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Abstract: Cryptographic algorithms are used to ensure confidentiality, integrity and authenticity of
data in information systems. One of the important areas of modern cryptography is that of symmetric
key ciphers. They convert the input plaintext into ciphertext, representing it as a random sequence of
characters. S-boxes are designed to complicate the input–output relationship of the cipher. In other
words, S-boxes introduce nonlinearity into the encryption process, complicating the use of different
methods of cryptanalysis (linear, differential, statistical, correlation, etc.). In addition, S-boxes must be
random. This property means that nonlinear substitution cannot be represented as simple algebraic
constructions. Random S-boxes are designed to protect against algebraic methods of cryptanalysis.
Thus, generation of random S-boxes is an important area of research directly related to the design of
modern cryptographically strong symmetric ciphers. This problem has been solved in many related
works, including some using the simulated annealing (SA) algorithm. Some works managed to
generate 8-bit bijective S-boxes with a nonlinearity index of 104. However, this required enormous
computational resources. This paper presents the results of our optimization of SA via various
parameters. We were able to significantly reduce the computational complexity of substitution
generation with SA. In addition, we also significantly increased the probability of generating the
target S-boxes with a nonlinearity score of 104.

Keywords: simulated annealing algorithm; nonlinear substitutions; iterative search; computational
complexity; S-box

1. Introduction

Data encryption algorithms with symmetric keys are used in modern computer sys-
tems to ensure confidentiality, integrity, authenticity and other information security ser-
vices [1–3]. The main condition for using such encryption algorithms is the availability of a
secret key, which is identical for the sender and receiver of data.

An important component of most modern secret-key ciphers is nonlinear substitution
(S-boxes). These boxes are designed to introduce complex nonlinear relationships into
the plaintext–ciphertext relationship. In fact, S-boxes play a crucial role in providing
cryptographic strength. Using classical terms of the theory of secret systems [4], S-boxes
provide the confusion property, which plays a crucial role in protecting against differential,
linear, statistical, correlation and many other types of cryptanalysis [1,5].

According to modern concepts, nonlinear substitutions in cryptography should be
random [2]. Nonrandom methods of substitution generation can cause vulnerabilities in
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cryptoalgorithms [6,7]. For example, the well-known encryption algorithm AES [8] uses
algebraic (not random) methods of S-box generation, and this fact was the reason for the
appearance of algebraic cryptanalysis [9,10]. The simplicity of algebraic construction of
S-box cipher AES is used to criticize this cryptoalgorithm. Thus, methods of generating
S-boxes should be based on the use of random substitution processes.

One of the well-known methods for generating S-boxes is the simulated annealing (SA)
algorithm [11–14]. The name of this algorithm comes from annealing in metallurgy, when
heating and controlled cooling of a metal determine its physical properties [15]. These
processes are simulated by a computer program for nonlinear substitution generation. The
initial temperature sets the probability of random change in the S-box. This temperature
gradually decreases, which leads to a gradual reduction in random changes. As a result,
the process solidifies, and we have a final stand, the cryptographic properties of which are
determined by the SA parameters.

It should be noted that SA suffers from the capture of local optima [15,16]. Nev-
ertheless, this algorithm is well suited for solving the substitution generation problem.
The global optimum in this problem corresponds to the maximum nonlinearity of the
substitution, and this is achieved by using special algebraic structures in the finite field.
For example, known algebraic constructs from [17,18] provide maximum nonlinearity
of Boolean mappings (these very constructs were used to generate AES cipher substitu-
tions [8]). Such mathematical constructs are described by simple algebraic equations, which
can potentially be used to find cipher vulnerabilities [6,7,9]. We are interested in generating
random highly nonlinear S-boxes that have no hidden mathematical structures, i.e., we are
looking for local optimums of nonlinearity, and SA is well suited for this problem.

Substitution generation using SA has been investigated by many authors. However,
the computational complexity of the known solutions is very high. For example, it took
more than 3 million iterations to generate an 8-bit bijective substitution with nonlinearity
104 in [12]. In addition, the probability of generating a target S-box is also very low. For
example, in [11,19], the probability of generating a statement with nonlinearity 102 was
about 0.5%.

In this paper, we optimized the SA parameters to generate target S-boxes (hereinafter,
the target refers to an 8-bit bijective substitution with nonlinearity 104). Our optimization
of SA allowed us to significantly reduce the computational complexity (about 450 thousand
iterations are required) and increase the probability (more than 50%) of generating the
target S-boxes.

2. Related Work

Evolutionary techniques of computational intelligence are used to solve complex
computational problems related to mathematical optimization and search for the best
element by some criterion from some set of available alternatives [20,21]. Evolutionary
algorithms are used to solve various combinatorial optimization problems [22,23]. For
example, these include global and engineering optimization problems [24], production
re-planning in Industry 4.0 [25], optimization [26] and routing problems [27], and industrial
production optimization [28].

One of the most efficient methods for solving global optimization problems (especially
discrete and combinatorial optimization) is SA. This algorithm is inspired by the natural
processes that occur in the annealing of metals. The algorithm is based on the simulation
of the physical process that occurs when a substance crystallizes. It is assumed that the
atoms of matter are almost lined up in a crystal lattice, but transitions of individual atoms
from one cell to another are still allowed. The higher the temperature, the greater the
activity of the atoms. The temperature is gradually lowered, which leads to a decrease in
the probability of transitions. A stable crystal lattice corresponds to the minimum energy
of the atoms. In computational intelligence, this process is simulated as a computational
algorithm for solving a global optimization problem, i.e., it is necessary to find the point
(set of points) where the minimum (or maximum) of some target function is reached.
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The first works that used SA for the problem of generating nonlinear S-boxes were
the works of John A. Clark [11,19]. The author managed to generate an 8-bit substitution
with a nonlinearity of 102. In addition, he proposed a cost function for SA, which was
used in further related works [29–32]. In [30,32,33], other forms of the cost function were
investigated. In [12–14,34], SA for generation of highly nonlinear S-boxes was investigated.
However, the computational complexity of solving this problem turned out to be very high.
For example, in [12], they managed to generate an 8-bit bijective S-box with nonlinearity
104, but it required more than 3 million iterations. In [13], the authors managed to generate
a substitution with nonlinearity 100, which is significantly lower than other known results.
SA was also used in [14] to generate permutations, but only nonlinearity 92 was achieved.

Thus, SA is used to generate nonlinear substitutions in cryptography. However,
the computational complexity of the generation algorithm is very high. In addition, the
probability of generating a target S-box is very low. For example, in [11,19], the probability
of generating a statement with nonlinearity 102 was about 0.5%.

3. Materials and Methods

The main characteristic of heuristic search is the cost function C(S), which displays
the state of the system in some natural way.

We used the function from [33,35] as the substitution cost function:

C(S) =
255

∑
i=1
||max(WHT)| − X|R. (1)

where:

n WHT—Walsh–Hadamard spectral coefficients;
n X and R—some parameters of the target function WHS.
n As the optimal parameters of the function (1) selected [33,35]:
n X = 36 as the maximum permissible value, which reduces C(S), but does not lead to

a significant effect on its adequate relationship with the nonlinearity of the S-box;
n R = 4 as the maximum allowable value, increasing the range of function values C(S),

which can improve the “sensitivity” of S-box formation algorithms.

Note that when calculating the cost function C(S), the nonlinearity of the S-box was
simultaneously calculated:

N f =
1
2
· (2n −max(WHT)) = 128− 1

2
·max(WHT). (2)

The main advantage of SA is its ability to escape from local optima. This is achieved
due to the ability of the algorithm to take some deteriorating steps in the local understand-
ing but ensure that the algorithm advances and finds a better state.

The first application of the simulated annealing algorithm to the problem of S-box
generation was given in [8]. At the beginning of the algorithm, the initial solution Sbest_sbox,
which provides, firstly, the property of bijectivity of the S-block and, secondly, its random
nature, is formed. Then, a slight modification of the current state is performed. The new
S-block state will be denoted as Sn.

After each modification, the cost Function (1) is calculated for Sn. This value is
compared with the previous best solution, i.e., with the value of the cost function for
Sbest_sbox. If Condition (3) holds,

C(Sn) ≤ C(Sbest_sbox), (3)

then the algorithm takes Sbest_sbox = Sn. Using Condition (3) increases the number of
possible solutions.
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The main advantage of SA is the possibility of making a worsening decision, i.e., one
that does not satisfy Condition (3). In our algorithm, if Condition (3) is not satisfied, the
algorithm makes a worsening decision Sbest_sbox = Sn with Probability (4):

Pr(Sbest_sbox = Sn) = e(
C(Sbest_sbox)−C(Sn)

Ti
), (4)

where Ti = α · Ti−1 is the temperature equivalent in the process of metal annealing. In our
case, this is a parameter characterizing the probability of deterioration of the current state.

The pseudocode of the implemented SA is shown in Figure 1.
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Figure 1. Pseudocode of the proposed annealing simulation algorithm.

At each value of the current temperature Ti, the algorithm performs kint iterations (let
us call them inner cycles). The number of changes in the current temperature is determined
by the parameter kout (let us call it the number of external cycles). In order to limit the
number of external iterations that do not yield improvements, we also introduced the
parameter k f roz—the maximum number of external iterations without improvements.

The implemented algorithm of S-boxes generation was adapted to run in multi-
threaded search mode.

4. Test Cases

When implementing the simulated annealing algorithm for S-box generation, we used
the following initial parameters:

n KTHREAD—the number of threads in which the simultaneous search takes place. In
our case, KTHREAD = 30, which corresponded to the maximum number of threads
supported by the computer’s processor;

n T0—initial “temperature” value. It is stated in [36] that T0 should provide an initial
worst-case decision probability of 50–80%. We investigated the search efficiency at
different values of T0;

n α—“cooling coefficient”, which determines how much the temperature decreases
at each iteration of the algorithm. We investigated the search efficiency at different
values of α;

n kint—parameter, which specifies the number of internal cycles that the local search
algorithm can perform at each temperature. We applied kint = 650 (i.e., the total
number of internal tests was . 30 × 650 = 19,500 ); Stopping criteria. The stopping
criteria used were as follows:



Sensors 2022, 22, 6073 5 of 19

– N f —the target value of the nonlinearity (4) of the S-box. In our experiments,
we limited ourselves to the value N f = 104, i.e., the search stops when Sn with
nonlinearity 104 is found;

– kout—the maximum number of external cycles, i.e., how many times the SA
algorithm was allowed to lower the temperature and continue searching before it
stopped. We used kout = 50;

– k f roz—the number of consecutive outer cycles in which no improvement of the
cost function was found. We used k f roz = 5.

The individual parameters of the algorithm (kint, kout, k f roz) were chosen from the
considerations given in [35].

The initial temperature varied from a value where the probability of making the worst
decision was almost zero to a higher one where the probability was close to one.

The increase in T0 was performed according to the rule:

Ti+1
0 = 1.13 · Ti

0. (5)

For each Ti
0 of (5), 100 runs of the simulated annealing algorithm were performed.

The parameter α varied from 0.6 to 0.95:

n for α =0.6, 10,100 runs of the search algorithm were performed;
n for α =0.7, 7600 launches were performed;
n for α =0.8, 5700 launches were performed;
n for α =0.9, 8200 launches were performed;
n for α =0.95, 8200 launches were performed.

The constraint k f roz = 5 resulted in the loss of some solutions for which the algorithm
could still find the target S-box with nonlinearity 104. However, the expediency of further
search was considered small compared to the time spent.

5. Results

The first part of the experiments consisted in estimating the number of runs of the
search algorithm for which no improvement of the cost function was found for a long time.
The obtained results are shown in Table 1.

Table 1. Distribution of the number of search algorithm runs for which no improvement of the cost
function was found.

α
The Number of External Loops of the Algorithm for Which No Improvement of the Cost Function Was Found

0 1 2 3 4 5

0.6 4281 42% 3042 30% 1509 15% 725 7% 402 4% 141 1.4%

0.7 2722 36% 2510 33% 1245 16% 641 8% 355 5% 127 1.7%

0.8 1362 24% 2060 36% 1244 22% 592 10% 322 6% 120 2.1%

0.9 2168 26% 1671 20% 1634 20% 1466 18% 955 12% 306 3.7%

0.95 2299 28% 1684 21% 1333 16% 1163 14% 1167 14% 554 6.8%

As we can see from the data in Table 1, there is an increase in time with increasing
α in which no improvement in the cost function was found. This can be explained by an
increase in the share of accepted value function deteriorations, which in turn leads to an
increase in the probability of exiting the local minimum.

The second part of the experiments consisted in estimating the probability of forming
the target S-box. The results are shown in Figures 2–5. The probabilities were estimated
as the ratio of the number of generated target S-boxes to the total number of runs of the
algorithm. Additionally, we measured the average time to generate substitutions. The
results obtained are shown in Figures 6–9. The average generation time includes the time
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spent on unsuccessful runs of the search algorithm. For all graphs in Figures 2–9, we
additionally present the trend line.
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To detail the obtained results, Figures 10–13 show the dependencies of the number of
iterations of the outer loop (until one of the criteria for stopping the algorithm is fulfilled):

• The upper curve (red) corresponds to the maximum number of iterations;
• The middle curve (yellow) corresponds to the average number of iterations;
• The lower curve (green) corresponds to the minimum number of iterations.
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for stopping the algorithm is met), α = 0.9.

The most interesting dependencies are shown in Figures 14–17. These dependencies
are dependences of number of iterations of external loop (until one of the criteria of
algorithm stopping is fulfilled) under the condition of successful start of the algorithm.
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In other words, dependencies in Figures 14–17 correspond to the cases when running the
search algorithm resulted in generation of the target S-box:

• The upper curve (red) corresponds to the maximum number of iterations;
• The middle curve (yellow) corresponds to the average number of iterations;
• The lower curve (green) corresponds to the minimum number of iterations.
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Analysis of the dependencies shown in Figures 2–5 shows that when the initial tem-
perature T0 increases, the probability of forming the target S-box also increases. However,
the average generation time does not decrease. This can be clearly seen in Figures 6–9.
For each value of α, we have the “optimal” value of the initial temperature T0, at which
the generation time is minimized. This conclusion is also confirmed by Figures 10–17,
where we see that all iteration number curves can be optimized by the value of the initial
temperature T0.

The final dependencies of the total number of iterations (external and internal cycle)
are shown in Figures 18–21.
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The analysis of the dependencies shown in Figures 18–21 allows us to draw the
following conclusions:

• As the value of T0 grows, the total number of iterations is almost the same until a
certain value (T0 = 30,000. . . 70,000, depending on α) and then begins to grow rapidly,
which causes a significant increase in the time to execute each run of the algorithm.

• If the α is increased, the total number of search iterations decreases, i.e., substitution
generation is performed faster.
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6. Discussion

At small values of the initial temperature, the probability of making a worsening
decision is very small, and therefore the simulated annealing algorithm behaves like a
normal algorithm for finding a local minimum and, accordingly, has the same probability
value of forming the target S-box and the average search time.

As the initial temperature increases, the probability of making worsening decisions
increases, leading to an exit from the current state, which on the one hand may be an
unnecessary local minimum and on the other hand may be one of the acceptable decisions
that can lead to the formation of the target S-box. Analysis of the results indicates that
the arithmetic mean value of the nonlinearity N f is reached approximately at the outer
loop iteration, which corresponds to the current temperature of the found minimum
(T0 =20,000 . . . 40,000).

A higher temperature leads to so-called non-productive deteriorations, i.e., deteriorations
that lead to a permanent rollback of the found solution to the deteriorated state. Therefore,
more iterations that are performed under nonproductive deteriorations can also be referred
to nonproductive iterations, i.e., those that do not lead to improvement of the overall state of
the system.

From the analysis of N f results, it can be seen that in the right part, the arithmetic
mean values of N f reach the values corresponding to the left part after the first iteration
of the outer loop only after approximately the number of iterations that lead the current
temperature to the values of the found minimum (T0 =20,000 . . . 40,000).

The search time for the target S-box also changes. Starting from small values of T0
with a gradual increase, the search time decreases and at the end of the middle stage can
be 1.5–2 times less than the value. Then, given the significant amount of non-productive
degradation, the search time increases significantly. The higher the value of T0, the greater
the amount of nonproductive degradation, and the higher the value of α, the longer it lasts.

If the initial temperature is high or the rate of its decrease is low, a significant number
of external cycles is needed to stabilize the system in some local minimum. If the maximum
number of external cycles is insufficient, the algorithm may not find a local minimum, which
leads to a significant decrease in the number of solutions found or to their complete absence.

The initial temperature at which the probability of finding the target S-box is max-
imal and no unproductive iterations are observed will be called the optimal temperature
(labeled as Topt

0 ). The found minimum of the average time of formation of the target S-box
corresponds to the initial temperature interval Topt

0 =20,000 . . . 40,000. As the parameter α
increases, the minimum shifts toward a smaller value of T0.

To increase the accuracy of the values obtained, the number of runs for each tem-
perature was increased to 1000. For an acceptable test time, the range of values of
T0 = 12,500 − 37,500 was reduced, and only 11 values of T0 were tested with three values of
α = 0.85; 0.9; 0.95 (testing was performed for 77 h). The results of the probability of forma-
tion of the target S-box and the average time of formation are shown in Figures 22 and 23.

According to the given data, with the chosen parameters (kout = 50, kint = 650, k f roz = 5,
KTHREAD = 30), the best results are obtained at α = 0.95 and T0 = 20,000. The probability of
finding the target S-box (from N f = 104) is 56.4%, and the average search time is 14.2 s.

To compare the results with other known implementations of the SA algorithm, Table 2
gives estimates of the difficulty of finding the target S-box (with nonlinearity N f ). The “-”
marks in Table 2 indicate cases with indeterminate indicators.
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Table 2. Comparison of the results obtained on the generation of bijective 8-bit S-boxes (for different
implementations of the SA algorithm).

SA [11], SA [37] SA [14] SA [12] Our Work

The highest value of N f obtained in the found S-box 102 92 104 104

S-box generation probability 1/200 = 0.5% - - 56.4%

S-box generation (search) time - - - 14.2 s

Generation complexity (number of search iterations) - - 3,000,000
30,000,000 450,000
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7. Conclusions

We were able to significantly reduce the computational complexity of substitution
generation using SA. In addition, we have also significantly increased the probability of
generating the target S-boxes with a nonlinearity score of 104.

Based on the results of our studies, we conclude that the simulated annealing method
does a good job of finding the target (i.e., with specified properties) S-box. If the algorithm
parameters are well chosen, the probability of finding an S-box with nonlinearity N f = 104 T
will be almost unity.

However, a 100% probability of finding the target S-box is not the optimal path in
terms of time spent searching. Introducing additional constraints reduces the time spent on
each attempt but also reduces the probability of finding the target S-box in each attempt.
Therefore, the search results using the simulated annealing method are very sensitive to
all input search parameters, and their optimization is a very time-consuming process. The
influence of input parameters of simulated annealing method on the search result of target
S-box was investigated. Based on the results of the study, the comparative characteristics of
the search time and the internal states of the algorithm are presented, and optimization
by the search time minimization criterion was carried out. With the chosen algorithm
parameters (kout = 50, kint = 650, k f roz = 5, KTHREAD = 30), the best results were obtained
with α = 0.95 and T0 = 20,000. In this case, the probability of finding the target S-box (from
N f = 104) is 56.4%, and the average search time is 14.2 s. The algorithm requires about
450,000 search iterations on average. As the number of internal iterations increases, the
probability of detecting the target S-box increases to 97%. This is the best known result of
applying the SA algorithm to generate bijective 8-bit S-boxes.
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