed/24808033

Sensors 2022, 22, 6110 18 of 18

38. Schulman, J.; Heess, N.; Weber, T.; Abbeel, P. Gradient estimation using stochastic computation graphs. In Proceedings of the
Neural Information Processing Systems (NeurIPS), Montreal, QC, Canada, 7–12 December 2015; pp. 1–9.

39. Jang, E.; Gu, S.; Poole, B. Categorical reparameterization with gumbel-softmax. arXiv 2016, arXiv:1611.01144.
40. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with deep reinforce-

ment learning. arXiv 2013, arXiv:1312.5602.
41. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Hassabis, D. Human-level control through deep

reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]
42. Jaderberg, M.; Mnih, V.; Czarnecki, W.M.; Schaul, T.; Leibo, J.Z.; Silver, D.; Kavukcuoglu, K. Reinforcement learning with

unsupervised auxiliary tasks. arXiv 2016, arXiv:1611.05397.
43. Truong, G.; Le, H.; Suter, D.; Zhang, E.; Gilani, S.Z. Unsupervised learning for robust fitting: A reinforcement learning

approach. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, 19–25 June 2021;
pp. 10348–10357.

44. Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109. [CrossRef]
45. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018; pp. 47–70.
46. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic Policy Gradient Algorithms. In Proceedings

of the International Conference on Machine Learning (ICML), Beijing, China, 21–26 June 2014; pp. 1–9.
47. Johnson, N.L.; Kemp, A.W.; Kotz, S. Univariate Discrete Distributions, 3rd ed.; Wiley: Hoboken, NJ, USA, 2005; pp. 108–151.
48. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:

An imperative style, high-performance deep learning library. In Proceedings of the Neural Information Processing Systems
(NeurIPS), Vancouver, BC, Canada, 8–14 December 2019; pp. 1–12.

49. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow:
A System for Large-Scale Machine Learning. In Proceedings of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

50. Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of the International Conference on
Computational Statistics (COMPSTAT), Paris, France, 22–27 August 2010; pp. 177–186.

51. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
52. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004;

pp. 239–257.
53. Xiao, J.; Owens, A.; Torralba, A. SUN3D: A database of big spaces reconstructed using SfM and object labels. In Proceedings of

the IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, 1–8 December 2013; pp. 1625–1632.
54. Thomee, B.; Shamma, D.A.; Friedland, G.; Elizalde, B.; Ni, K.; Poland, D.; Borth, D.; Li, L.J. YFCC100M: The new data in

multimedia research. Commun. ACM 2016, 59, 64–73. [CrossRef]
55. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
56. Schonberger, J.L.; Frahm, J.M. Structure-from-Motion Revisited. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113.
57. Luo, Z.; Shen, T.; Zhou, L.; Zhu, S.; Zhang, R.; Yao, Y.; Fang, T.; Quan, L. GeoDesc: Learning Local Descriptors by Inte-

grating Geometry Constraints. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany,
8–14 September 2018; pp. 170–185.

58. Ramírez, J.; Yu, W.; Perrusquía, A. Model-free reinforcement learning from expert demonstrations: A survey. Artif. Intell. Rev.
2022, 55, 3213–3241. [CrossRef]

http://doi.org/10.1038/nature14236
http://doi.org/10.1093/biomet/57.1.97
http://doi.org/10.1145/2812802
http://doi.org/10.1023/B:VISI.0000029664.99615.94
http://doi.org/10.1007/s10462-021-10085-1

	Introduction
	Methodology
	Basic Framework of DRL
	Learning to Remove Mismatches
	Sampling Subsets by Monte Carlo
	Scoring a Sampled Subset

	Experiments
	Implementation Details
	Network Architecture
	Training and Predicting Pipelines
	Training Settings

	Benchmark Algorithms and Training Data
	Benchmark Algorithms
	Training Data

	Test Experiments of Real Scenario Images
	Application Experiments of Real Tasks
	Ablation Experiments
	Effect of Sampling Number
	Compatibility with Other Classification Networks

	Conclusions
	References

