
Citation: Riem, R.; Raman, J.;

Rombouts, P. A 2 MS/s Full

Bandwidth Hall System with Low

Offset Enabled by Randomized

Spinning. Sensors 2022, 22, 6069.

https://doi.org/10.3390/s22166069

Academic Editors: Giuseppe Ferri,

Gianluca Barile and Alfiero Leoni

Received: 29 June 2022

Accepted: 12 August 2022

Published: 14 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A 2 MS/s Full Bandwidth Hall System with Low Offset Enabled
by Randomized Spinning
Robbe Riem * , Johan Raman and Pieter Rombouts

Department of Electronics and Information Systems, Ghent University, 9000 Ghent, Belgium
* Correspondence: robbe.riem@ugent.be

Abstract: In this paper, a Hall plate readout with a randomized four-phase spinning-current scheme 
is proposed. The goal is to remove the maximum number of offset components, including the offset 
associated with spike demodulation. The outcome is that only the smallest possible offset remains, 
corresponding to the residual offset of the Hall plate which cannot be distinguished from the Hall 
signal. An additional innovation is to operate various offset-reduction loops in spread-spectrum 
mode, allowing the removal of error components without notching out any in-band signals. The 
resulting approach delivers a very large notch-free bandwidth while simultaneously reducing the 
Hall plate residual offset, making it an enabler for high-bandwidth Hall-based current sensors. To 
demonstrate the proposed techniques, we have realized a mixed-mode experimental circuit, where 
the analog part is implemented in a custom integrated circuit, and the digital control system in an 
FPGA is connected to the analog chip. Measurement results feature a Hall readout system with a 
notch-free bandwidth up to 820 kHz and a 47 µTrms noise floor. The input-referred Hall plate offset, 
based on statistical measurements on 10 samples from a single wafer, is reduced from 130 ± 22 µT to 
only 23 ± 22 µT.

Keywords: Hall plate; current spinning; ILSA; randomized spinning; offset; spread-spectrum offset 
reduction loop (SS-ORL)

1. Introduction

Hall plates are widely used as magnetic field sensors because they can be easily co-
integrated with on-chip readout circuitry in nearly all standard Complementary Metal
Oxide Semiconductor (CMOS) technologies. They form a cheap solution for various
applications requiring contactless position sensing or galvanic isolated sensing of large
electric currents [1–7]. A well-known disadvantage of Hall plates is their relatively large
offsets compared to the weak information signal that is generated by the Hall effect [1,8,9].
Furthermore, this offset is sensitive to temperature and mechanical stress, forming a
significant and largely unpredictable disruptive signal in the sensor measurement system.

A popular technique to combat the Hall plate offset is current spinning [10]. Here,
the path of the bias current is constantly changed from one readout to the next. On a system
level, the net result of current spinning is that the offset and the useful signal are separated
in frequency in a way that is completely analogous to chopper modulation [11]. However,
while current spinning is a key enabler for dealing with the Hall plate offset, it is not a
solution on its own. The offset component is still fully present in the Hall plate output
signal. Suppression of the offset-related components is in practice performed by means of
filtering [11] or an offset reduction loop (ORL) [1,2,12–18]. A drawback of such an approach
is that, in principle, it prevents the signal bandwidth from extending beyond the chopping
frequency. Indeed, for a signal frequency exactly equal to the chop frequency, the spinning
scheme fails to put offset and signal components at different frequencies, and therefore
the signal is interpreted by the readout chain as an offset that is to be removed. In many
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applications, the potential removal of an in-band signal is not acceptable, which implies
that the sensor bandwidth is fundamentally limited by the chop frequency resulting from
current spinning. This limitation of the spinning Hall readout can be circumvented by
combining the readout from multiple paths [1,2], but this comes at a cost in terms of system
complexity and area.

Recently, a readout system has been presented in the literature that comes close
to the maximum achievable bandwidth [13]. However, there is still an offset-related
tone present at half the chop frequency, which is a known consequence of using four-
phase spinning of the Hall plates [1,13]. Similar to the main chop tone, the half-rate
chop tone can also be removed by means of linear filtering or an ORL. For instance,
in [1,2] up to three distinct analog offset reduction loops are applied that together tackle
the main and the half-rate chopper tones. Next to the cost in terms of die area, power
consumption and design complexity, there is again a more fundamental problem associated
with these approaches: an input signal at the half chop-rate frequency is removed as
well. As a result, the (guaranteed) bandwidth of the system is in practice halved. For
many applications, this may not pose a problem, e.g., for position sensing [19]. However,
in current-sensing applications, there is a much higher demand for bandwidth [20], and a
50% loss in bandwidth purely because of one parasitic tone is an unfortunate side effect.
Two-phase spinning [10,21] is also an option, in which case there is no half-rate tone.
However, this increases the residual Hall plate offset with a significant factor (experimental
results in Section 5 show a factor of over 6×). When wanting both the full bandwidth
and the best possible offset reduction, the only currently known option that allows this is
to apply four-phase spinning and subsequent removal of the parasitic tone by means of
calibration. However, due to the finite accuracy of the calibration method, it is expected
that some residual tone will be present at the half-chop frequency. So, while calibration
is a possibility, there is a genuine interest in alternative approaches which are easier and
economically more viable.

The purpose of the present paper is three-fold. First, we want to demonstrate that
by adding randomization to the spinning scheme, in line with what is proposed in [22],
all offset-related errors can be spread over the complete bandwidth, except for the funda-
mental residual offset of the Hall plate. This is in contrast to normal four-phase spinning
where the energy of the half-rate chop tone is fully concentrated at a single frequency. The
randomized approach also allows us to distinguish between many more offset components,
e.g., also those caused by spike demodulation. Secondly, we show that the randomization
is an enabler for specialized offset reduction loops that operate in spread-spectrum mode.
Not only does this allow the removal of the different offset components, the offset reduction
loops can also operate “under the radar” without notching out any in-band signals. This
way, it is possible to deliver full-bandwidth readout without the need for calibration-based
removal of the half-rate chopper tone. Furthermore, we present a fully digital implemen-
tation of the spread-spectrum offset reduction loops, which provides a competitive and
highly flexible solution compared to prior-art analog-oriented offset reduction loops. We
will show that combining the aforementioned techniques enables us to increase the spin
frequency while reducing the residual DC offset. This circumvents the trend observed
in [23] that residual offset significantly increases at high spin frequencies.

The rest of this paper is organized as follows. In Section 2, we construct an error model
for the various offset sources of the Hall plate. Based on this model, we discuss classical
spinning, after which we introduce randomized spinning. In Section 3, we introduce offset
feedback loops adapted for making them interoperable with randomized spinning, leading
to the spread-spectrum offset reduction loop (SS-ORL). The prototype 2 MS/s Hall system
enabled by the randomized spinning and the SS-ORLs is showcased in Section 4. Finally,
measurements on this prototype are extensively discussed in Section 5.
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2. Error Model

Integrated Hall plates come in two distinct flavors: horizontal and vertical. Our
test chip and drawings mostly hint at horizontal Hall plates. These typically have a 90◦

rotational symmetry and four electrical contacts. Vertical Hall plates often have more
than four contacts, but usually some contacts are short-circuited or left open, such that
in the end only four electrical nodes are used for the readout [24]. Therefore, as far as
readout is concerned, vertical Hall plates can also be considered four-terminal devices,
see for instance the configurations as detailed in Figure 1c from [24]. So, the error model
developed hereafter is valid for both types of Hall plates.

2.1. Hall Plate Readout Configuration and Static Offsets

The application of current spinning to a four-terminal device implies that the function
of the Hall plate contacts is periodically swapped from biasing to sensing and vice versa.
The main readout configurations thus arising are detailed in Figure 1.
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Figure 1. Different readout configurations or “phases” of a Hall plate, assuming current-mode
biasing and voltage-mode sensing. Four-phase spinning consists of repeatedly cycling through the
configurations on a single row from left to right. The upper scheme results in up-modulation of the
magnetic signal VS, while the lower scheme up-modulates the offset.

These are grouped in two rows, where each row is a representative scheme for four-
phase spinning. In the upper scheme, the bias contacts are rotated clockwise (for instance,
VDD is sequentially connected to node 1, 2, 3 and 4), while the sense contacts are rotated
counter-clockwise (for instance VHP− is sequentially connected to node 4, 3, 2 and 1). In the
lower scheme, both the bias and the sense contacts are rotated clockwise. Historically, the
lower scheme has been applied first [1,10,25], but the upper scheme also has a long track
record [2,10,18,26,27]. The advantage of using the upper scheme of Figure 1 is that the
readout offset and 1/f noise combines additively with the offset of the Hall plate, and these
readout-related error components are therefore also combated by this type of spinning (see
Figure 5.33 from [10]). For this reason, the spinning scheme in Figure 1a is our preferred
method and the one we will use as the foundation for the rest of our paper. Nevertheless,
this choice is not limiting, and the randomized spinning techniques introduced further on
are fully applicable to the spinning scheme of Figure 1b as well.

In each configuration, or “phase”, a specific Hall plate voltage VHP = VHP,+ −VHP,−
is generated, containing the wanted magnetic signal VS = SI · B⊥ · IB (with SI the Hall
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plate sensitivity in V/T/A and B⊥ the magnetic field perpendicular to the plate) and a
phase-related offset voltage Vo,N, where N signifies the configuration number. We number
the configurations from 0 to 3 for reasons that will become clear later on. As these offsets
remain present for as long as the biasing is applied, we refer to them as static offsets.

Since the different readout phases are equivalent (i.e., none of them is preferred or
better than the others), it makes sense to take the average of the different offset values:

Vo =
+Vo,0 + Vo,1 + Vo,2 + Vo,3

4
(1)

We will refer to Vo as the “raw offset” of the Hall plate. Another important number is
the offset that remains after averaging over four distinct readout phases:

Vr =
+Vo,0 −Vo,1 + Vo,2 −Vo,3

4
(2)

This is a measure of the “residual offset” that remains after four-phase spinning. For
a horizontal Hall plate, according to literature the residual offset is typically two orders
of magnitude smaller than the raw offset [28–30], which is further confirmed by our
measurements, see Section 5. For vertical Hall plates, there is more deviation from the ideal
behavior, but still the residual offset with four-phase spinning is quite low compared to the
raw offset [24].

We now have two offset parameters, Vo and Vr, that both depend on the four distinct
offsets that can occur in each configuration. These two offset parameters are more infor-
mative about the expected offset behavior during the Hall readout than the individual
four offset values Vo,N . We can now complete the picture by introducing two additional
offset-related values:

Vm1 =
+Vo,0 + Vo,1 −Vo,2 −Vo,3

4
(3)

Vm2 =
+Vo,0 −Vo,1 −Vo,2 + Vo,3

4
(4)

We will refer to these as the two “offset mismatch” parameters because they encode
information on how the offset varies depending on the configuration being used. It is now
straightforward to show that the four offset quantities (Vo, Vr, Vm1 and Vm2) defined by
Equations (1)–(4) can be used to replace the four offset values Vo,N (N = 0, 1, 2 and 3). This
leads to the following expression for the phase-related offsets:

Vo,N = Vo + c ·Vr + d ·Vm1 + c · d ·Vm2 (5)

In this, the coefficients c, d, and c · d assume only the values +1 and −1, and depend
on the readout configuration (i.e., the value of N) in the following way:

N(decimal) 0 1 2 3
N(binary) 00 01 10 11

c + − + −
d + + − −

c · d + − − +

(6)

Note that the coefficient c is +1 in an even-numbered configuration and −1 in the
odd-numbered phases. Therefore, c relates to the main axis of the Hall plate bias current
flow, e.g., horizontal versus vertical current flow in Figure 1a. The coefficient d relates to
the direction along this current axis, with d = +1 for up-to-down or right-to-left current
flow, and d = −1 for bottom-to-top and left-to-right current flow.
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Referring again to Figure 1a, we see that the magnetic signal VS is modulated with the
coefficient c. Bringing in (5) as well, the Hall plate voltage VHP can be written as:

VHP = c ·VS + Vo + c ·Vr + d ·Vm1 + c · d ·Vm2 (7)

To obtain an estimate for the magnetic signal VS, the Hall readout signal (7) needs to
be demodulated with the c chop signal. Using (7) and the relation c2 = 1, the demodulated
Hall signal V̂S is obtained as:

V̂S = c ·VHP, (8)

and has the following expression:

V̂S = VS + Vr︸ ︷︷ ︸
not modulated

+ c ·Vo + c · d ·Vm1 + d ·Vm2︸ ︷︷ ︸
modulated

(9)

The above derived equation is valid for every (binary) value of c and d, see also (6).
Therefore, it is valid for each of the configurations of Figure 1. In a spinning scheme we
will cycle through these configurations (corresponding to making c and d time-dependent).
The goal of such a spinning scheme is to make the error components vanish or at least
make them harmless. By inspection of (9) it is, however, clear that one error component,
Vr, remains unmodulated by the spinning signals c and d and is indistinguishable from
the signal VS. Hence, such a spinning scheme is unable to eliminate this Vr component.
For this reason, we consider Vr as the fundamental offset suppression limit of such a
spinning scheme.

The offset components discussed so far are all expected to be proportional to the bias
current (or bias voltage) of the Hall plate. In practice, there are additional mechanisms,
mostly linked to the readout chain, that introduce similar offset components which are
independent of the Hall plate bias current. We already discussed that the offset and
1/f noise of the readout chain can be incorporated into Vo. Likewise, mismatched clock
feedthrough and charge injection can lead to independent components that are similarly
modulated as Vr, Vm1 and Vm2.

2.2. Classical Four-Phase Hall Plate Spinning

In a classical four-phase spinning scheme, the Hall plate phases change in a regular
pattern, going from left-to-right and then back to the beginning. Each phase occupies
a fixed time slot. The duration of a spin period is denoted as Tspin. The coefficients c,
d and c · d in (5) then change over time. Because the coefficients in (5) are ±1, each of
the terms Vr, Vm1 and Vm2 are modulated with a ±1 sequence, in particular with c(n),
d(n) and c(n) · d(n), respectively, with n indicating the time slot being addressed. These
three modulation sequences are plotted in Figure 2 for the considered classical four-phase
spinning scheme from Figure 1a.

It is clear that c(n) represents a classical chopping square wave with period 2Tspin.
The term c ·Vo in (9) represents the raw offset being up-modulated to the chop frequency.
Observing d and c · d in Figure 2 shows that these are both regular chop signals having
a period 4Tspin. So, the terms c · d · Vm1 and d · Vm2 in (9) explain the appearance of
half-rate chop signals. The aforementioned offset tones are also shown in a simulated
spectrum in Figure 3, where their magnitudes are based on our measurement results. Both
Figures 2 and 3 show additional tones which will be addressed later on.
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Figure 2. Modulation functions explaining the offset tones originating from classical four-phase spinning.
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Figure 3. Simulated spectrum with a −6 dBfs input sine wave at frequency 0.1 fspin for VS. Offset
tones, corresponding to traditional four-phase spinning, and white noise are present with magnitudes
based on our measurements.

2.3. Randomized Four-Phase Hall Plate Spinning

It is clear that the modulating functions c(n), d(n) and c(n) · d(n) are a direct result
of the chosen sequence of spin phases. We now reverse this process. Suppose we have
two particular modulation sequences c(n) and d(n) in mind, can we derive from these
the needed sequence of readout configurations? The answer to this is affirmative. This
can be seen by closer examination of (6). To make the link explicit, we have added the
binary representation of the configuration number. It can be seen that the coefficient c only
depends on the LSB of the binary phase number, while the coefficient d is fully determined
by the MSB of the phase number. This means that there is a one-to-one correspondence
between a set of arbitrary c = ±1 and d = ±1 values on the one hand and the configuration
number of the readout on the other. This correspondence is also why we have numbered
the phases starting from 0. Note that after fixing the values for c and d, the c · d modulation
function cannot be assigned independently but is obtained from the product of c and d.

We now focus our attention on what would be interesting modulation functions.
An excellent consequence of the classical four-phase spinning is that the largest offset value,
i.e., the raw offset Vo, is placed as far away as possible from the signal band (see Figure 3).
This is especially advantageous when applying the upper spinning scheme in Figure 1a
because then the offset and 1/f noise of the analog front-end are also shifted in the same
way as Vo. From an SNR point of view, it is certainly preferable to keep the 1/f noise away
from the signal band. This implies that for c(n) we want to retain the modulation at the
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fastest possible rate, i.e., as shown in Figure 2. The use of a regular c(n) = (−1)n sequence
also implies that the signal is modulated in the classical way.

Turning now to the modulation function d(n), we know that in the classical scheme
this modulation function is responsible for the half-rate tone. Therefore, in the present
paper we investigate the situation in which we take a randomized signal that approximates
white noise as the modulation function d. The product modulation function c · d then
also translates into white noise. The outcome is that the energy associated with Vm1 and
Vm2 is spread over the full frequency band and hence no longer appears as a parasitic
half-rate tone. Somewhat similar spread-spectrum chopping has been reported in some
forms in prior art before. In [31,32], band-limited spread-spectrum chopping is applied
to somewhat spread out the energy of spurious signals from chopping and auto-zeroing,
while in [33–36] both bandpass and full spread-spectrum chop clocking has been applied
to improve the EMI robustness of Sigma–Delta modulators. However, with four-phase
current spinning we have a unique case where a pseudo-random sequence can be used
for modulating various offset components, while retaining classical chopping as far as the
signal component is concerned.

We now look at what the choice for a regular c(n) and a random d(n) implies for the
readout configuration being used. An alternating c(n) means that an even phase is always
followed by an odd phase and vice versa. A random choice for d then means that, when in
an even phase, we randomly choose between phase 0 (d = +1) or 2 (d = −1), and when
in an odd phase, we randomly select phase 1 (d = +1) or 3 (d = −1). For the rest of the
paper, the combination of a regular c with a random d will be referred to as randomized
four-phase spinning.

2.4. Dynamic Spinning Effects

Until now, we considered the quasi-static offset components associated with the
different Hall plate readout configurations and offset (and 1/f noise) associated with the
readout chain. There are also, however, dynamic mechanisms that translate into offset.

It is known that, especially at higher spinning frequencies, dynamic errors can also
act as a source of offset. The origin of these errors lies in the parasitic capacitances that
exist at each of the Hall plate nodes. At any time, two of these capacitances are charged
in accordance with the bias voltage. Before these nodes can be used as readout nodes
(which is needed both in the classical as well as in the randomized spinning schemes), the
charge associated with the bias-voltage needs to be evacuated. Due to the finite resistivity
of the plate, this happens with a finite time constant. In principle, the dynamic error can
be reduced to a large extent by zero-banding (ZB) the Hall signal during these transients.
However, zero-banding also deteriorates the noise performance of the readout [13]. More-
over, for higher bandwidths, Tspin becomes smaller, and the zero-banding time can no
longer be taken to reach full settling. Moreover, mismatch in the spinning and chopper
switches results in dynamic errors. It is well known that with traditional four-phase spin-
ning, and in fact in any traditional chopping amplifier circuit, the error spikes translate into
offset through a mechanism referred to as spike demodulation [37]. Here we model the
phenomenon in a broader context that also covers randomized spinning.

The mechanism is illustrated in Figure 4 in the situation where randomized spinning
is applied. The figure shows some illustrative waveforms of the voltages at pin 1 and 2 of
the Hall plate (see also Figure 1). The voltages on the other pins are not shown, but these
are very similar, except that they are flipped over vertically. The spikes that appear on VHP
are displayed at the bottom. There are two distinct situations that are color-coded: when n
is odd, the spikes’ origin is indicated in red, while for n even, it is in blue. Based on the
figure, it can be understood that at any instant in time n, the sign of the dynamic error
depends on two factors: (i) the sign of the bias voltage as used in the previous readout
configuration, i.e., in time slot n− 1, and (ii) the sign associated with the connection between
the Hall readout nodes and the front-end in the current time slot n. The bias sign is fully
determined by the value d(n− 1), while the readout sign is given by d(n). The effect is
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multiplicative, and so the sign of the error is d(n)d(n− 1). The magnitude of this dynamic
error is determined by a certain value, which we denote as VD,1. The additional error is
therefore given by d(n)d(n− 1)VD,1.

The electrical RC effect as discussed above is expected to fully die out within one
spin interval. Nevertheless, we have detected in our measurements relatively small offset
mechanisms that extend over a few spin intervals. It is actually because we use randomized
spinning that we can differentiate these offset sources from those which were already
expected a priori. These offsets lead to terms d(n)d(n− k)VD,k with k an odd integer larger
than 1, and VD,k representing the magnitudes of these extra offset-related components. We
will refer to all terms k ≤ 1 as “dynamic offset errors”, albeit that at the time of writing the
present paper, we do not have a full understanding of the origin of the extra terms beyond
k = 1. This does not pose a major issue, however, because the concept of randomized
spinning relies only on having a model of the relevant offsets that appear, after which the
techniques described further on can be applied to remove them.
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Figure 4. Voltage at Hall plate pin 1 (red) and pin 2 (blue) plotted in time in the case of randomized
four-phase spinning. The transient spikes due to Hall plate spinning are also plotted. The phases
shaded in grey correspond to odd configuration numbers.

At this point, we have discussed the main offset sources and have built a model that
shows how these different offsets are modulated by a classical or a randomized spinning
scheme. We can now add the dynamic error sources to our previous expression (9) for the
demodulated Hall signal, leading to:

V̂S(n) = VS(n) + Vr + c(n)Vo + c(n)d(n)Vm1 + d(n)Vm2

+
K

∑
k=1,k odd

c(n)d(n)d(n− k)VD,k︸ ︷︷ ︸
dynamic errors

(10)
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For the situation with traditional four-phase spinning, we already showed the mod-
ulation functions that up-modulate Vo, Vm1 and Vm2 in Figure 2. We added to this
c(n)d(n)d(n − 1) and c(n)d(n)d(n − 3), which represent the functions modulating the
two largest dynamic errors. It is clear that with the traditional spinning scheme from
Figure 1a both these dynamic errors appear at DC and hence form additional sources of
residual offset beyond the fundamental Vr component (see also Figure 3, where all con-
sidered dynamic errors map to DC). In the next section, we discuss that with randomized
spinning the dynamic errors can be kept separated from the residual offset.

2.5. Modulations Obtained with Randomized Spinning

The main difference between traditional and randomized spinning is that in the former
case the modulation function d is a half-rate square wave, while in the latter case it is a
random sequence. We limit ourselves here to random sequences with a flat spectral density.
An example of the modulation functions appearing in the case of randomized Hall plate
spinning is shown in Figure 5. The example output spectrum in Figure 3 that applies for
classical four-phase spinning has now been replotted with d generated by a maximum-
length pseudo-random sequence. The result is shown in Figure 6. It is clear that the
offset terms Vm1, Vm2 and all VD,k from (10) are now modulated into pseudo-random signals
that appear white. The only offset remaining at DC is the residual offset Vr. Because the
randomized spinning scheme has transformed all offset terms VD,k into pseudo-noise,
the offset behavior is vastly improved. At this point, however, it is clear that this comes at
the cost of a significantly higher noise floor. This is because the offset mismatch terms Vm1
and Vm2 and the dynamic offset errors VD,k are still present, except they have now been
distributed over the full Nyquist band. We will refer to these terms as the randomized
offset components. The remaining task is therefore to show how these randomized offset
components can be reduced and even fully removed by means of spread-spectrum offset
reduction loops (SS-ORLs).

2.6. System-Level Overview of the Proposed Offset-Suppression Solution

Figure 7 presents a system-level overview of the proposed solution. On the left side
shown in green, we have visualized the error model that we constructed in Section 2.1
(see also (7)), with the dynamic offset errors added from Section 2.4. As explained before,
for the modulation function c(n) a regular modulation signal is chosen, i.e., c(n) = (−1)n.
All paths with a factor d(n) represent the randomized offset components.
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Figure 5. Example of modulation functions resulting from randomized four-phase spinning.
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Figure 6. Simulated spectrum with a −6 dBfs input sine wave at frequency 0.1 fspin for VS. Offset
tones, corresponding to randomized four-phase spinning, are present with magnitudes based on
our measurements.
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Figure 7. System-level overview of the proposed offset-suppression solution, with various spread-
spectrum ORLs to remove the randomized Hall plate offsets.

The middle part of the figure (with red background color) represents the Hall readout
chain. Note that in our initial analysis we demodulated VHP to obtain an estimate of the
signal, i.e., V̂S = c · VHP as given by (8). In reality, VHP is first fed into the readout chain
and is only demodulated afterwards. To complete the analysis, the dynamic behavior of
the readout chain needs to be taken into account. The output of the readout chain, which
we denote as VRO, can now be written as:

VRO = T{VHP} (11)

In this, T denotes the response of the readout chain. The T{VHP} notation needs to
be interpreted as the readout chain acting upon the signal VHP. As a first approximation,
the response T can be modeled as a simple static gain A. For a more accurate model,
however, the dynamic filter effects that occur in the readout chain should be included
as well. In the prototype Hall sensor described in Section 4 of this paper, we employ a
readout chain with a digital output. Therefore, all ORLs shown in blue in Figure 7 are
implemented fully digitally, which reduces the cost in power and chip area for the SS-ORLs.
Furthermore, as will be discussed later on in Section 3.2, the integrator α/(z− 1) is a vital
part of the SS-ORL system. In particular, the value of the corresponding α coefficient should
be carefully designed based on specifications such as noise and start-up time to ensure
proper performance of the SS-ORLs. However, the implementation can also be performed
in the analog or mixed-mode domain, where the offset reduction loops are then closed at
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the input of the readout chain instead. The description of the spread-spectrum ORLs in
Section 3 remains valid independent of the applied implementation method.

On the top-right side, an optional post-readout ORL that operates at DC has been
added. As mentioned before, the raw offset of the Hall plates Vo can be substantial;
therefore, the readout chain typically already comprises a means of suppressing this
dominant offset component to prevent loss of dynamic range or saturation. However,
an analog implementation will typically not succeed in fully removing this term and/or
may introduce other offsets that replace the raw offset (e.g., the offset of an analog integrator
used in the ORL). In that case, removal of some remaining raw offset by means of post-
processing may still be needed, hence the optional ORL. In the mostly-digital ORL of [13],
as also used in this work, the integrator is in the digital domain and therefore has ideal
offset and infinite DC gain (see also Section 4). In that case, this optional post-readout ORL
is not needed.

At the far-right side, the demodulation with c(n) is present to obtain the final, offset-
compensated, output signal Vout. The remaining parts at the right side of Figure 7 represent
the post-readout spread-spectrum offset reduction loop that is proposed in the next section
to deal with the randomized offset components.

3. Spread-Spectrum Offset Reduction Loops
3.1. System Derivation

To derive our system equations, we will now elaborate Figure 7. By inspection of the
the figure, we can write down the raw readout output signal VRO, defined in (11), as:

VRO = T

{
c(n)(VS + Vr) + Vo + d(n)Vm1 + c(n)d(n)Vm2 +

K

∑
k=1

k odd

d(n)d(n− k)VD,k

︸ ︷︷ ︸
=VHP

}

Furthermore, assuming the readout chain and therefore also the operator T to behave
linearly:

VRO = T{c(n)(VS + Vr)}+ T{Vo}︸ ︷︷ ︸
≈0

+ T

d(n)Vm1 + c(n)d(n)Vm2 +
K

∑
k=1

k odd

d(n)d(n− k)VD,k

 (12)

The first term corresponds to the up-modulated input signal and the unavoidable
residual offset. This term will be amplified and then leads, after demodulation, to the
signal-related component in the output signal. The second term in the equation represents
the reaction of the readout chain to the raw offset Vo. In our prototype (discussed in
Sections 4 and 5), we use the state-of-the-art readout chain described in [13] which has
a mixed-mode ORL to force this term to become strictly equal to zero. As discussed in
the previous Section 2.6, any good readout chain is likely to have some mechanism to
suppress this error component to avoid issues with dynamic range and saturation, which
can be further enhanced by the optional ORL operating at DC that is also visible in Figure 7.
Hence, in practice, it is normally justified to assume that this term is negligible at the output
of the readout chain, which will be assumed in what follows (if this error contribution is
not negligible, it will result in a spurious output tone at the chop frequency, as in Figure 6.
The analysis of the other offset-related terms in (12) is unaffected by this). We will now
focus on the remaining offset-related terms in (12).

To start our explanation for the actual offset reduction loops (the blue part in Figure 7),
we will for the moment assume that each loop operates in such a way that good estimates
of the offset parameters Vm1, Vm2 and VD,k are produced at the respective nodes V̂m1, V̂m2
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and V̂D,k. We will explain below (at the end of this section) that the loops do exactly this,
and we will further discuss the accuracy of the estimates. With this assumption, it makes
sense to use the estimates to remove the unwanted offset terms from VRO. This leads to
the corrected readout denoted as VROC, defined as follows:

VROC = VRO − T̂
{

d(n)V̂m1 + c(n)d(n)V̂m2 +
K

∑
k=1

k odd

d(n)d(n− k)V̂D,k

}
(13)

Here T̂ represents an estimate (or replica) of the readout chain transfer function T.
When put in a block diagram, this leads to the error correction block displayed in Figure 7
with light-blue background color. Notice that the estimated offset parameters are simply
modulated with the already discussed randomized modulation functions. Combining now
(12) with (13), assuming the offset parameters to be quasi-static (relative to the dynamics of
the readout chain) and assuming T̂ = T, we can derive:

VROC = T{c(n)(VS + Vr)}

+ T̂
{

d(n)
}(

Vm1 − V̂m1
)
+ T̂

{
c(n)d(n)

}(
Vm2 − V̂m2

)
+

K

∑
k=1

k odd

T̂
{

d(n)d(n− k)
}(

VD,k − V̂D,k
)

(14)

If the estimates V̂m1 and V̂m2 perfectly match the corresponding offset parameters Vm1,
Vm2 and VD,k, then the second and third lines in the above equation disappear, and the effect
of these error terms vanishes resulting in an ideal error correction. However, if they do not
match perfectly, it becomes clear from (14) that VROC comprises information on how far
the estimated offset values deviate from the real values, e.g., Vm1 − V̂m1. These estimation
errors appear as a scale factor of various signals, e.g., T̂{d(n)}). These signals correspond
in their turn to the reconstructed response of the readout chain to one of the randomized
modulation functions that we already encountered in the previous sections, e.g., d(n).
These responses are therefore by themselves also a random signal. While all the random
signals appearing in (14) are linked to a single random sequence d(n) (and a non-random
c(n)), the different random signals in (14) nevertheless appear to be uncorrelated (while this
is not true for any choice of random sequence d(n), in practice, we only need a pseudo-noise
sequence d(n) which does provide this result. We propose the use of a maximum-length
sequence, which is very easy to implement. The uncorrelatedness property can then be
confirmed by means of simulation). By correlating VROC with the reconstructed random
signals T̂{d(n)}, T̂{c(n)d(n)} and T̂{d(n)d(n− k)}, a measure of the estimation error can
be obtained, resulting in:

Vm1 − V̂m1 =
E
[
VROC · T̂{d}

]
E
[(

T̂{d}
)2
] (15)

and similar formulae for Vm2 − V̂m2 and VD,k − V̂D,k. In this, E[·] denotes taking the statisti-
cal expected value. The denominator represents the power of the random signal. In reality,
the correlation in (15) is implemented as a multiplication with the random signal, i.e., the
expectation operator E is dropped. Note that such an implemention for correlating a
signal with a known random sequence is very common in analog and mixed-mode circuits
with adaptively tuned coefficients [38–42]. Moreover, instead of normalizing with the real
power, it is more convenient to normalize with the power that arises when T̂ = A, with A
the nominal gain of the readout chain. This then leads to a simple scale factor 1/A2. With
these elements, the correlation block as indicated in Figure 7 arises, and thus we obtain the
error signal eVm1 as:

eVm1 =
VROC · T̂{d}

A2 (16)



Sensors 2022, 22, 6069 13 of 24

From Equation (15), it is clear that:

E
[
eVm1

]
=

E
[(

T̂{d}
)2
]

A2

(
Vm1 − V̂m1

)
(17)

This last equation shows that the correct V̂m1 is obtained when E
[
eVm1

]
= 0. The equa-

tion E
[
eVm1

]
= 0 can now be solved using well known stochastic approximation methods

that trace back to [43]. When applied to our problem at hand, the method consists of
making subsequent estimates of V̂m1(n):

V̂m1(n + 1) = V̂m1(n) + αn · eVm1 (18)

In the original paper [43], αn is a sequence that in the limit goes to zero, and it is
proven that the estimates converge to the exact value (in our case Vm1). However, letting αn
converge to zero does not make sense in our present context because we want to allow that
the true offset parameter Vm1 can change slowly over time, and so we want to maintain
some minimal adaptability of the system. Therefore, we use the above adaptation rule with
a fixed adaptation parameter, i.e., αn = α. In this case, (18) boils down to applying the error
signal eVm1 to the integrator α/(z− 1) to obtain the estimated offset parameter V̂m1. We
thus obtain the closed loop system shown in Figure 8.

c(n)

Vout

d(n)
d(n)

Vm1

VROCVRO

^
T̂ T̂

α
z–1

1
A2

HLP

HLP

. . .

eVm1

Figure 8. Detailed representation of one spread-spectrum offset reduction loop.

A more intuitive way to understand this system is that the integrator α/(z− 1) adapts
the estimated value V̂m1 until the DC component from its input (the error signal eVm1)
becomes equal to zero. Therefore, because of (17), the DC component of the estimated
value V̂m1 becomes equal to that of the actual value of Vm1 as we assumed at the start of our
explanation above. The system thus obtained, which we refer to as the spread-spectrum
ORL, provides estimates V̂m1 of the true value Vm1. Moreover, it can track changes of this
true value over time. It has one key design parameter, i.e., the integration constant α, which
can also be viewed as the “adaptation parameter” of the ORL. Its sizing will be discussed
later on. The ORLs for the other offset parameters Vm2 and VD,k are set up in the same way
and operate simultaneously, leading to similar loops as the one in Figure 8 that details the
loop for estimating Vm1.

Until now, we disregarded the impact of the input signal, i.e., the first term in (14).
It is, however, clear that the random sequence d(n) can be taken independent from the
magnetic input signal; therefore, the correlation of the input-related term and the random
signals is expected to be zero. This is the fundamental reason why the SS-ORL can work
“under the radar” without notching out signal components passing through the system.
However, as explained in the next section, the input signal can have a significant impact on
the variance of the correlation terms, and this needs to be taken into account.

3.2. Sizing the SS-ORL’s Integration Factor α

In the above, we explained the operation of the SS-ORL in terms of correlations be-
tween random signals. However, because in practice one cannot average over an ensemble
(there is,after all, only one system), statistical averaging needs to be replaced by averag-
ing over time. This averaging is automatically realized by the integrators that adapt the
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estimates to the right value. However, even though the estimates V̂o, V̂m1, V̂m2 and V̂D,k
have exactly the same DC component as their offset term counterparts from (10), they do
have a non-zero variance. This is because, due to the presence of the input signal, the sig-
nals coming from the correlation block (i.e., the error signals eVm1 , eVm2 , . . . ) can exhibit
a large variance. As a result, the integrator outputs V̂o, V̂m1, V̂m2 and V̂D,k drift around
the correct values with some finite variance as well. This in its turn leads to incomplete
cancellation of the randomized error components and a degradation of the overall system’s
noise performance.

While due to the presence of the possibly large input signal we have little control over
the variance of the correlation signals, the variance of the offset parameter estimates does
depend on the adaptation parameter α and can be scaled down using low α values. On the
other hand, a low value of α also reduces the adaptation speed of the SS-ORLs, which is
especially problematic at start-up conditions when the initial offset parameter estimates
deviate most from the actual values. Therefore, the sizing of the adaptation parameter α
involves a trade-off between additional noise and start-up time. It is this trade-off which
we try to quantify next.

3.2.1. Noise of the SS-ORLs

Let us first study how the variance of the offset parameter estimates depend on α. To
this end, assume that the estimates are set to their correct values at time n = 0. We only
enable the V̂m1 loop with a nonzero α, while the other loops are kept frozen (by setting their
adaptation parameters to zero). Moreover, since we are only interested in the variance of
the estimate, we can assume without loss of generality that the true offset parameter Vm1 is
zero. We are now interested in the variance of V̂m1(n) after the SS-ORL integrator output
has settled, i.e., for n→ ∞:

σ2
m1 = lim

n→∞
E
[
V̂2

m1(n)
]

(19)

As a first step, we try to derive an expression for V̂m1 as a function of VRO. This requires
solving the SS-ORL loop, which is complicated by the presence of T̂. To simplify matters,
we again replace T̂ by the overall gain A of the readout chain. This approximation is
certainly reasonable for the readout chain we implemented in the prototype (see Section 4)
because of the nearly full bandwidth that is realized. For other readout chains that exhibit
more low pass filtering, the derivation that follows will rather provide an upper limit to
the noise in the SS-ORL. By replacing T̂ by a gain A, the following can be derived:

V̂m1(n) =
α

A

n−1

∑
k=0

(1− α)n−k−1VRO(k)d(k) (20)

The pseudo-random sequence d(k) is taken to be white, thus having the correlation
property E[d(k)d(l)] = δ(k− l). Also using the statistical independence of d and VRO, it
can be derived that:

E
[
V̂2

m1(n)
]
=

α2

A2

n−1

∑
k=0

(1− α)2(n−k−1)E
[
V2

RO(k)
]

(21)

Assuming the readout signal VRO can be modeled as a stationary random signal, then
E
[
V2

RO(k)
]

is independent of k, hence a constant factor. Therefore, (21) reduces to the
summation of a geometric series. Taking the limit for n→ ∞, we obtain a closed expression
for the variance (19):

σ2
m1 =

1
A2

α

2− α
E
[
V2

RO

]
' α

2A2 E
[
V2

RO

]
(22)
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The approximation on the right side is valid because in practice we always have α� 1.
The random variation of the estimate V̂m1 around its true value Vm1 translates into extra
noise contributions in the compensated readout, as can be seen from (14). Because the
estimate V̂m1 is modulated by the d sequence having unit power, the random error on
the corrected readout value VROC has approximately the variance A2σ2

m1. This extra noise
power in the compensated readout VROC is not affected by the demodulation with c(n), so
this is also the extra noise power in the final (offset-compensated) output signal.

Until now, we considered only the SS-ORL that estimates Vm1 and evaluated the extra
noise power that appears in the offset-compensated output signal. It can be shown now
that each of the other SS-ORL loops contribute exactly the same amount. While these other
SS-ORLs have a random sequence different from d(n), they also behave as white noise,
have unit power and are independent of the signal. Moreover, all modulation sequences
are orthogonal to each other. Hence, the total noise power introduced by all SS-ORL loops
in the output signal is:

σ2
ORLs ≈

α

2
· #ORLs · E

[
V2

RO

]
(23)

in which #ORLs denotes the number of active SS-ORLs. From this, it is clear that the worst
condition occurs when |VRO| is large, that is, when the readout value is close to its extremes,
i.e., when the magnetic input signal is large.

3.2.2. Start-Up Time of the SS-ORLs

We now calculate the start-up time to reveal its dependency on α. For this, we consider
the system of Figure 7 with signal and all offset sources zero except Vm1. We again assume
that the readout chain T can be approximated as a uniform gain A. Then we have that
VRO(n) ≈ AVm1d(n). If we now assume that only the V̂m1 adaptation loop is enabled,
the response is fully determined by (20), which for the particular VRO(n) reduces to:

V̂m1(n) =
α

A

n−1

∑
m=0

(1− α)n−m−1 AVm1d2(m)

= Vm1
[
1− (1− α)n] (24)

If we now define the start-up time as the time needed to reach 90% of the final value,
the above expression leads to:

start-up time =
ln(1− 0.9)
ln(1− α)

Ts ≈
2.3
α

Ts (25)

3.2.3. Discussion

It is clear from (23) that the additional noise from the SS-ORLs can be made arbitrarily
low by choosing a sufficiently small value of α. A possible criterion for selecting an
appropriate α value is to make sure that the worst-case extra noise predicted by (23) is
well below the intrinsic noise that is already present at the output of the readout chain,
for instance, noise from the Hall plate and the readout front-end. Another option is to
use the same criterion but monitor the RMS value of VRO for determining α. The latter
allows for the same noise budget to operate the SS-ORLs with a higher α when the RMS
signal level turns out to be low. Yet another option is to add extra low pass filters HLP in
the correlator block. The rationale here is that the input signal is present in VROC as an
up-converted signal around fchop. Lowpass filtering VROC prior to feeding this into the
correlator therefore suppresses much of the input signal band. The reconstructed random
signals can then also be filtered by the same HLP. It can be shown that these actions do not
change the sign of the expected value of the correlation outputs, so adaptation still occurs
in the right direction, but they can help in reducing the variance of the correlation signals.
This again means that the α value can be larger for the same excess noise level.
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In any case, the α value determined from the available noise budget can turn out to be
very small, leading to long start-up times as evidenced by (25). However, it is clear that
during start-up, the estimates are so far off from their final value that the noise is much
larger than the target noise level anyway. Therefore, it makes more sense to initially use a
relatively large value of α for a fast ORL start-up, after which α can be dropped to the lower
value needed for optimal noise performance. An example of such a multiple-α algorithm
will be demonstrated during the measurements in Section 5.

4. The 2 MS/s Hall System Prototype

In the previous sections, we provided a basis for the randomized spinning concept
and the SS-ORLs that allow us to minimize the system offset. These offset compensation
techniques are to a large extent orthogonal to the actual readout chain, which is why in
Figure 7 only the transfer function T is needed as a characteristic feature of the readout
dynamics. The goal of the rest of the paper is to fully demonstrate the enabling capabilities
of these concepts to obtain a high-bandwidth low-offset Hall readout system that provides
a 2 MS/s digital output. For this, a prototype has been built consisting of a custom test
chip and digital logic to control the readout process. Most of the digital functions are
implemented in an FPGA to provide maximum development flexibility. The custom test
chip is identical to what has been described in [13], with an important difference being
that the clock frequency has been increased by a factor of two and the spin phase is
controlled externally. We therefore expect the already high bandwidths reported in [13]
to be effectively doubled, with the randomized spinning being instrumental in removing
the half-rate spurs as well. Since at these higher clock rates dynamic errors increase in
relevance significantly, randomized spinning and the SS-ORLs become important tools
to also suppress these dynamic errors and maintain a low-offset behavior in spite of the
higher spinning/chopping speeds.

A simplified block diagram of the implemented readout chain is shown in Figure 9,
while chip level implementation details for the contents of the prototype chip are dis-
played in Figure 10. Four Hall plates form the magnetic sensor. These four plates are
hardwired in parallel to lower the fundamental noise limit posed by the sensing struc-
ture. The weak Hall voltage is amplified by an “In-Loop Sampling Amplifier” (ILSA).
As the name implies, the distinctive feature of this readout amplifier is the fact that it
comprises a sample-and-hold operation inside the amplifier feedback. Advantages of the
ILSA are inherent anti-alias behavior, with a filtering characteristic locked into a shape
that maximally prevents aliasing towards DC, low noise and an effective bandwidth that
is close to the Nyquist frequency [13]. Also notable is the one-step high gain that is ob-
tained, which for the present prototype is 500×. The ILSA itself contains four major parts.
The low-noise transconductance (LNT) with value GLNT is implemented as a super source
follower [44], exhibiting improved linearity and lower input capacitance compared to a
simple transconductance. A current-to-voltage integrator then feeds the chopped sample
and hold block (S&H), in which the integrator output is first sampled onto capacitors CS
and then held within the feedback of an opamp. Switch control is such that the output of
the S&H is chopped. The last part is the feedback transconductance GFB. The DC gain of
the ILSA is defined ratiometrically as ADC = GLNT/GFB. To reduce the size of the feedback
resistor, a smaller resistor RFB/5 in combination with a down-scaling 1/5 current mirror is
used. Because of the inherent anti-aliasing, a simple Nyquist-rate ADC can be put after
the ILSA without additional filtering. The digital output D then directly forms the input
to our system of SS-ORLs, i.e., D = VRO in Figure 7. Also added to the system is a mostly
digital ORL, employing a bilinear integrator and current DAC, to remove the Vo offset.
Advantages of this ORL are: (i) no effect of the ORL on the overall system’s DC gain, (ii) fast
start-up, and (iii) no residue of Vo in the digital output D [13]. The latter advantage makes
our assumption Vo ≈ 0 from (12) absolute.
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Figure 9. Simplified block diagram of what is implemented on the prototype chip: the In-the-Loop
Sampling Amplifier (ILSA) (shown in the blue frame), which serves as the amplifier of the readout
chain in this paper, a mixed-mode ORL for Vo (shown in the purple square) and four Hall plates
(shown in green) with digital spin phase control. Important signals are highlighted in red.
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Figure 10. Implementation details of the readout chain used for experimental verification in Section 5
(adapted from (Figure 11 in [13])). Important signals are highlighted in red.

Figure 11 shows a photo of the 2 MS/s readout prototype. As explained above, the test
chip is connected to an FPGA board, communicating with each other through serial LVDS
communication lines. A maximum-length linear-feedback shift register ML-LFSR using an
N = 20 bit shift register is programmed into the FPGA to produce the pseudo-random d(n)
sequence. An N-bit LFSR register can produce maximum length sequences that only re-
peat after 2N−1 values, and the autocorrelation property of these sequences is known to be
E[d(n)d(n− k)] = 1/(2N − 1) for k 6= 0. The alternating sequence c(n) = (−1)n is also
generated in the FPGA. The sequences c(n) and d(n) are sent by the FPGA to the test chip via
the LVDS lines, thus controlling the unique spin configuration during the Hall plate readout. This
flexibility allows the readout chip to operate with both traditional and randomized spinning.

FPGA with
ML-LFSR, 
digital spin
phase control,
offset-DAC control
and SS-ORLs.

Prototype chip 
with Hall plates,
ILSA, ADC and
offset feedback DAC.

LVDS lines

Figure 11. Photo of the test PCB containing the wire-bonded ILSA prototype chip [13] (shown
zoomed-in in blue frame) and the FPGA (red board). In addition, the LVDS lines forming the
communication between the chip and FPGA board are visible in the orange frame.
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5. Experimental Verification
5.1. Measurements with Noise-Constrained α Value

First of all, in the situation where traditional spinning is applied at 2 MHz, the input-
referred noise of the complete sensor system has been measured to be 47µTrms. The mea-
sured noise spectrum is flat up to 820 kHz. Above this frequency, the noise is somewhat
increased because of upmodulated 1/f noise. The measurements we report here are for
the best-noise case, where we use a digital LP filter with bandwidth 820 kHz to remove
some excess 1/f noise. The noise value of 47µTrms is the intrinsic RMS noise level of the
readout. Note that to make noise figures easier to compare with analog-only Hall readout
systems, we report noise levels as the equivalent input-referred magnetic noise. However,
because our noise performance figures are always determined based on the digital output
of the sensor system, they represent a more complete picture of the true performance
because they include noise-aliasing effects arising from sampling and quantization noise
caused by the digitization.

Next, randomized spinning is enabled with the SS-ORLs disabled. A 64 kHz magnetic
signal is generated by a PCB coil underneath the chip with amplitude 780µT. The resulting
output spectrum is shown in black in Figure 12. The output noise level is now increased to
250µTrms. This noise increase is expected because now the energy which was originally
present in offset-related spurs is transformed into noise.
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Figure 12. Measured output spectrum (32K FFT) for a magnetic input at 64 kHz with amplitude
780µT. In black, no SS-ORL is active, and randomized offset is present modulated as pseudo noise.
In red, the SS-ORLs are active, removing the randomized offsets. The 0 dB reference level corresponds
to a full scale signal output amplitude of 0.8 V.

We now enable the SS-ORLs to remove the randomized offset terms. We have five
loops in total to cover the Vm1, Vm2, VD,1, VD,3 and VD,5 components. To calculate the proper
value for α, we enforce the condition that the output RMS noise level should never increase
more than 20% when enabling the SS-ORLs. As the readout chain has a maximum input
range of ±10.6 mT, we have the worst-case value E

[
V2

RO
]
= 0.82. Using (23), the required α

value is calculated to be 3.77 ×10−6 . To simplify the digital implementation we take the
closest power of two. Then this multiplication can be performed by a simple bit shift. This
leads to the implemented value α = 1/218. Once the SS-ORLs settle, the output spectrum
as shown in red in Figure 12 is achieved. This provides an output RMS noise of 47µTrms,
i.e., exactly the same as the minimum noise level determined earlier. Note that in this
experiment, we do not get any increase of the noise level. This is because the input signal
level is substantially below the maximum range due to the limitations of our measurement
setup (i.e., the PCB coil can only generate magnetic fields of limited magnitude).

Using a magnet, a DC magnetic field can be applied to the chip up to full scale.
Figure 13 shows (in red) the measured input-referred RMS noise level divided by the
measured intrinsic input-referred RMS noise level plotted as a function of the input DC
magnetic field level. As expected, the noise level increases slightly due to the large input
signal adding additional noise into the SS-ORLs. By implementing the α as calculated above,
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the additional noise never adds up to more than a 20% increase of the total input-referred
RMS noise level (the 20% threshold is shown in black in Figure 13).

When the input frequency is increased to 810 kHz, i.e., near the end of the bandwidth,
the spectrum shown in Figure 14 is obtained. In this, a mirror tone of the input frequency
caused by direct inductive coupling between the excitation coil and the Hall plate wiring
loops has been removed in the same way as described in [13]. Moreover, the randomized
spinning and SS-ORLs loops remove all avoidable offset contributions, leading again to the
minimum possible RMS noise level 47µTrms. This measurement demonstrates both the
large-bandwidth capability of the system and the effectiveness of randomized spinning
also for signals at the high end of this large frequency range.
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Figure 13. The measurement input-referred RMS noise divided by the measured intrinsic input-
referred RMS noise level obtained by traditional spinning as a function of the DC input level (in red).
The SS-ORLs from Figure 7 are active and settled, operating with an α value calculated using (23).
In black, the 20%-threshold is shown.
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Figure 14. Measured output spectrum (32K FFT) for a magnetic input at 810 kHz with amplitude
780µT. All SS-ORLs are active, removing the randomized offset. The 0 dB reference level corresponds
to a full-scale signal output amplitude of 0.8 V.

5.2. Measurements with Stepped α Values

If we plug the noise-constrained α value used above into (25), a start-up time of
0.3 s is predicted. During this time, the offset-parameter estimates deviate more than 10%
from their correct value; hence a substantial noise floor is expected in this time interval.
To alleviate this, a multiple-α algorithm is implemented in the FPGA. Using (25), an α value
can be select to achieve a very fast start-up of 1 ms. We obtain α = 1/210. The multiple-α
algorithm consists of stepping the adaptation parameter as α = 1/2n, where n is stepwise
increased from its initial value 10 to 18. Figure 15 shows a measurement result of this
technique where a 500 Hz input signal is present.
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Figure 15. Time domain plots for the system with active SS-ORLs and stepwise changes in adapta-
tion parameter: imposed time-evolution of the adaptation parameter α used in the SS-ORLs (top),
the integrator output V̂m1 (middle), and Vout of Figure 7 (bottom). A magnetic field with amplitude
780µT and frequency 500 Hz is applied.

5.3. Offset Histograms

The randomized spinning scheme allows the identification of many more offset com-
ponents compared to what is possible with a traditional spinning scheme. We already
discussed Figure 3 which clearly shows that with traditional spinning all dynamic errors
map to DC, where they overlap with the residual offset Vr. This is in contrast to the SS-ORLs
of Figure 7 which can provide an individual estimate of these offset components. However,
the most important offset is the residual offset that remains at DC. Therefore, to accurately
verify the performance of the randomized spinning techniques, the Hall plate residual
offset Vr was isolated from other DC offset sources for the measurements below. This can
be performed by using a zero-bias Hall plate measurement (as was done in this work) or
alternatively by shorting the input to the readout chain.

To perform statistics on the Hall plate offset terms, 10 samples of the Hall readout
chip were measured with the ORLs disabled. A normal distribution was fitted over
each offset tone’s measured magnitude. The resulting mean µ and standard deviation σ
values are given in Table 1. Clearly, Vr is much smaller than the other static offset terms.
The measurements confirm that Vo and Vr differ over two orders of magnitude, as stated
before. The dynamic offset terms VD,k start in the same order of magnitude as Vm1 and Vm2
and drop exponentially for larger k. Figure 16 shows how VD,1 is the dominant term, as this
term embodies the direct RC effect of the spinning transients, which dies out within one
spin phase. The terms VD,k for k > 1 are much smaller. They show a transient spanning
multiple spin phases but only for the odd numbers of k. Clearly some slow settling effect is
present in the Hall plates of the chip, but as stated before, at the time of writing this paper,
we do not have a full understanding of where it stems from.
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Table 1. Normal distribution fit on the input-referred offset terms from (10) in µT using 10 samples of
the ILSA prototype chip with randomized Hall plate spinning.

Vr Vo Vm1 Vm2 VD,1 VD,3 VD,5 VD,7

µ 23 37 122 116 183 31 14 8
σ 22 3455 40 51 11 2 1.3 0.8
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k

0

50

100

150

200

V D
,k

[
T]

Figure 16. Mean µ of the measured VD,k offset terms as a function of k (red dots). An exponential fit
to VD,k, for k > 1 and odd, is added.

Figure 17 illustrates the power of randomized spinning as an enabler for low off-
set. Here, measurements with traditional four-phase spinning at 2 MHz are compared
to randomized spinning at the same spin frequency. The residual Hall plate DC offset
has dropped from 130µT to only 23µT. Figure 18 summarizes a more extensive set of
measurements calculated at three different spin frequencies (666 kHz, 1 MHz and 2 MHz).
As expected, with traditional spinning the residual offset becomes dominated by the dy-
namic error terms VD,k as the spin frequency increases. When using randomized spinning,
however, the residual Hall plate offset does not change when increasing the spin frequency
because only Vr remains (which is independent of the spin frequency).

An overview of some important results is showcased in Table 2, compared to other
Hall sensors. Using the randomized spinning techniques, we were able to double the spinning
frequency and also the signal bandwidth compared to our first verification of the ILSA
prototype chip in [13], without increasing the offset or the noise (by a numerical coincidence,
the systematic electrical readout offset and the Hall plate dynamic offset error in [13] have
the opposite sign. Due to this, in [13] both components partially cancel each other so that
the overall offset of [13] is comparable to the results in the present paper, where the dynamic
offset error is removed by the SS-ORLs). Furthermore, the signal bandwidth is now free of
any in-band offset tones that would appear due to traditional four-phase spinning.
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Figure 17. Cumulative distribution over 10 samples of the input-referred Hall plate residual offset
with traditional four-phase spinning (blue) and randomized four-phase spinning (red). The full lines
correspond to a cumulative Gaussian fitted to the associated cumulative distribution.
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Figure 18. Fitted cumulative Gaussian distribution over 10 samples of the input-referred Hall plate
residual offset with traditional four-phase spinning (black) and randomized four-phase spinning
(red) for fspin 666 kHz, 1 MHz and 2 MHz.

Table 2. Comparison Table.

This Work [13] [2] [23] [45]

Hall Hall Hall Hall Hall

Inp. range [mT] ±10.6 ±10.6 ±12.5 ±14.8 10

Noise [ nT√
Hz

] 52–63 * 55 430 136 -

Typ. offset [µT] 74 **
23

68 40 >14,000 <50

BW [kHz] 820 *** 410 400 1000 7.8

Current [mA] 5.1 † 5.1 8 8.8 0.067

Tspin [µs] 0.5 1 25 0.0625 1
* Lowest noise for low input signals; ** input-referred offset is 74µT if ILSA offset is included; the offset reduces to
only 23µT when ILSA offset is removed using a zero Hall plate bias current measurement; *** bandwidth after
additional digital filtering (corresponding to the reported noise value); unfiltered 3 dB bandwidth is 960 kHz;
† current consumption of prototype chip only.

6. Conclusions

While traditional four-phase spinning provides great potential to minimize the resid-
ual offset of a Hall sensor in practice through the process of spike demodulation, the actual
residual offset can increase significantly when employing a high spin frequency. Further-
more, there are offset-related spurious tones at half the chopping frequency which limit the
available “tone-free” bandwidth or necessitate calibration techniques for removal thereof.
We have shown that randomized spinning circumvents these challenges, as such acting as
an enabler for high frequency Hall plate spinning and therefore higher bandwidth Hall
sensors without in-band spurious tones while at the same time reducing the residual offset.
This conclusion is fully supported by the presented Hall readout system featuring a 2 MS/s
digital output rate, a spurious-free bandwidth from 820 kHz (noise-optimal) to 980 kHz
(maximum bandwidth) and an input-referred Hall plate offset as low as 23± 22 µT.
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