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Abstract: Modern healthcare practice, especially in intensive care units, produces a vast amount
of multivariate time series of health-related data, e.g., multi-lead electrocardiogram (ECG), pulse
waveform, blood pressure waveform and so on. As a result, timely and accurate prediction of
medical intervention (e.g., intravenous injection) becomes possible, by exploring such semantic-rich
time series. Existing works mainly focused on onset prediction at the granularity of hours that was
not suitable for medication intervention in emergency medicine. This research proposes a Multi-
Variable Hybrid Attentive Model (MVHA) to predict the impending need of medical intervention,
by jointly mining multiple time series. Specifically, a two-level attention mechanism is designed to
capture the pattern of fluctuations and trends of different time series. This work applied MVHA
to the prediction of the impending intravenous injection need of critical patients at the intensive
care units. Experiments on the MIMIC Waveform Database demonstrated that the proposed model
achieves a prediction accuracy of 0.8475 and an ROC-AUC of 0.8318, which significantly outperforms
baseline models.

Keywords: medical intervention; multivariate time series; hybrid attentive model; attention
mechanism

1. Introduction

Intensive care units (ICU) play a pivotal role in caring for the most severely hospi-
talized patients [1], where clinicians must anticipate patient care needs according to a set
of fast-paced physiological signals, and then provide aggressive life-saving treatments or
interventions [2]. To assist clinicians with supporting evidence for timely and accurate
medical interventions, an effective approach is analyzing time series which contain repre-
sentative information related to the health status, e.g., the physiology, the respiratory and
the neurological function [3–8]. In other words, early event prediction plays an important
role in ICUs, and it ensures that hospital staff are prepared for interventions [9].

To provide high level supportive analytics, numerous predictive models and computer-
aided diagnostic solutions were proposed [10]. For example, different medical scoring
systems (e.g., SOFA, SAPS, APACHE [11]) have been developed to provide computer
assisted decision support. Usually, these scoring systems are based on some type of routine
physiological measurements followed by logic-based regression techniques. However,
these scoring systems are not able to discover the rich semantics of the vital physiological
time series and are not well calibrated in predicting results [12].

Although medical scoring systems are still widely used for evaluating various clinical
probabilities in the ICUs [13–15], machine learning approaches have been attracting more
and more attention lately in the literature. In addition to predictive models based on logistic
regression, more sophisticated approaches (e.g., random forests and clustering techniques)
are employed to improve the predictive performance for early detection of emergency
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clinical events [15–17]. Nevertheless, one main drawback of existing approaches is that
they depend on a set of priori features, which are designed manually based on domain
knowledge, by considering the multivariate time series as uncorrelated inputs. Thus, they
fail to leveraging the complex correlations among multivariate time series for the extraction
of latent features [18]. Furthermore, none of these approaches could provide the ability to
deal with time-varying data in the ICUs [10].

Recently, deep models [19,20] show powerful data representation and feature extraction
advantages, which have been successfully applied to different medical scenarios [21–23]
and achieved significant performance improvements over traditional models [24–26]. For
example, convolutional neural network (CNN) is capable of obtaining a compact latent
representation [27], while a long short-term memory network (LSTM) can effectively learn
long dependencies of time series [28]. Meanwhile, attention mechanisms have shown great
promise of providing interpretable learning results [29], while preserving the versatility
and flexibility of deep models. Specifically, such deep models have been successfully used
for the prediction of ICU interventions, e.g., ventilation, vasopressors, colloid/crystalloid
boluses [30,31].

This work aims to predict the impending need of medical interventions (intravenous
injection to be specific) by exploring the patient‘s physiological recordings in ICUs. Virtually
intravenous administration has become one of the most common interventions in ICUs and
emergency settings. Each day, in acute and critical care conditions, over 30% of patients
had received intravenous therapy [32], and a wealth of information of each hospitalized
patient is recorded through pervasive sensing, including measurement of high-resolution
physiological signals (such as respiration rate, pulse, blood pressure, and temperature),
complete clinical information in electronic health records, and various laboratory tests. For
these acutely ill patients, medical staff are required to make lifesaving decisions under
strict time constraints by dealing with a high level of uncertainty in clinical data and a
high-volume of complex physiologic signals.

Thus, for this purpose, there are two important issues to be addressed. First, changes
in one or more vital signs prior to a serious adverse event are well documented, and
early checking of vital signs is key to timely intervention. However, a vast amount of
data with disparate types is continuously captured in real-time as patients stay at ICUs,
including static variables (such as gender and age), time-varying vital signals (such as
electrocardiogram and oxygen saturation), and clinical notes. Therefore, to achieve timely
and accurate intervention prediction, this research needs to select a compact but useful
collection of vital time series. Second, the characteristics of biomedical signals before
serious adverse events can vary drastically, thus it is difficult to build classifiers based on
feature engineering. Moreover, to support clinical decision making, an interpretable model
is needed, which should provide easy-to-understand predictions. Therefore, considering
the complex correlations among multivariate time series, how to build an interpretable
prediction model is the second challenge.

To address these challenges, this research designs a Multi-Variable Hybrid Attentive
Model (MVHA) to facilitate timely prediction of medical interventions, using fluctuations
and trend characteristics of the time series of physiological signals. In other words, the
model depends on the assumption that one or more physiological signals should have
been altered prior to a medical intervention [33] and reflect the potential life-threatening
conditions [34]. In the ICUs, the acute fluctuation and abrupt trend are typical abnormal
patterns of the physiological signals, which are driven by the patients’ internal perturbations
(e.g., disease). Discovering and understanding such abnormal and hidden implications are
critical for timely decision-making in an emergency. On one hand, the time series of vital
signs can exhibit oscillations on the order of seconds to min, and significant prognostic
values can be obtained by tracking patient specific fluctuations. On the other hand, extra
benefits can be acquired by considering the temporal trends of vital signs, which can help
improve the prediction accuracy and decrease the false alarm rate. Figure 1 shows a typical
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abnormal period of a certain signal, which illustrates two kinds of abnormal fluctuations,
i.e., abnormal speeding up and abnormal slowing down.

Figure 1. Conceptual illustration of abnormal fluctuations.

Among the physiological signals recorded in ICUs, ECG is one of the most impor-
tant vital signs [35]. By analyzing the ECG time series, researchers can not only re-
veal the respiratory rate, heart rate and variability, but also reduce the false alarm in
ICUs [36–38]. Thus, ECG provides a good chance for understanding the patient’s physi-
ological status. Recently, a number of models have been developed for end-to-end ECG
diagnosis and illustrated a superior performance [39–42]. However, these models were
directly fed with raw ECG waveforms, without exploring the fine-grained temporal fluc-
tuations or trends, which are key to ECG-based medical diagnoses [31], especially for the
treatment of acute heart attacks, acute coronary syndromes, and other life-threatening
symptoms in ICUs [43–45]. Moreover, it should be noted that other physiological signals
can be important supplements for ECG-based analysis. As a result, to explore the temporal
nature of multiple physiological signals, this study proposes to build a hybrid model by
combining the convolutional neural network and the recurrent neural network, aiming
to take full advantages of CNN’s ability of extracting local features and LSTM’s capabil-
ity of mining long dependencies of the time series. Specifically, in this work we mainly
consider the following signals, including arterial blood pressure (ABP), peripheral arterial
oxygen saturation (SpO2), heart rate (HR), pulse, and respiration rate (RESP). Then, to
further improve the model’s interpretability, this model incorporates a fluctuation attention
mechanism for CNN and a multi-channel trend attention mechanism for LSTM. Based
on attentive modeling of the hidden characteristics of multi-variate signals, the work can
identify the inputs that have more significant influences on the model’s output.

To sum up, the contributions of this paper are three-fold:
First, to characterize the abnormal pattern of physiological variables more accurately,

this work propose a novel hybrid neural architecture by combining a CNN and a LSTM.
Particularly, CNN aims to find compact latent features in each wave components, and LSTM
is utilized to learn long dependencies of time series to model the overall variation patterns.

Second, to enhance the interpretability of the proposed model, this work designs two
attention mechanisms, including a fluctuation attention mechanism for CNN and a multi-
channel trend attention mechanism for LSTM. Moreover, this work performs attention
fusion across fluctuations and trends of different time series to characterize variation
patterns according to their importance.

Third, this study achieve state-of-the-art prediction results in the forward-facing
prediction of emergency rescue medications in ICU, which can help ensure hospital staff
are prepared for interventions as early as possible.

The remainder of this paper is organized as follows. Section 2 reviews the related work.
Section 3 describes the proposed approach in details. Experimental results are presented in
Section 5. Finally, Section 4 concludes the paper.
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2. Related Work

This section will briefly review the related work, which can be grouped into three
categories.

2.1. ICU Scoring Models

The medical scoring model gives an assessment of the patient’s health status in the
form of a score [46], which refer to the clinical severity of the patient. The outcome of
forecasting scores can help caregivers be aware of patients at risk and take appropriate
actions in advance to prevent these patients from deteriorating [47]. For instance, the
sequential organ failure assessment score (SOFA score), which is based on six different
scores, is useful in predicting the clinical outcomes of critically ill patients [48]. In the logistic
organ dysfunction system (LODS), logistic regression techniques are used to determine
severity levels and provided an objective tool for identifying the organ dysfunction level
(from 1 to 3) for six different organ systems [14].

Specifically, there are two widely used ICU scoring models at present. The Simplified
Acute Physiology Score (SAPS) model calculates the severity of disease for patients ad-
mitted to intensive care units, by using 12 routine physiological measurements of the past
24 h [49]. The Acute Physiology And Chronic Health Evaluation (APACHE) model is used
to calculate the probability of death independent of diagnosis, based on markers for the
extent of the abnormality of 12 common physiological and laboratory values [50].

In general, the outputs of the models are ordinal, i.e., a higher score corresponds
to a higher severity. However, all of them are based on fixed time intervals, without
considering neither the evolving clinical information nor the non-linear constructed latent
features [10,30].

2.2. ICU Interventions

Intensive care unit interventions refer to medical treatments given to seriously or
critically ill patients who are at risk of conditions that may be potential or established
organ failures [51]. Existing studies mainly relate to the content of emergency airway care,
respiratory failure and so on [52].

Mechanical ventilation (i.e., assisted respiration) is one of the most common interven-
tion implemented in the intensive care medicine [53]. For instance, a number of studies have
been conducted to determine the factors that could help predict the possibility of mechani-
cal ventilation and weaning [54–56]. Vasopressor is another commonly used intervention
in a medical intensive care unit [57]. For example, Wu et al. [58] used a switching-state
autoregressive model to predict the need for a vasopressor. Similarly, to make the inter-
vention model more applicable, unsupervised switching state autoregressive models [9]
have been developed by combining waveform recordings with demographic information,
aiming to simultaneously provide an in-hospital early detection for five different clinical
intervention.

Nevertheless, existing works mainly focus on improving the prediction performance
for actionable interventions several hours ahead of onset, and none of them have explored
the prediction problem of immediate intravenous injections, which is a core focus of
our work.

2.3. Deep Learning on ICU Data

Intensive care treatment is highly challenging due to the chitinous generation of a
large amounts of heterogeneous health-related data. Thereby, more and more attention is
being paid to deep learning based data processing and assistant decision-making, aiming
to improve the accuracy of clinical identification and prediction [24,29]. For example,
Rajpurkar et al. [59] developed a multi-layer CNN model to detect arrhythmias based on
ECG time-series. Similarly, a deep learning based model was built to classify 12 rhythm
classes [60], which achieved a state-of-the-art performance.
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However, these studies mainly explored the time series of a single vital sign, and could
not provide a more comprehensive characterization of the patient’s status in clinical envi-
ronments (especially in ICUs). A better choice is to fuse multiple simultaneously collected
time series with deep models. Recently, a set of models had been proposed to combine
vital physiological time series with demographic information (including age, gender, lab
test results and so on) to provide clinical predictions [30,61]. Similarly, Lipton et al. [62]
had shown promising results using multivariate time series of clinical measurements for
learning and prediction.

Nevertheless, the timeliness and interpretability of existing models are still not good
enough for the prediction of impending medication intervention needs in ICUs. Therefore,
a more effective model is needed, which should be able to provide timely and interpretable
predictions, by exploring the fine-grained temporal trends and fluctuations of multivariate
time series.

3. Methodology

This section describe the proposed multi-variable hybrid CNN-LSTM model, which is
mainly composed of a multivariate input processing layer, a hybrid attentive model layer
and a predictive output layer.

3.1. Overview of MVHA

This subsection first briefly describes the framework of MVHA and introduces the
notations used in this article. We denote multivariate physiological signals as S = [G, L],
where G represents the high-frequency waveforms (such as ECG) and L represents the
numerical waveforms (such as HR). Aligned with the i-th intravenous intervention, we
denote multi-channel high-frequency waveforms G at time step t as: Gi(t) = [g(1)i_t , g(2)i_t ,. . . ,

g(CG)
i_t ], where g(cg)

i_t ∈ Rng, 0 ≤ t ≤ T, cg = 1, 2,. . . , CG and CG = |Gi|, ng denotes the

length of g(cg)
i_t . Similarly, the numerical signals L at time step t is defined as: Li(t) = [l(1)i_t ,

l(2)i_t ,. . . , l(CL)
i_t ], where l(cl)

i_t ∈ Rnl , 0 ≤ t ≤ T, cl = 1, 2,. . . , CL and CL = |Li|, nl denotes the

length of l(cl)
i_t . Particularly, T represents the time steps used for the prediction of a medical

intervention, gcg
i is the continuously monitored high-frequency waveform by channel

cg, and lcl
i denotes the numerical sign sampled by channel cl. The used notations are

summarized in Table 1.

Table 1. Notations for MVHA.

Notation Description

S, s, sk multivariate physiological signals (G and L), one of g(cg) or l(cl), the k-th segment in s
G, g(cg), gk high-frequency waveforms, the cg-th channel in G, the k-th segment in g
L, l(cl), lk numerical waveforms, the cl-th channel in L, the k-th segment in l
P∈ R(U×J), p(j) ∈ RU the convolutional features, the j-th column in P
O∈ R(U×M), o∈RU , o fk output of the CNN layer, the sum of p(j), output of the fluctuant level attention
α, αk, β, β(k) weights of the fluctuant level attention, the k-th value in α, weights of the trend level attention, the

k-th value in β

H∈ R(J×M), hk output of the Bi-LSTM layer, the k-th column in H
Z∈ R(J×CH), z combination of H, the sum of hk
X∈ R(I×CH), x output of the fully connected layer, the k-th column of X
A f l , Atr feature weights of the fluctuant level attention, feature weights of the trend level attention
d, tr(kt), ρ(sk) output of the trend level attention, difference between sk and sk−1, max, mean or min of sk
yi prediction result of the i-th segment

Given a time step t and an observation window W for the i-th intervention, this work
takes the observed multivariate time series S(t−W, t] (including both G(t−W, t] and
L(t−W, t]) as input, aiming to predict the output value of variable yi. With a pre-defined
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step size, S(t−W, t] is first split into M equal length segments: sk, 0 ≤ k ≤ M (e.g., given
a step with a length of 1 min, a high-frequency waveform segmentation gk of 125 Hz
contains 7500 samples and a numerical waveform lk of 1 Hz contains 60 values). Next,
CNN has been applied to these segments to obtain the convolutional output ok and the
fluctuant level attention o fk, followed by a Bi-LSTM that transforms o fk into sequentially
embedded vectors H and Z, and then a fully connected layer is adopted to convert Z into X.
After that, this work makes use of the weighted average to integrate X = [x(1),. . . ,x(CH)]
(CH = |G| + |L|) across all channels to obtain the trend level attention d, which will
be concatenated with tr(kt) (1 ≤ kt ≤ M − 1) and used for prediction. Among them,
tr(kt) = |ρ(sk+1)− ρ(sk)| represents the difference between sk and sk+1 , where ρ(sk) cal-
culates the statistics of segment sk (i.e., max, mean or min). Specifically, to improve the
model’s accuracy and interpretability, this study design a two-level attention mechanism
(i.e., a fluctuant level attention and a trend level attention, denoted as α and β. Figure 2
depicts the framework of the proposed model.

Figure 2. An overview of the MVHA model.

3.2. Details of MVHA
3.2.1. Multi-Variate Attentive Model

To enable effective prediction of medical interventions, this work mainly consider the
abnormal wave fluctuations and trends of multivariate signals. To locate such abnormal
patterns from signals, this research proposes a hybrid attentive CNN-LSTM model to
simultaneously exploit local fluctuations and global trends of physiological waveforms.
Specifically, we design two attention mechanisms (i.e., fluctuant level attention and trend
level attention) and embed them into the hybrid model. More details of the proposed
model are shown in Algorithm 1.
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Algorithm 1 Multi-Variable Hybrid Attentive Model

Input:

Multivariable physiological signals

Output:

The predicted result of intravenous intervention: 0 or 1

1: s = getSeg(S); // split S into M equal length segments

2: tr(kt) = getDiff(s); // calculate the difference between sk of all channels

3: P = conv(s); // convert s into features

4: O = sum(P); // output of the CNN layer

5: α = getFluAtt(O); // calculate the fluctuant level attention weights

6: H = biLSTM(αO); // convert αO into recurrent features

7: Z = sum(H); // output of the LSTM layer

8: X = getFull(Z); // convert Z into X through the full connected layer

9: β = getTreAtt(X); // calculate the trend level attention weights

10: ŷi = getPre(βX, tr(kt)); // obtain the prediction result

For a multivariate time series, to exploit the local dependency patterns among different
channels, this study adopted convolutional neural networks to encode the time series and
map them to the latent space. Formally, the study first split G and L of S(t−W, t] into a
sequence of equal length segments. In particular, the segments of S(t−W, t] is defined
as follows.

S(t−W, t] =



g1
1 · · · g1

M
...

. . .
...

g|CG|
1 · · · g|CG|

M
l1
1 · · · l1

M
...

. . .
...

l|CL|
1 · · · g|CL|

M .


(1)

Next, 1-D convolution is applied to the obtained segments to extract features
P = conv(s), where s stands for g(cg)

k or l(cl)
k , P∈RU×J , U is the number of filters, and J

is the length of the segment after convolution (a hyperparameter of CNN [29,34]). And
then, added p(j) along the J axis together to get the value of o, which can be shown as:
o = ∑J

j=1 p(j), o ∈ Ru. The dimension of the M segments output was finally fixed at

O ∈ RU×M, in which the first dimension corresponded to the number of filters and the
second dimension corresponded to the number of segments. Therefore, the output of the
CNN layer is defined as:

o = ∑J
j=1 p(j), (2)

where p(j) ∈ RU , o ∈ RU , and O ∈ RU×M.
Fluctuant Level Attentive Layer. To extract fluctuant level patterns, this study pro-

pose a fluctuant-specific weight vector α (with a size of 1×M) to aggregate the physiological
feature maps. Thus, the model obtains better fluctuant level interpretation o fk = αkok,
where αk represents the weight of the k-th fluctuant level features. Then, to sequentially
represent the history information of the physiological time series, we adopt LSTM to
characterize the long-term temporal dependencies. Specifically, the LSTM units include
a set of gates to control when the information should be maintain in the memory cell,
when it should be forgotten and when it should be outputted. For a given time series
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Xt = {x1,t, x2,t, . . . , xk,t} at time t, the encoder layer employs the input gate igt, the output
gate ogt and the forget gate f gt to jointly control the cell state ct and the output ht as follows:

igt = σ(Wix · xt + Wih · ht−1 + bi), (3)

ogt = σ(Wox · xt + Woh · ht−1 + bo), (4)

f gt = σ(W f x · xt + W f h · ht−1 + b f ), (5)

ct = f gt · ct−1 + igt · tanh(Wcx · xt + Wch · ht−1 + bc), (6)

ht = ogt · tanh(ct), (7)

where the group of tensors W and b are the matrices and bias parameters to be learned
during training, xt is the current input, ht−1 corresponds to the previous state, and ct
is the cell state vector at the current time step. Due to the use of different gates, LSTM
can overcome the vanishing gradient problem and capture the long-term dependencies
of time series. Specifically, this model use a standard configuration of the bidirectional
LSTM network, due to its abilities to capture temporal dependencies. The output of LSTM
is denoted as hk = biLSTM(o f1, o f2, . . . , o fk). Finally, by concatenating the forward and
backward outputs, we obtain the sequential encoding features as H ∈ RJ×M.

Trend Level Attentive Layer. The trend level attentive layer is designed to obtain a
more comprehensive view of the multivariate signals, by fusing attentions across all the
channels. First, a fully-connected transformation is performed on the LSTM feature map
as follows:

X = WT
z Z� bz, (8)

where z = ∑M
k=1 h(k), Z ∈ RJ×CH , Wz ∈ RJ×I , bz ∈ RI , and X ∈ RI×CH . Then, considering

that different signal channels play different roles and have various importance, this model
introduce a trend-specific weight vector β (with a size of 1× CH) to fuse the trend level
attentions as d = ∑CH

k=1 β(k)x(k). Finally, given the encoded state d and the time-varying
variable trch

kt , the model can predict a categorical output yi based on multivariate regression
as follows:

ŷi = so f tmax(Wyi
h d + Wyi

tr trch
kt + byi ). (9)

Specifically, the model adopt the cross-entropy loss function as follows:

CE = −∑Ñ
i=1 yilogŷi,, (10)

where N̂ denotes the number of instances in a mini-batch, yi and ŷi represent the true label
and the predicted label of the i-th instance, respectively.

3.2.2. Hybrid Attention Mechanisms

The above section have described the framework of the proposed model. To further
explain the design principle of the model, this subsection will present the details of the
proposed hybrid attention mechanisms.

In order to better characterize fluctuation and trend changes, this study imported
two attention mechanisms in the proposed model, i.e., a fluctuant attention and a trend
attention. To obtain the fluctuant attention vector α and the trend attention vector β, the
model design is a two-step neural network. Specifically, the first full connection layer is
used to calculate the scores for computing weights, and the second full connection layer is
designed to compute the weights with via Softmax activation.

Fluctuant Attention Mechanism. To characterize fluctuations with attention weights
α, the model first compute the standard deviation of each obtained segment s, and obtain
the fluctuant level knowledge feature vector A f l = SD(S) as follows:

A f l = SD(S) =
1
|s|∑(si − s̄)2, (11)
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where SD(·) calculates the standard deviation of each s of the time series S. Afterwards,
the model concatenates the knowledge features with the output of the CNN layer to obtain
the attention weights:

α = so f tmax(VT
f l

(
WT

f l

[
O

A f l

]
� b f l

)
), (12)

where W f l ∈ R(U+E f l)×D f l is the weighted matrix at the first layer, Vf l ∈ RD f l×1 is the
weighted vector at the second layer, b f l ∈ RD f l is the bias vector, � denotes an addition
with broadcasting, A f l ∈ RE f l×M, and α ∈ RM. We further present the fluctuant attention
in more detail in Algorithm 2. Figure 3 shows the structure of fluctuant attention.

Algorithm 2 Fluctuant Attention Mechanism.

Input:

output of the CNN layer O

Output:

fluctuant level attention weights

1: A f l = SD(S); // calculate the standard deviation of each segment s of the time series S

2: AttO = getSim(O, A f l); // calculate the similarity between O and A f l

3: AttT = getFull(AttO); // convert AttO into AttT through the fully connected layer

4: α = softmax(AttT); // calculate the fluctuant level attention weights

Figure 3. The structure of fluctuant attention mechanism.

Trend Attention Mechanism. Intuitively, signals with significant changes are likely
to contain more important information, and should be given more attentions. However, as
different channels of the multivariate time series usually have different amplitudes, this
study adopts the min-max scaling to normalize the time series first, based on which this
model further extracts the trend level knowledge feature weights Atr of each channel as:

trcch = max| 1
|sch

k |
(∑ sch

k )− 1
|sch

k” |
(∑ sch

k” )|. (13)

Based on the above formula, the model can obtain the trend level knowledge feature
vector Atr = [trc1, . . . , trcCH ], and then calculate the attention weight β as follows:

β = so f tmax(VT
tr

(
WT

tr

[
X1:CH

Atr

]
� btr

)
), (14)
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where Wtr ∈ R(U×M+Etr)×Dtr and Vtr ∈ RDtr×1 are the weighted matrix and vector in the
first and second layers, respectively. btr ∈ RDtr is the bias vector, � represents an addition
with broadcasting, Atr ∈ REtr×CH , and β ∈ RCH . We further present the proposed trend
attention in more detail in Algorithm 3. Figure 4 shows the structure of trend attention.

Algorithm 3 Trend Attention Mechanism.

Input:

physiological time series S

Output:

trend level attention weights

1: nsch = getNor(sch); // normalize each channel of the time series

2: msch
k = getMean(nsch

k ); // calculate the mean of the k-th segment nsk

3: dsch
k = getDi f f (msch

k , msch
k′
); // calculate the difference between all the segments

4: trcch = getMax(dsch
k ); // obtain the maximum value of dsch

k

5: AttO = getSim(X, trcch); // calculate the similarity between X and trcch

6: AttT = getFull(AttO); // convert AttO into AttT through the fully connected layer

7: β = softmax(AttT); // calculate the trend level attention weights

Figure 4. The structure of trend attention mechanism.

4. Experiments

This section first describes the dataset and baseline models used in this work, and
then presents the experimental results.

4.1. Dataset

To evaluate the performance of the proposed model, this research use the MIMIC-III
(Multi-parameter Intelligent Monitoring in Intensive Care) Waveform Database Matched
Subset [63]. MIMIC is a publicly available benchmark dataset which contains over
58,000 hospital admissions from approximately 38,600 adults, whose physiological sig-
nals were recorded continuously in ICUs. These waveform records include thousands
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of recordings of waveforms (such as one or more channel of ECG signals) and the time
series of vital signs (such as heart and respiration rates). This research chose 18 frequently
used rescue intravenous drugs in critical care unit (CCU) [64], which is a special depart-
ment of the ICU, and got 19,608 experimental records. These medications include sodium
nitroprusside, nitroglycerin, dopamine, dobutamine, norepinephrine, milrinone, amio-
darone, lidocaine, epinephrine, adenosine, alteplase, esmolol, diltiazem, phenylephrine,
hydralazine, nesiritide, procainamide, and isoproterenol.

In the experiment, this work aimed to predict whether an intravenous injection of the
mentioned drugs is needed. Specifically, this research formulates the prediction issue as a
binary classification problem, i.e., whether the patient needs an injection within a certain
time period. Normally, the medical staff of the emergency treatment in ICUs would inject a
variety of drugs into patients in a relatively short time period. Therefore, this work takes
all drugs that were injected 2 min before and after a certain time point as the same group.
For example, as shown in Figure 5, the subject was given a group of injections, including
three doses of norepinephrine and one dose of lorazepam.

Figure 5. One subject’s multi-channel time series which includes a group of intravenous injections.

Accordingly, this work identified 18,792 groups of intravenous injections. For each
injection event, 30 min of time series were extracted from the dataset by taking the event
as an endpoint. With the constraint that there should be only one group of intravenous
injections in the extracted time series, a total number of 14,465 groups were obtained. The
experiment took the first half of each time series as a negative sample and the second half
as a positive sample. Specifically, the obtained time series consisted of five vital signs,
i.e., heart rate (hr), pulse, respiratory (resp), peripheral capillary oxygen saturation (SpO2)
and ECG. Missing values were imputed using piecewise cubic spline interpolation in the
experiment.

4.2. Experimental Setup and Baseline Models

Training and Implementation Details. For the training of CNNs, various numbers of
convolutional layers (ranging from 1 to 5) and filters (ranging from 8 to 64) have been tried,
with the hyperparameter of stride setting as 1 or 2. Similar to existing studies [29,65,66],
this study use batch normalization, rectified linear unit (ReLU) activation and max pooling
between convolutional layers to prevent overfitting. Specifically, this model utilize a 3-layer
CNN for high-frequency time series (i.e., EEG) with the filter size ranging from 10 to 3, a
2-layer CNN for the other time series with the filter size varying from 5 to 2.

Furthermore, this work explore the Bi-LSTM from one to eight layers and the number
of hidden units from 8 to 64. Meanwhile, different configurations are tested, including
different mini-batch sizes (16, 32 and 128) and different optimizers (stochastic gradient
descent, adagrad and Adam). Specifically, the model used a 3-layer Bi-LSTM by setting the
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number of hidden units to 16. The model’s initial weights/parameters are given randomly,
and the learnable ones are updated in each loop based on the Adam optimizer, with the
learning rate of 0.002. The dropout rate is set to 0.5 in the fully connected prediction layer.
The model is trained with a mini-batch size of 128 samples, and the dataset is randomly
divided into three subsets, i.e., a training set (70%), a validation set(10%) and a test set
(20%). In our experiments, all models are implemented with Pytorch 1.1.0 and the used
machine is equipped with Intel Xeon E5-2640, 256 GB RAM, 8 Nvidia Titan-X GPU and
CUDA 8.0. The workflows of the proposed hybrid CNN-LSTM model is shown in Figure 6.

Figure 6. The concrete architecture of the hybrid model. In each layer, the meaning behind symbol
‘@‘ indicate the size of the convolution filter, the number of neurons, the stride of the filter, or the size
of the pooling layer, the stride of the pooling layer, respectively.

Baseline Models. In this work, different baselines are employed to compare with the
proposed model MVHA.

(a) CNN (ECG)—The CNN model is performed on one minute of ECG segments, fol-
lowed by a fully connect layer and a Softmax layer for prediction;

(b) CNN-LSTM—The vanilla CNN and Bi-LSTM are trained using the full time series,
with a fully connect layer and a Softmax layer on the top of the hidden layers;

(c) CNN-FAttn—The CNN model is used to encode all the time series, with the fluctuant
level attention mechanism for better representation;

(d) CLSTM-FAttn—The fluctuant level attention mechanism is introduced to the CNN-
LSTM model;

(e) CLSTM-TAttn—The trend level attention mechanism is introduced to the CNN-LSTM
model.

4.3. Experimental Results

The experiment measure the models’ performance based on accuracy (ACC), area
under the ROC curve (ROC-AUC) and F1 score.
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Table 2 reports the performance of each model on the prediction task. The results reflect
that the proposed model MVHA outperforms all other models. Meanwhile, all attention-
based predictions show better performance than without, which agree with the premise of
utilizing the attention mechanisms can distinguish between samples more clearly in result.
In order to get a better view of the results, a boxplot graph of the accuracy is shown in
Figure 7.

Table 2. Performance comparison of different models.

ACC ROC-AUC F1

CNN (ECG) 0.8129 0.7917 0.7630
CNN-LSTM 0.8090 0.7845 0.7417
CNN-FAttn 0.8257 0.8119 0.7672

CLSTM-FAttn 0.8314 0.8181 0.7581
CLSTM-TAttn 0.8137 0.7931 0.7617

MVHA 0.8475 0.8318 0.7831

Figure 7. The boxplot diagram of accuracy.

CNN (ECG) has a relatively satisfied classification result and two main reasons are
speculated: first, the samples came from CCU which treated patients with severe cardiac
diseases, and these acute diseases influence the ECG directly; second, high dense signals
contain enough information for completing some certain tasks, and the ability of the
designed CNN could utilize these multidimensional inputs efficiently. In other ways,
however, its performance was inferior to that of other models (such as CNN-FAttn), perhaps
suggesting that ECG needs to be integrated with other time series data for prediction tasks.
CNN-FAttn hold all the time series and fluctuant level attention mechanism to improve
performance. Particularly, CNN-FAttn surpasses CNN (ECG) by up to 1.5% for ACC,
which indicates that the representatives from wider signal sources help in performance
improvement.

The rest of the five kinds of models incorporate both CNN and LSTM. CNN-LSTM
gives the relatively poorer experiment results compared with other models. It can be
explained that a proper short space of waveform from the injection point could provide
sufficient contextual information and, if too long, may undermine information already
mined from previous search time series. In a further study, the shorter waveforms may
be used for such research. Adding multi-channel trend level attention CLSTM-TAttn has
higher scores compared to CNN-LSTM, but did not beat CNN-FAttn and CLSTM-FAttn,
maybe indicating that whencomparing with the trend variation in a short time, the violent
fluctuation of signals seems to be more significant for impending need intravenous injection.
Furthermore, it can be found that whatever type of attention models we decided to use, the
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method can improve the classification performance. Lastly, the proposed model MVHA that
incorporates changes from both fluctuation and trends events reaches the best performance
on prediction. That is, mining the fluctuation pattern and overall variation trends could
retain more useful information for the classification.

To validate the interpretability of the proposed attentive model, Figure 8 presents the
predicted risk level for an intravenous injection of an unseen patient. Accordingly, this
study can find that the patient is predicted to have a higher risk of intervention than average
during the 11th–13th min (highlighted cells as yellow and orange). Apparently, a time slice
would receive higher attention if it is closer to the time point of an intravenous injection or it
contains significant fluctuations, which proved the effectiveness of the proposed fluctuation
level attention mechanism.

Figure 8. The risk level for an intravenous injection predicted by MVHA. The learned attention cells
are highlighted in orange (above 0.15) and yellow (between 0.1 to 0.15).

In addition, for the trend level attention (as shown in Figure 9), we find that the ECG
channel receives the highest attention weight, the other three channels (i.e., Heat, Pulse
and Resp) attract slightly lower attention, and the SpO2 channel has the lowest attention.
It indicates that, on the one hand, ECG provides the most important evidence for the
prediction of intravenous injections. On the other hand, while high-frequency time series
contain abundant information, it is still necessary to take into account other vital signs to
enable timely and accurate medical interventions.

Figure 9. The trend level attention of different channels.

5. Conclusions and Future Work

This paper proposed a hybrid deep model to enable timely medical intervention by
exploring health-related multivariate time series. Specifically, CNNs were utilized to mine
local features and LSTM to depict time-dependent features. Furthermore, to improve the
interpretability of the prediction result, a two-level attention mechanism (i.e., fluctuant
level attention and trend level attention) is developed to focus on key time slices and
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key channels. MVHA is finally set as 3-layer CNNs for high-frequency time series, 2-
layer CNNs for numerical waveforms plus 3-layer Bi-LSTM. Total number of learnable
parameters in our model is 3392. Experiments on the MIMIC dataset showed that the
proposed model significantly outperformed baseline models. In the future, we plan to
extend the proposed model by taking into account multi-modality data, such as medical text
and medical image and another possible future direction is to study other kinds of medical
interventions. Meanwhile, sparse neural networks, which use what is known as network
pruning, would be adopted by a future model in order to reduce the computational load.

Further, in this work, by exploiting multi-channel waveforms, a hybrid attentive
neural network was used to predict whether an intravenous injection is needed or not. On
the other hand, many correlative references (such as Chen et al. [67]) also demonstrated that
a rule-based system in the ICUs could execute decisions much faster with proper training
for tagging critical events. However, against the background of this thesis, limitations of
rule-based systems are as follows: first, when complex and high-density databases are
involved in one decision, it can be hard for humans to try instituting detailed and complete
rules; second, if researchers want to make rule-based systems successful, it is important
to consider the domain expertise, but that is not fully known at design time. While deep
learning is more beneficial for analyzing the data and looking for correlations, rule-based
systems are relatively simple and their output is easy for a human to debug. Meanwhile,
because using the rule engine‘s data can come in handy in increasing the performance of the
deep learning algorithm [68], in future work, neural network and operating rules systems
would be considered in tandem, and this could be more beneficial to the framework than
replacing rules entirely.
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