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Abstract: Mildew of maize seeds may affect their germination rates and reduce crop quality. It
is crucial to classify maize seeds efficiently and without destroying their original structure. This
study aimed to establish hyperspectral datasets using hyperspectral imaging (HSI) of maize seeds
with different degrees of mildew and then classify them using spectral characteristics and machine
learning algorithms. Initially, the images were processed with Otus and morphological operations.
Each seed’s spectral features were extracted based on its coding, its edge, region of interest (ROI),
and original pixel coding. Random forest (RF) models were optimized using the sparrow search
algorithm (SSA), which is incapable of escaping the local optimum; hence, it was optimized using a
modified reverse sparrow search algorithm (JYSSA) strategy. This reverse strategy selects the top 10%
as the elite group, allowing us to escape from local optima while simultaneously expanding the range
of the sparrow search algorithm’s optimal solution. Finally, the JYSSA-RF algorithm was applied
to the validation set, with 96% classification accuracy, 100% precision, and a 93% recall rate. This
study provides novel ideas for future nondestructive detection of seeds and moldy seed selection by
combining hyperspectral imaging and JYSSA algorithms based on optimized RF.

Keywords: hyperspectral imaging; sparrow search algorithm (SSA); random forest (RF); maize
mildew; nondestructive detection

1. Introduction

Corn has a reputation as a “golden crop”; even though the seed is small, the crop is
vital to China and plays a major role in the international trade in corn seeds. It is of great
significance that there are independent and controllable seed sources in the seed industry.
High temperature and humidity cause mold to grow on seeds, reducing their germination
rates, as well as their quality and nutritional value [1,2]. Over the past few decades, crop
diseases have been a frequent cause of crop yield reduction, and their cause must be
determined by studying the diseased seeds [3,4]. The seed industry must speed up the
promotion of corn seed science, perform efficient seed discrimination, achieve independent
self-improvement, and be able to control seed quality independently. Chemical composition
analysis is the approach that provides the most precise indication of the level of mold
present [5]; however, there is inevitably some damage to the sample, as well as subjective
considerations, in the process of analysis [6]. A new and innovative technological tool has
emerged in recent years for the nondestructive testing of seeds, known as hyperspectral
imaging [7–10]. Hyperspectral remote sensing imaging (HRSI) uses spectral signatures to
identify, detect, and discriminate between objects of varying spectral characteristics [11].
The results are directly proportional to the spectral resolution of the sensor and how
much information is stored in each band [12]. Sensors with high resolution tend to have
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bands that are much tighter than those with low resolution. HRSI is based on a narrow
band that combines spatial information and hundreds of channels of spectral information
so that the chemical and structural information of seeds may be combined using this
technology, which can be used for both extracting aberrant information and determining its
spatial distribution [13,14]. A machine learning algorithm can be constructed to categorize
crops by using multispectral and multi-temporal images. Both anomalous information
and spatial distribution may be obtained if one takes the initiative. On the one hand,
the sample does not have to be destroyed during the experiment, so the method is both
efficient and nondestructive. On the other hand, the image information from the imaging
spectrometer offers research assistance for computer vision. The first consideration is the
choice of the featured wavelength. Yang Sai et al. [15], to identify corn seeds, employed a
joint skewness technique to select feature wavelengths, and when this was paired with a
support vector machine, the model’s classification accuracy increased to 96.28%. However,
the value of the skewness distribution is more affected by symmetrical distributions on
both sides of the distribution. A one-way tailspin is a tail that spins in one direction.
Positive (negative) skewness indicates the tail’s direction of rotation more than its tendency
to spin [16]. The second consideration is the selection of the classification algorithm.
The hyperspectral imaging distinction and linear discriminant analysis performed by Ali
Mohammadi F et al. [17] correctly classified three different types of maize kernels with an
accuracy of 95%. After using the watershed technique to partially segment moldy peanuts,
Jiang et al. [18] determined the classification impact from their data. Yuan et al. [19] used a
support vector machine (SVM), partial least squares discriminant analysis (PLS-DA), and a
cluster-independent pattern classifier (SIMCA). Both used dimensionality reduction data
and then directly applied machine learning models for classification.

Nevertheless, an RF classification model becomes an optimization problem when
the wavelengths of hyperspectral light are divided by a large number. The grid search is
straightforward to use, and all combinations of discrete parameter spaces can be evaluated
as quickly as possible. It is necessary to discretize continuous parameters before using
them [20]. However, the general simulated annealing algorithm is used by other researchers
for its ability to search iteratively for optimal parameters. Compared to the initial value,
generally simulated annealing (GSA) has a slower convergence speed [21]. The advantage
of the swarm intelligence algorithm in the optimization model is highlighted due to the
outstanding flexibility of sparrow (sparrow, S) established by Xue et al. [22], who developed
a novel swarm intelligence optimization algorithm based on its discovery and contention
strategy. In order to simplify the search procedure and avoid anomalies caused by discrete
data, the SSA was adopted. The normal distribution was directly used in the search
algorithm to ensure continuity. Taking advantage of the SSA simplifies search procedures
and eliminates anomalies caused by discrete data. The search algorithm is directly based
on normal distributions to maintain continuity. However, the SSA algorithm is prone
to judging the local optimum as the optimal global solution [23]. The SSA algorithm
continues to be discussed and improved by researchers to improve its performance. As
an extension of the basis and model of the SSA, Tang et al. implemented a fusion of the
SSA and bird swarm algorithm [24]. The introduction of updated algorithms resulted in
the need to update too many position formulae. This paper uses the random forest (RF)
model for hyperspectral wavelength importance analysis to extract feature wavelengths.
These wavelengths were input into the RF model to create classification models for maize
seeds with different degrees of mold. Last but not least, the SSA was used to optimize a
machine learning classifier to process hyperspectral data from the perspective of a model.
The elite inverse-strategy-enhanced sparrow search algorithm (JYSSA) was used to broaden
the search range, maximize the number of forests and feature subsets in the random
forest classifier, and search for each of their optimal solutions. This is the first time that a
novel approach has been used in the area of nondestructive testing to address the issue of
choosing RF model parameters from a large variety of wavelengths, an issue that plays
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a significant role in the exploration of efficient and comprehensive methods of detecting
mold in maize seeds of various ages.

2. Materials and Methods
2.1. Hyperspectral Imaging and Data Acquisition

The system consisted of a Resonon hyperspectral imager (Pika XC2, Resonon Inc.,
Bozeman, MT, USA) and a computer equipped with data acquisition and control using
display software (SpectrononPro, Resonon Inc., USA). The imaging spectrometer has
a spectral range of 400–1000 nm, a 50 µm slit, a spectral resolution of 1.3 nm, and a
spatial resolution of 0.15 mm/pixel. The other three important components of the entire
hyperspectral system are the mount, light source, and camera, as shown in Figure 1. One of
the keys to the linear scanning of the hyperspectral imaging instrument is the linear mover,
which moves at a uniform rate of 500 steps.
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Figure 1. Hyperspectral imaging system.

The second essential component is the light source. A sufficient and smooth light
source plays a crucial role in a hyperspectral imaging system. A combination of an illumi-
nation unit (OSRAM, Munich, Germany) and a 4-lamp illumination system (35 W per lamp,
for a total input power of 140 W and a total radiated power of about 5–7 W) provided the
light source for hyperspectral imaging (XENOPLAN, F/1.4 FL23 mm, Schneider-Kroetsch,
Bad Kroetsch, Germany), and the health sample was placed on a matte cloth. The optimal
parameters of the swept spectra were adjusted on a plate-on-mount table with an extinction
cloth as follows: object distance of 13.5 cm, exposure time of 7 ms, linear translation table
moving at 3.4 mmsl, wavelength range of 400–1000 nm, spectral resolution of 1.3 nm, and
462 bands of scanning hyperspectral images.

The Jilin Academy of Agricultural Sciences supplied the maize seeds. As described
in [25], we divided the corn seeds into five groups based on the amount of mold coverage
(Table 1) and then placed them on five square plates covered with matting cloth [26]. For
smooth irradiation of maize seeds, the instrument needed to be preheated before scanning
the seeds.

Table 1. Data on different degrees of mildew in maize seeds.

Seed Number Degree of Mold and Mildew Number of Seeds

A1 Healthy 77
A2 Mild mildew 56
A3 Moderate mold 63
A4 Heavier mold 70
A5 Heavy mold 70
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2.2. Image Processing and Spectral Extraction

Digital image processing techniques were used to extract the spectral data of the edges
of each corn seed, as shown in Figure 2. This was caused by reflection from the sample
surface. For the optical darkroom (all of the labs were treated with matte cloth), (a) the
blackboard- and whiteboard-corrected images were acquired using a masking lens and
standard whiteboard acquisition before scanning (598.71 nm wavelength was the clearest),
and (b) applying the Otus threshold method to the 598.71 nm image revealed a clear sample.
Next, morphological opening and closing operations were used to establish the sample
edges, and the samples were numbered according to the pixels along the edges. (c) By
automating the selection of separate hyperspectral bands using masks determined by the
numbering and annotation of ROIs, the identification of multiple bands could be achieved.
(d) Finally, the wavelength features were implemented across all samples. After the ROI
process had been conducted, the radiation values of each pixel point were corrected and
recalibrated by referring to the calibration calculation formula, which is defined as follows:

CS =
CR − CD
Cw − CD

(1)

where CS indicates the calibrated image information, Cw is the whiteboard information,
and CD is the all-black image information when the dark current is acquired. We found
that all of the pixels in each seed were averaged and transformed into the hyperspectral
reflectance data of each corn seed, and the corresponding spectral data were extracted in
the order of the corn seed numbers.
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For better presentation of the three-dimensional data, these data are converted into
two-dimensional data to make it more obvious. As depicted in Figure 3, the scanning of
maize seeds through a hyperspectral imaging system generates three-dimensional images
consisting of 1500 lines, 1600 samples, and 462 bands. Each band’s arrangement can be
better understood by using binary expansion.
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2.3. JYSSA Algorithm to Optimize the RF Mode

A traditional SSA divides S into three categories based on their energy levels during
foraging: explorers, followers (starvation, competition, and ordinary gradual followers),
and probers. In the subsection on the S search process, it can be seen that the finder is in
the middle and the first to find food from a safe position, as shown in Figure 4.
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The SSA algorithm is relatively robust, with simple role assignments and few pa-
rameters. However, precisely because of the small number of roles and the lack of chain
mechanism in the process of cyclic update of positions, it is prone to local optimum, which
is considered to give search results instead of the global optimum, and the global optimum
is replaced by the local optimum [27,28].

In terms of initialized populations, the SSA algorithm is improved by adding the elite
reverse strategy, the selection of 10% of S as elite S, and the forward and reverse solutions
that enable the algorithm to reach more exploration points, effectively eliminating the
unknown nature of the algorithm due to random assignment of initial populations, sup-
pressing the algorithm from falling into local optima, and improving its convergence speed.

The search range increases, as usual, which means an ordinary S to choose into an elite
S should raise their energy level and expand their foraging abilities, making an explorer S
and followers ordinary S compete internally for elite S qualification, the typical follower
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S does not constantly look for food sources in comparison to their own higher energy
explorer S, but instead jumps out of the explorer’s foraging judgment and falls into the
local extreme value point, to improve the overall algorithm of global searchability, the
degree of accuracy has been increased.

The explorer mainly finds food from the forward and reverse search when updating
the position according to Equation (2).

Xt+1
i,j =

Xt
i,j · exp

(
−i

α·itermax

)
, i f R2 < ST

Xt
i,j + Q · L , i f R2 ≥ ST

(2)

where t denotes the iteration counter, and Q is a random number satisfying a normal
distribution.

The introduction of the reverse solution allows the explorer to conduct a large-scale
search: when R2 ≤ ST, a predator approaches some S, an alarm signal is immediately
issued, and all S quickly fly to other safe areas.

Followers, due to their low energy cannot perform foraging movements and can only
be constantly supervised by the explorer. When the explorer finds food, signals will be
fed back to the followers, and they will immediately update their position according to
Equation (3) to plunder food, which is an opportunity to become an explorer.

Xt+1
i,j =

 Q · exp
(

Xt
worst−Xt

i,j
i2

)
, i f i > n/2

Xt+1
p +

∣∣∣Xt
i,j − Xt+1

p

∣∣∣·A+ · L , otherwise
(3)

where Xp is the population center safety position. Xworst denotes the current global worst
position. A denotes the 1 × d matrix in which each element is randomly assigned by 1 or
−1, the; when i > n/2, it indicates that the first i follower with poor health value is most
likely to be in the starvation state.

Among them, spotters account for 10–20% of the population size, and their initial
positions are randomized. When the natural enemy raided, the spotters immediately
updated their positions and gave warning signals according to the following equation

Xt+1
i,j =


Xt

best + β·
∣∣∣Xt

i,j − Xt
best

∣∣∣ , i f fi > fg

Xt
i,j + K ·

( ∣∣∣Xt
i,j−Xt

worst

∣∣∣
( fi− fw)+ε

)
, i f fi = fg

(4)

where Xbest is the current global optimal position. β is the step control parameter from a
normal distribution of random numbers with a mean and variance of 1. K is the moving
step of a random number. fw is the worst adaptation value. fg is the optimal fitness value.
ε is the smallest constant that circumvents the absolute zero point.

The JYSSA algorithm optimizes the RF classification model, as shown in Figure 5, with
the following flow.

(1) Full wavelength with feature selected band as input with input sizes of 462 and 186.
(2) Initialize the S population to assign explorers and followers and iterate through the

loop by searching the S population’s search range in reverse.
(3) Calculate the fitness value for each individual, ranked in order of high and low.
(4) Update the explorer, follower, and probe positions according to Equations (2)–(4).
(5) Calculate the fitness value again and reorder it, determine whether the maximum

number of iterations and the expected convergence effect are satisfied, and if so,
continue to the next step; otherwise return to (3).

(6) Select elite S, obtain dynamic boundaries, and update elite S positions using the elite
reversal strategy.
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(7) Update the fitness value again, determine whether the optimal individual is found,
and pass the number of trees and feature subsets to the RF model if found; otherwise,
repeat Steps (2)–(6).
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2.4. Model Prediction and Testing

The training and test sets were divided hyperspectrally into C = {(corn1, label1), . . . ,
(cornn, labeln)}, where the test set data were preprocessed with n data, representing the
total number of bands. In the SSA-optimized RF model, cornn and labeln represent the
spectral features of maize seeds and the authenticity labels for those seeds, respectively.

For this paper, accuracy, precision, and recall were used to evaluate the results of the
classification. The testing sets were classified by the research method only if they gave
the same classification result as the pre-classified results; otherwise, the classification was
considered incorrect. The formulae of precision, recall, and evaluation index are as follows:

Rn = Cn
Tn

Accuracy =
Cp
Cm

(5)

where Cn indicates that the label is in class n, and classified as n seeds of corn labeled as a
class; Sn denotes the total number of corn seeds labeled as n; Tn denotes the true label; n
denotes the total number of corn seeds in the test set with the true label; Cp denotes the
total number of correctly predicted classes for the entire process p of the total number of
maize seeds; and Cm denotes the total number of maize seeds in the entire dataset.

3. Results and Discussion
3.1. Analysis of Spectral Curves of Maize Seeds with Different Degrees of Mildew

Using the hyperspectral imaging system, curve images were obtained with different
degrees of hyperspectral characteristics for five classes of maize seeds, totaling 60 grains
for each class. The spectral curves of each maize seed in the five classes of seeds were
corrected according to the digital image processing described in Section 2.1 Figure 6a shows
the spectral curve of healthy seeds, which is used as a criterion for judging moldy seeds.
Figure 6b shows the phenomenon of wave peaks between 500 and 700 nm, and the curve is
different from that shown in Figure 6a. In Figure 6c–e, the reflectance gradually decreases
from 500 to 700 and 700 to 900 nm; mold between the corn seeds causes the absorption of
light, and the reflectance of the wave crest gradually decreases.
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In addition to SNV, MSC, smoothing, etc., the first derivative and second derivative
were used to process the spectral curves. In order to calibrate the standard normal variate
(SNV), each wavelength point’s absorbance value must fall into a certain distribution
along the spectral curve. The rows of the spectral matrix determine which spectrum to
handle using the SVN. In short, multiplicative scatter correction (MSC) eliminates scattering
losses caused by uneven particle size distributions and uneven particle distributions. In
order to minimize spectral differences, MSC tries to preserve as much chemical-related
information as possible throughout the spectrum. Based on the algorithm, the wavelength
and sample concentration are not taken into account when calculating the scattering.
Instead of preprocessing a single curve, MSC and SVN preprocess sets of sample curves.

Since the first and second derivatives are obtained after taking the derivatives of
the curves, background interference is eliminated, and the resolution is improved. The
derivative can increase the resolution and the number of wavelength sampling points,
but it amplifies the noise and reduces the signal-to-noise ratio when processing high-
frequency noise. From Figure 7, it can be seen that the MSC and SVN algorithms were
both used concurrently to preprocess all kinds of maize mildew degree curves. Instead of
preprocessing a single curve, MSC preprocesses a set of sample curves; a single spectral
curve is best preprocessed with SVN.

3.2. Data Dimensionality Reduction and Feature Selection

The hyperspectral imaging system provides a wealth of data, but when the number of
band operations increases, the training time also increases because the band attribute values
are too low, reducing the accuracy [29]. For this reason, RF features and importance ranking
were used. All bands were given their scores, facilitating the screening of high-priority
bands. Figure 8 mainly shows the 186 feature bands with importance scores greater than 0,
which were screened in the experiment for comparison with the full 462 bands.
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Figure 8. Spectral features are important.

Feature bands were selected based on preprocessed data. As part of the selection
process, competitive adaptive reweighted sampling (CARS) was adopted, which relies
primarily on Monte Carlo analysis and PLS regression to find the feature wavelengths.
After continuous PLS cross-validation (RMSECV) shrinking, a maximum root-mean-square
error characteristic wavelength subset was found, and the PLS model was re-established
through the new subset according to Darwin’s theory of evolution. There were eight
training sets and two test sets in the wavelength dataset, and the number of Monte Carlo
samplings was fixed. In Figure 9, the absolute weight of the regression coefficient is shown
for each sampling process. When determining the optimal characteristic wavelengths,
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small absolute wavelengths were discarded directly through the decreasing function (EDF)
and then cross-validated to minimize the RMSECV.
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3.3. Optimal Model Parameters

There is a clear trend that the SSA jumps out of the local optimum but does not
continue to search for the optimal solution, while the JYSSA algorithm continues to decline
after jumping out of the local optimum, and its ability to jump out of the local optimum
and search for the global optimum is improved compared with the original algorithm.
Tables 2 and 3 optimize parameters between different algorithms for band 462 and band
186, respectively. Figure 10 compares the convergence and degree of adaptation of the SSA
and JYSSA algorithms. The optimal adaptation degree is taken to evaluate the performance
of the algorithm, and the lower the optimal adaptation degree, the better the algorithm’s
effect [30].

Table 2. Optimal parameters of 462-band SSA and JYSSA.

Algorithm Optimal Adaptation N_Estimators
Optimal Solution

Max_Features
Optimal Solution

SSA 0.151 14 139
JYSSA 0.151 41 100

Table 3. Optimal parameters of 186-band SSA and JYSSA.

Algorithm Optimal Adaptation N_Estimators
Optimal Solution

Max_Features
Optimal Solution

SSA 0.155 31 47
JYSSA 0.147 25 96

3.4. Comparison of Classification Models and Experimental Results

The ordinary RF model was constructed using an RF classifier with n_estimators = 5
and max_features = 3 in the training classification mode. The SSA and JYSSA algorithms’
optimized parameters are reflected in Section 2.3. The comparison of the three algorithms
of the test set and training set under 462 bands and 186 bands is shown in Figure 11, and
the training set prediction results are represented in different legends to judge whether the
training set is accurate with respect to the coverage degree of scattering and the true value,
where the blue pentagram represents the true value label, and the blue dots, red dots, and
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green dots represent the training set prediction of the RF, SSA-RF, and JYSSA-RF models,
respectively. The yellow, red, and green dots represent the test sets of the RF, SSA-RF, and
JYSSA-RF models, respectively.
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To see the round-point coverage of the training set and test set more clearly, the full
462 bands were used as inputs; Table 4 shows the test set validation results and the accuracy
of the three models for the full 462 bands. Table 5 shows the test set validation results and
the accuracy of the three models with 186 bands as the inputs. For better identification of
the procedure, A1, A2, A3, A4, and A5 are defined as 0, 1, 2, 3, and 4, respectively.

Table 4. Results of the three model test sets in the 462 bands.

Models Seed Tags Precision Recall Sample Size Accuracy

JYSSA-RF

0 0.88 1.00 15

0.85
1 0.78 0.78 9
2 0.67 0.50 12
3 0.79 0.85 13
4 0.67 0.67 12

SSA-RF

0 0.88 1.00 15 0.85
1 0.78 0.78 9
2 0.90 0.75 12
3 1.00 0.77 13
4 0.73 0.92 12

RF

0 0.88 1.00 15 0.77
1 0.78 0.78 9
2 0.89 0.67 12
3 1.00 0.85 13
4 0.73 0.92 12

Table 5. Results of the three model test sets in the 186 bands.

Models Seed Tags Precision Recall Sample Size Accuracy

JYSSA-RF

0 0.88 1.00 15

0.85
1 0.60 0.67 9
2 0.70 0.58 12
3 0.88 0.54 13
4 0.62 0.83 12

SSA-RF

0 0.88 1.00 15 0.85
1 0.78 0.78 9
2 0.82 0.75 12
3 1.00 0.77 13
4 0.79 0.92 12

RF

0 0.93 1.00 14 0.74
1 0.93 0.93 14
2 1.00 0.93 14
3 1.00 0.93 14
4 0.93 1.00 14

3.5. Application Validation

Fourteen grains were reselected from the healthy, mild, moderate, heavier, and heavy
mildew groups. To verify the accuracy of the models, the comparison operation described
in Section 2.4 was repeated. The results of the three models for 462 bands are shown in
Table 6. The results of the three models for 186 bands are shown in Table 7.
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Table 6. Validation set results of the three varieties of models with 462 bands.

Models Seed Tags Precision Recall Sample Size Accuracy

JYSSA-RF

0 0.93 1.00 14

0.94
1 0.93 0.93 14
2 1.00 0.86 14
3 0.92 0.86 14
4 0.88 1.00 14

SSA-RF

0 0.93 1.00 14
1 0.93 1.00 14

0.93
2 0.81 0.93 14
3 1.00 0.86 14
4 1.00 0.77 14

RF

0 0.93 1.00 14
1 0.93 0.93 14
2 1.00 0.93 14 0.91
3 1.00 0.93 14
4 0.93 1.00 14

Table 7. Validation set results of the three varieties of models with 186 bands.

Models Seed Tags Precision Recall Sample Size Accuracy

JYSSA-RF

0 0.93 1.00 14

0.96
1 0.93 0.93 14
2 0.92 0.86 14
3 1.00 0.86 14
4 0.81 0.93 14

SSA-RF

0 0.93 1.00 14
1 0.93 0.93 14

0.94
2 1.00 0.86 14
3 0.93 0.93 14
4 0.93 1.00 14

RF

0 0.93 1.00 14
1 0.93 0.93 14
2 1.00 0.93 14 0.91
3 1.00 0.92 14
4 0.93 1.00 14

For better visualization of the predictive ability of the model, Figure 12 shows the
visualization of the seed prediction and distinguishes it by different colors, where columns
one and two represent A1 in blue, columns three and four represent A2 in cyan, columns
five and six represent A3 in green, columns seven and eight represent A4 in yellow, and
columns nine and ten represent A5 in red. (a) shows the true label value of the original
image, while panels (b), (c), and (d) show the RF model, SSA-RF model, and the JYSSA-RF
model, respectively, for the seed prediction under the full waveform. From the prediction
images, the prediction effect for heavy mildew is not very good. Panels (e), (f), and (g)
show the predictions of the three models under 186 bands, respectively, and it can be seen
that the prediction effect for heavy mildew is significantly improved.
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4. Discussion

Using the proposed algorithm, seeds with different degrees of mildew can be nonde-
structively tested for hyperspectral mildew. The reflectance value from seed hyperspectral
imaging was obtained using a lightweight machine learning model suitable for subsequent
transplantation to smartphones or other sensor devices. A faster SSA algorithm can be
achieved using this method. The device is highly portable, highly efficient, and has a high
level of precision.

While the algorithm achieved the required accuracy, it still needs to be improved. First
and foremost, in terms of the SSA itself, although the improved SSA shows reasonable
accuracy on the whole, there are ways in which the algorithm itself could be enhanced
in terms of its accuracy and convergence speed, such as by using mathematical formulae,
applying distributions, and introducing the concepts of sine and cosine, in order to further
enhance the accuracy and convergence speed of the SSA. Additionally, the overall algorithm
development framework is based on a single thread, from which subsequent multi-threaded
development can be carried out to increase the processing efficiency of hyperspectral images.
Furthermore, although the images of the hyperspectral imaging system are preprocessed,
its advantageous 3D superpixel information has not been used to further explore the
algorithm in terms of its application in computer vision processing.

5. Conclusions

A hyperspectral imaging method was used to identify the types of mold growing
on mold-covered maize seeds. As observed, the spectra of maize seeds with various
molds showed substantial variation from one another, and the 500–700 nm reflectance
of the spectrum became increasingly degraded with time. At 700–900 nm, an accurate
representation of the level of maize seed mold could be found in the steady decline in the
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absorption process of the peak. There were two major results of this study: an improved
SSA and an improved moldy seed prediction and classification algorithm.

Through the implementation of the elite reverse strategy, the SSA was enhanced, and
the RF classification model was refined, improving the convergence speed of the optimized
JYSSA method and increasing the accuracy of optimal solution judgment from 0.94 to 0.96.

The JYSSA-RF classification model is constructed after the feature band selection, and
its accuracy is higher than that of the JYSSA-RF model under the full band, as well as that
of the RF and SSA models, with strong prospects for practical applications.

To classify corn seeds with different degrees of mold, this study optimized an RF
classifier based on hyperspectral imaging technology and an optimization algorithm. Fur-
thermore, for the first time, the SSA was applied for nondestructive testing, with the
potential to improve the characteristic bands and integrate them, along with their associ-
ated models, into the equipment in the future. This study presents additional prospects in
the field of food security, where its applications could be more varied.

The SSA still needs further research, despite the idea of dividing elites into groups.
Some improvements could be made in image preprocessing, image analysis, and identifying
seeds with no mildew.

Our future research will not only improve the selection of classification models but
also employ 3D superpixels as input sources. This will enable us to further explore the
images and optimize the SSA. The wavelength characteristics of mildewed seeds will be
further studied in the future.
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