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Abstract: Due to the shielding of dense and small targets, real-time detection of whether construction
workers are wearing safety helmets suffers from low detection accuracy and missed detection. In this
paper, a new detection algorithm based on YOLOv3 is proposed. Firstly, the parallel network RepVGG
Skip Squeeze Excitation (RSSE) module is used to replace the Res8 module in the original YOLOv3
network. The RSSE module consists of 3 × 3 convolutional fusion channels and SSE branches fused.
The introduction of the R-SSE module increases the network width, reduces the network depth, and
improves the network detection speed and accuracy. Secondly, to avoid gradient disappearance and
improve feature reuse, the residual module Res2 is used to replace the CBL×5 modules. Finally, the
resolution of the input image is improved, and the four-scale feature prediction is used instead of the
three-scale feature prediction to further improve the efficiency of detecting small targets. This paper
also introduces the complete joint crossover (CIOU) to improve the loss function and positioning
accuracy. The experimental results show that, compared with the original YOLOv3 algorithm, the
improved algorithm improves the precision (P) by 3.9%, the recall (R) by 5.2%, and the average
precision (mAP) by 4.7%, which significantly improves the performance of the detection.

Keywords: YOLOv3; RSSE module; object detection; multi-scale

1. Introduction

With the increasing acceleration of urbanization, which has led to the rapid develop-
ment of infrastructure construction, safe production is an important guarantee to promote
growth. Safety helmets play an important role in ensuring safe production and can effec-
tively protect the head safety of on-site construction workers, reducing the operational
risk of construction workers to a certain extent. In the safe production specifications of
construction and heavy industry, it is stipulated that a worker is not allowed to enter the
construction site without wearing a safety helmet. However, in practice, construction
employees often fail to wear safety helmets. To monitor and correct unsafe behavior and
ensure the safety of construction workers, it is necessary to carry out real-time detection on
whether construction workers are wearing safety helmets. On the construction site, there
is often a situation where the construction personnel are far away from the monitoring
equipment, which makes the monitoring target exhibit the characteristics of small-scale
targets. Due to the few small-scale target pixels, inconspicuous image features, dense
targets, and other reasons, small target missed detection and target occlusion is prone to
occur in the detection [1,2]. Traditional helmet wearing detection mainly adopts manual
inspection and video monitoring systems, with various defects such as low efficiency, high
cost, limited management scope, and missed detection [3]. In response to the shortcomings
of traditional detection methods, deep learning-based target detection algorithms have
numerous advantages, such as fast detection speed and high accuracy. They have been
widely used in wearing safety helmet detection.

Currently, there are two main types of target detection algorithms based on deep
learning, the two-stage algorithm based on the region candidate network (RPN) [4] to
extract candidate target information, and the one-stage algorithm based on regression.
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Two-stage detection algorithms mainly include regional convolutional neural networks
(RCNN) [5], fast R-CNN [6], faster R-CNN [7], and mask R-CNN [8], etc. One-stage
detection algorithms mainly include the single shot multibox detector (SSD) [9], the multi-
scale deconvolution single shot multibox detector (MDSSD) [10], and the You Only Look
Once (YOLO) algorithm [11–15].

This paper mainly studies the problem of low detection accuracy caused by dense
target occlusion, and small-scale target missed detection in helmet wearing detection. A
new model is established by improving the YOLOv3 algorithm, and the feasibility of the
new model is verified on the helmet dataset.

The contributions of this paper are as follows: (1) we propose a parallel RSSEnetwork
module to replace the Res8 module in Darknet53. It can increase the network width, reduce
the network depth, and improve the network speed and the detection accuracy of small
targets in the model; (2) We propose using residual module Res2 to replace CBL×5 modules
in the YOLOv3 algorithm. This scheme can avoid gradient disappearance and enhance
the reuse of features, improving the accuracy of detecting dense target occlusion; (3) We
propose increasing the resolution of the input image to 608 × 608, and increasing the
output feature map from three-scale detection to four-scale detection, which can improve
the accuracy of the model for small target detection; (4) The ablation experiments on
the helmet dataset show that the RSSE-YOLOv3 algorithm proposed in this paper has
improved the detection performance. Compared with the original YOLOv3 algorithm, the
mAP is increased by 4.7%, the P is increased by 3.9%, and the R is increased by 5.4%.

The content of this paper is arranged as follows: Section 2 summarizes related work of
existing research on deep neural network design for the task of wearing hard hat object
detection. Section 3 introduces the innovations of the improved algorithm. Section 4
introduces the dataset and evaluation criteria. Section 5 introduces various experimental
schemes and describes the experimental results in detail. Section 6 concludes this paper
and proposes the following research directions.

2. Related Work

In view of the problems in the process of detecting wearing helmets, many scholars
have done a lot of research work on target detection algorithms based on deep learning.
Li et al. [16] proposed a method to improve the faster RCNN model, which enhances
the faster RCNN algorithm by combining online complex sample mining and a multi-
part combination of target detection framework, using multi-scale training and adding
an anchor point strategy. It improves the detection performance of the occluded part of
the helmet. However, there is a lack of research on the detection of long-distance small
targets. Fang et al. [17] proposed an improved YOLOv2 wearing safety helmet detection
algorithm, which improved the accuracy of the YOLOv2 network and combined the
network compression using the lightweight network structure in MobileNet. However,
there is no research on the detection of dense target occlusion. He et al. [18] proposed
an improved YOLOv3 multi-scale feature prediction algorithm. To further improve the
accuracy of small-scale target detection, the feature pyramid structure was extended from
the three-scale to four-scale algorithm. Xu et al. [3] proposed an improved YOLOv3
wearing safety helmet detection algorithm by adding feature maps, using GIOU Loss as
the bounding box loss, and adding Focal Loss to the loss function to improve the accuracy
of small target detection. There is a lack of research on the occlusion detection of dense
targets in the literature. Cheng et al. [19] proposed to improve YOLOv3-tiny by building a
depthwise separable convolution and guiding the light sandglass-residual (SR) module of
the channel attention mechanism to replace the original model. The convolutional layer
was used to replace the two-scale feature prediction with three-scale feature prediction, and
the improved spatial pyramid pooling (SPP) module was added to the feature extraction
network to improve the detection accuracy of the helmet. There is no research on long-
range targets and occluded targets in the literature. Yan et al. [20] proposed an improved
wearing safety helmet detection algorithm based on YOLOv3. The algorithm improves the
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speed and accuracy of wearing helmet detection by increasing the size of the input image,
using depthwise separable convolution instead of the traditional convolution in Darknet53,
and multi-scale feature fusion structure, etc. Han et al. proposed helmet wearing detection
method based on YOLOv5 [21], which uses YOLOv5 as the baseline, predicts the bounding
boxes of smaller objects by adding the fourth scale, and adopts an attention mechanism in
the backbone network, and other methods to improve the speed and accuracy of helmets
detection. There is no research on dense object occlusion detection in the literature.

From the above research results, it can be seen that most researchers can improve the
detection accuracy in the research of helmet wearing detection, but there is a lack of further
research on the problem that the detection accuracy is reduced due to the occlusion of
dense targets and the missed detection of small targets.

3. Methodology
3.1. RSSE Block Design

In 2019, Tan et al. [22] proposed that the convolutional network could be effectively
scaled by increasing the depth, width, or resolution of the network, and used these methods
to improve the accuracy of the network model. Among them, increasing the network depth
increased the suggestive power of the network and contributed to learning increasingly
abstract features. However, if the network depth is too deep, this leads to more sequential
processing and higher latency, which slows down the rapid response of the network. At
the same time, increasing the network width can facilitate multi-scale processing.

In 2021, Goyal et al. [23] and others proposed the down-sampling RepVGG-SSE block,
which is obtained by borrowing the initial block design of Rep-VGG [24] and modifying it to
increase the network width to promote multi-scale processing, according to the structural
principle of the Rep VGG-SSE block; this paper realizes the design of a parallel RSSE
module. As shown in Figure 1, the RSSE module is divided into two parts. The lower part
uses 3 × 3 convolution to fuse the channel information, which is added and fused with
the output results of the upper Skip–Squeeze–Excitation (SSE) branch. The upper part is
an SSE branch, which consists of a BN layer adding a single-layer SE module (Max pool,
1 × 1 Conv, Swish) in parallel with the connection branch. The main function of the SSE
branch is to avoid a 3 × 3 convolution non-depth network, which can increase the receptive
field without affecting the depth. Thus, the width of the network is increased, and the
detection accuracy can be improved. In the design of the SSE branch, in order to retain
more texture information in the detection target image during image feature extraction, the
maximum pooling layer is used to realize the pooling function. At the same time, because
the Swish function has the characteristics of no upper bound and lower bound, smoothness,
and non-monotonicity, it can avoid gradient disappearance, and has better performance in
the deep network model. The Swish activation function is used in the branch to improve
the performance of the model.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 1. The RepVGG Skip Squeeze Excitation (RSSE) block. 

3.2. Multi-Scale Detection Algorithm 
In the case of the same input image, the smaller the size of the output feature map, 

the fewer grid cells of the image are segmented, the larger the image area contained in 
each grid cell, and the more feature extraction points, which will cause the omission of 
feature points. Conversely, the larger the size of the output feature map, the more grid 
cells the image is segmented, the smaller the image area contained in each grid cell, and 
the more accurate the feature extraction points. In the original YOLOv3 model, the input 
image size is 416 × 416, and the three output feature map sizes are 13 × 13, 26 × 26, and 52 
× 52 for detecting large, medium, and small objects, respectively. This paper improves the 
detection accuracy of the YOLOv3 algorithm for small targets by increasing the model 
detection scale, so that the original three output detection layers are increased to four de-
tection layers, and they are fused to realize the detection of small targets. The output fea-
ture map sizes of the detection layers are 13 × 13, 26 × 26, 52 × 52, and 104 × 104. At the 
same time, the CBL×5 unit modules in the original YOLOv3 model are replaced by Res2 
modules to avoid gradient disappearance and enhance the reuse of features. It can im-
prove the detection accuracy of small targets and occluded parts of dense targets. 

Increasing the size of the input image can enhance the strength of extracting feature 
points and further improve the accuracy of detecting small objects. In this paper, the input 
image size is resized to 608 × 608, and the feature map sizes of the four detection layers 
are 19 × 19, 38 × 38, 76 × 76 and 152 × 152, respectively. The improved YOLOv3 model is 
referred to as RSSE-YOLOv3, as shown in Figure 2. 

 
(a) 

Figure 1. The RepVGG Skip Squeeze Excitation (RSSE) block.

As the Res8 module consists of a total of 25 layers of networks, the RSSE module
consists of 8 layers of networks. In the improved algorithm, the RSSE module is used to
replace the Res8 module in Darknet53 of the original YOLOv3 model, so that the backbone
network of the YOLOv3 model is reduced from 74 layers to 52 layers, which reduces the
depth of the network, and improves the running speed of the model.
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3.2. Multi-Scale Detection Algorithm

In the case of the same input image, the smaller the size of the output feature map, the
fewer grid cells of the image are segmented, the larger the image area contained in each
grid cell, and the more feature extraction points, which will cause the omission of feature
points. Conversely, the larger the size of the output feature map, the more grid cells the
image is segmented, the smaller the image area contained in each grid cell, and the more
accurate the feature extraction points. In the original YOLOv3 model, the input image size
is 416 × 416, and the three output feature map sizes are 13 × 13, 26 × 26, and 52 × 52 for
detecting large, medium, and small objects, respectively. This paper improves the detection
accuracy of the YOLOv3 algorithm for small targets by increasing the model detection scale,
so that the original three output detection layers are increased to four detection layers, and
they are fused to realize the detection of small targets. The output feature map sizes of
the detection layers are 13 × 13, 26 × 26, 52 × 52, and 104 × 104. At the same time, the
CBL×5 unit modules in the original YOLOv3 model are replaced by Res2 modules to avoid
gradient disappearance and enhance the reuse of features. It can improve the detection
accuracy of small targets and occluded parts of dense targets.

Increasing the size of the input image can enhance the strength of extracting feature
points and further improve the accuracy of detecting small objects. In this paper, the input
image size is resized to 608 × 608, and the feature map sizes of the four detection layers
are 19 × 19, 38 × 38, 76 × 76 and 152 × 152, respectively. The improved YOLOv3 model is
referred to as RSSE-YOLOv3, as shown in Figure 2.

3.3. K-Means for Anchor Boxes

The YOLOv3 algorithm continues the method of YOLOv2 using the prairie box anchors
to predict the coordinates of the bounding box, with the aim of having a larger IOU and a
smaller distance between the anchor box and the adjacent ground truth box. Anchor values
are calculated using the K-means clustering method [19,25].

The K-means algorithm selects K objects as the initial cluster center, calculates the
distance between each object and the clustering center by using the metric formula D
(Box, Centroid) = 1 − IOU (box, centroid), assigns the box to the clustering center with
the closest “distance”(in the formula, d (box, centroid) denotes the distance from the
anchor box to the cluster center; IOU (box, centroid) represents the intersection ratio of
the anchor box and the ground truth box), and assign pairs according to the box. The
cluster center points are recalculated for each cluster, and the clusters are re-clustered
according to the dataset until all objects are classified. The experiment in this paper uses
the self-built safety helmet dataset, so the original anchor box is no longer applicable and
has to be re-clustered. Weighing the average intersection ratio and the number of cluster
centers K, the number of clustering centers K is set to 9 for three detection layers, and
the number of clustering centers K is set to 12 for four detection layers. When the input
size is 608 × 608, under the prediction of three scales, take K = 9, the smallest 19 × 19
feature map has the largest receptive field, large anchors (143, 273), (229, 340), (379, 445)
are used, which are suitable for detecting larger targets. On the medium 38 × 38 feature
map, due to its medium receptive field, medium anchors (74, 120), (99, 194), (167, 162) are
used, which are suitable for detecting medium-sized objects. With a larger 76 × 76 feature
map, due to its smaller receptive field, the smallest anchors (11, 18), (25, 43), (44, 78) are
used, which are suitable for detecting smaller targets. Similarly, under the prediction of
four scales, take K = 12, the smallest 19 × 19 feature map has the largest receptive field,
large anchors (129, 229), (188, 247), (291, 113) are used, which are suitable for detecting
larger targets. On the medium 38 × 38 feature map, due to its medium receptive field,
medium anchors (67, 130), (89, 180), (125, 129) are used, which are suitable for detecting
medium-sized objects. On the larger 76 × 76 feature map, due to its smaller receptive field,
smaller anchors (35, 58), (47, 89), (80, 82) are used, which are suitable for detecting smaller
targets. On the larger 152 × 152 feature map, due to its smaller receptive field, the smallest
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anchors (6, 10), (14, 23), (22, 41) are used, which are suitable for detecting smaller targets.
The candidate boxes after clustering are shown in Table 1.
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Table 1. The candidate boxes after clustering.

K Feature Map Size Anchors

K = 9
19 × 19 143, 273 229, 340 379, 445
38 × 38 74, 120 99, 194 167, 162
76 × 76 11, 18 25, 43 44, 78

K = 12

19 × 19 129, 229 188, 247 291, 113
38 × 38 67, 130 89, 180 125, 129
76 × 76 35, 58 47, 89 80, 82

152 × 52 6, 10 14, 23 22, 41

3.4. Loss Function

In order to further improve the detection accuracy of the model, the complete joint
crossover (CIOU) loss function is used to design the regression loss function of the target de-
tection model. Compared with the calculation method of intersection over union (IOU) [26],
CIOU [27] comprehensively considers the distance, overlap rate, scale and aspect ratio
information between the target and the anchor frame, which can avoid the problem that the
prediction frame does not intersect with the real frame, resulting in a loss function gradient
of 0. Therefore, CIOU is more in line with the regression mechanism of the predicted box,
making the generation of the bounding box more stable. The penalty term CIOU that
minimizes the center point distance, overlap ratio, and aspect ratio is defined as follows:

LCIOU = 1− IOU +
ρ2(b, bgt)

c2 + αv (1)

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(2)

α =
v

(1 + IOU) + v
(3)

In the above formula, IOU is the intersection over union; b and bgt represent the center
point of the anchor box and the target box, respectively; w, h represent the width and height
of the anchor box, respectively; wgt, hgt represent the width and height of the target box,
respectively; and ρ(·) =‖ b − bgt ‖2 indicates the Euclidean distance. c is the diagonal
length of the smallest enclosing box covering the anchor box and the target box. α is a
balance factor, and v is a shape penalty term.

4. Experiments

In this paper, to train the defect detection proposed model, we used the framework
of Darknet. The experimental computer configuration is an AMD Ryzen 7 5800X 8-core
processor with CPU frequency of 3.80 GHz and RAM of 32 GB produced by AMD of the
USA, and NVIDIA GeForce GTX 3060 graphics card with 12 GB of memory produced by
NVIDIA of the USA.

4.1. Datasets

At present, there is no unified dataset for wearing safety helmet detection. The test
images used in this paper were from the open source VOC2012 dataset and SWHD, etc.
Referring to the standards of the PASCAL VOC dataset, an image dataset containing
multiple scenes and multiple targets was established, so that the detection model has
detection ability in different scenes, so as to facilitate the model for training, testing, and
analysis. This dataset was named the “safety helmet”. The dataset image is shown in
Figure 3. The safety helmet data set was sorted and processed according to the research
needs. The dataset used in this experiment contained 7500 pictures, which were saved in
JPG format, labeled with labeling software, and saved as XML files. The labeled data were
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normalized and divided into a training set and test set according to the ratio of 8:2, and
6000 pictures were obtained as a training set and 1500 pictures as the test set.
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4.2. Evaluation Criteria

In order to accurately and effectively evaluate the performance of the detection al-
gorithm, this paper selected the accuracy rate P, recall rate R, and mAP as the evaluation
indicators, and the calculation formula is:

P =
TP

TP + FP
(4)

R =
TP

TP + FM
(5)

F1 =
2PR

P + R
(6)

AP =
∫ 1

0
P(R)dR (7)

mAP =

N
∑

i=1
APi

N
(8)

In the above formula, F1 is the harmonic average of P and R, true positives (TP) is the
number of correctly detected targets, false positives (FP) is the number of falsely detected
targets, and false negatives (FN) is the number of undetected targets. Average precision
(AP) indicates the detection effect of the algorithm on a target category. Mean average
precision (mAP) represents the average accuracy of N categories.

5. Results and Discussions
5.1. Ablation Experiment

Due to the change in the original YOLOv3 network model structure, this paper used
the method of random initial weights for model training. In the experiments of this paper,
in order to ensure the effectiveness of the experimental comparison results and reflect the
advanced nature of the improved algorithm model, all models were retrained in the same
experimental environment to complete the model test. In the experiment, epochs was set to
200, the batch size was set to 32, the learning rate was changed from 0.01 to 0.00001, the
momentum was set to 0.9, and the weight decay was set to 0.0005.
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To better understand the detection effect of each improved method, ablation learning
was performed on the safety helmet test set. Each improvement scheme is described in
Table 2. By comparing the P, R, F1, mAP and FPS indicators produced by the experiments of
different schemes, the performance of each scheme was comprehensively analyzed. Table 3
shows the results of ablation experiments with an input size of 416 × 416, and Table 4
shows the results of ablation experiments with an input size of 608 × 608.

Table 2. Different improvement schemes. “
√

” indicates the selected module.

Scheme 3Scale 4Scale CIOU RSSE Res2

3Scale + CIOU
√ √

3Scale + CIOU + RSSE
√ √ √

3Scale + CIOU + RSSE + Res2
√ √ √ √

4Scale + CIOU
√ √

4Scale + CIOU + RSSE
√ √ √

4Scale + CIOU + RSSE + Res2
√ √ √ √

Table 3. Ablation results of different models (416 × 416).

Model P (%) R (%) F1 (%) mAP (%) FPS

YOLOV3 88.4 85.2 86.8 88.1 13.8
3Scale + CIOU 89.6 85.2 87.3 90.3 13.7

3Scale + CIOU + RSSE 90.7 85.8 88.2 90.8 13.6
3Scale + CIOU + RSSE + Res2 91.4 86.7 88.9 91.2 13.6

4Scale + CIOU 90.6 87.8 89.2 90.5 15.5
4Scale + CIOU + RSSE 91.3 88.2 89.7 91.4 15.3

4Scale + CIOU + RSSE + Res2 91.5 88.8 90.1 91.7 16.1

Table 4. Ablation results of different models (608 × 608).

Model P (%) R (%) F1 (%) mAP (%) FPS

YOLOV3 87.8 89.9 88.8 89.3 23.5
3Scale + CIOU 88.6 88.2 88.4 90.8 22.9

3Scale + CIOU + RSSE 89.3 89.5 89.4 91.2 23.7
3Scale + CIOU + RSSE + Res2 90 87.6 88.9 91.5 23.2

4Scale + CIOU 91.6 89.3 90.1 92.1 25.6
4Scale + CIOU+RSSE 91.8 90.2 91 92.5 24.3

4Scale + CIOU + RSSE + Res2 92.3 90.4 91.3 92.8 28.9

Different improvement schemes are shown in Table 2. In Table 2, 3Scale represents
three scale prediction methods, and 4Scale represents four scale prediction methods. Specif-
ically, in the 3Scale + CIOU scheme, three scale prediction methods were used, and the
CIOU loss function was used on the basis of the original YOLOv3 to improve the regres-
sion accuracy of the target and improve the detection accuracy of dense targets. In the
3Scale + CIOU + RSSE scheme, based on the 3Scale + CIOU scheme, the parallel network
RSSE module was introduced to replace the Res8 module in Darknet53, which can increase
the network width, reduce the network depth, and improve the network speed and target
detection accuracy. In the 3Scale + CIOU + RSSE + Res2 scheme, based on the 3Scale +
CIOU + RSSE scheme, the residual network Res2 was used to replace the CBL×5 module
in the original YOLOv3, which can avoid gradient disappearance and enhance feature
reuse, so as to improve the detection accuracy of dense target occlusion. In order to fur-
ther improve the performance of small target detection, the original model was improved
from three scale predictions to four scale predictions. The improved four scale prediction
schemes were 4Scale + CIOU scheme, 4Scale + CIOU + RSSE scheme and 4Scale + CIOU +
RSSE + Res2 scheme, respectively.
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According to the different improvement schemes in Table 2, the ablation test results
with an input size of 416 × 416 are shown in Table 3. In order to visually compare the
results, a histogram was drawn according to the experimental data, as shown in Figure 4. It
can be seen from Table 3 that in the original three-size YOLOv3 algorithm, the index values
including P, R, F1, and mAP are relatively low. In the original YOLOv3 algorithm, CIOU
loss function was used as the loss function, which increased the values of P, F1, and mAP
by 1.2%, 1.5%, and 2.2%, respectively, while the test speed was basically unchanged. This
shows that the introduction of the CIOU loss function can improve the regression accuracy
of the model, and can effectively improve the detection accuracy of small targets. In the
3Scale + CIOU + RSSE scheme, the values of P, F1, and mAP were further improved by
1.1%, 0.9%, and 0.5%, respectively. This shows that the parallel network RSSE module can
effectively improve the detection accuracy of small targets compared with the Res8 module.
In the 3Scale + CIOU + RSSE + Res2 scheme, the values of P, R, F1, and mAP were increased
by 0.7%, 0.9%, 0.7%, and 0.4%, respectively. This shows that the introduction of the residual
module Res2 compared with the use of the CBL×5 module, the Res2 module can effectively
improve the performance of the model to detect small objects. It can be seen from the
above three improvement schemes that compared with the original YOLOv3 algorithm,
the improved three-scale detection model algorithm increases the index values of P, R,
F1, and mAP by 3%, 1.5%, 2.1% and 3.1%, respectively, while the FPS remains basically
unchanged. This shows that the original YOLOv3 introduced the CIOU loss function, the
parallel network RSSE module, and the staggered module Res2, which effectively improved
the detection accuracy of small targets.
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In the test using four scale algorithms, compared with the 3Scale + CIOU scheme,
the P, R, mAP, and F1 of the 4Scale + CIOU scheme increased by 2.2%, 2.6%, 2.4%, and
2.4%, respectively, and the FPS was increased from 13.7 to 15.5. Compared with the
3Scale + CIOU + RSSE scheme, the P, R, F1, and mAP of the 4Scale + CIOU + RSSE
scheme were increased by 0.6%, 2.4%, 1.5%, and 0.6%, respectively, and the FPS was
increased from 13.6 to 15.3. Compared with the 3Scale + CIOU + RSSE + Res2 scheme, the
4Scale + CIOU + RSSE + Res2 scheme increased P, R, F1, and mAP by 0.1%, 2.1%, 1.2%, and
0.5%, respectively, and the FPS increased from 13.6 to 16.1. By comparing the experimental
results of the three scale detection algorithms and the four scale algorithms in the several
schemes, it can be seen that the four scale algorithms greatly improved the index values of P,
R, mAP, F1, and FPS. The detection accuracy and detection speed of the model are improved.
The experimental results show that the four detection scales have higher detection accuracy
and faster detection speeds, and are more suitable for detecting smaller-sized targets.
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According to different improvement schemes in Table 2, the ablation experiment
results with an input size of 608 × 608 are shown in Table 4. In order to visually compare
the results, a histogram is drawn according to the experimental data, as shown in Figure 5.
Comparing the experimental data in Tables 3 and 4 under the same scheme, it can be seen
that when the input size is 608 × 608, the values of R, F1, mAP, and FPS are improved
when the p value slightly decreases in the test using the three scaling algorithms. In the
test of four scale algorithms, all the index values have been improved; the value of FPS
was improved most obviously, increasing from 16.1 to 28.9. This shows that the method
of increasing the size of the input image can enhance the strength of the feature points
extracted by the model, so as to further improve the accuracy of the detection target. From
the comparison of the experimental results of the above improved schemes, it can be seen
that the performance of the 4Scale + CIOU + RSSE + Res2 scheme with an input size of
608 × 608 has been greatly improved compared with the original YOLOv3. Specifically,
it improves P, R, mAP, and F1 by 3.9%, 5.2%, 4.5%, and 4.7%, respectively, on the test set,
and FPS from 13.8 to 28.9. The 4Scale + CIOU + RSSE + Res2 scheme with an input size
of 608 × 608 was determined as the final improved algorithm (named RSSE-YOLOv3).
The experimental results show that the final improved algorithm proposed in this paper
not only improves the accuracy of detecting small targets, but also further improves the
detection speed.
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5.2. Result Comparison with Other Detection Models

The evaluation indicators of different detection models are analyzed and compared on
the test set to prove the detection performance of each algorithm, as shown in Table 5. In
order to visually compare the results, a histogram was drawn according to the experimental
data, as shown in Figure 6. The following conclusions can be drawn from Table 5. Compared
with YOLOv3 model, RSSE-YOLOv3 increased P from 88.4% to 92.3%, R from 85.2% to
90.4%, F1 from 86.8% to 91.3%, mAP from 88.1% to 92.8%, and FPS increased from 13.8 to
28.9. This shows that the improved RSSE-YOLOv3 model not only improves the speed of
the network, but also improves the accuracy of detecting objects. Compared with YOLOv4
model, RSSE-YOLOv3 improved P from 91.6% to 92.3%, FPS from 27.3 to 28.9, and mAP
from 91.8% to 92.8%, but R decreased. This shows that the improved RSSE-YOLOv3 model
is better than the YOLOv4 model in detection accuracy and detection speed. Compared
with the YOLOv5 model, the RSSE-YOLOv3 model improved P from 92.1% to 92.3%, and
FPS from 28.5 to 28.9, but decreased R and F1, and mAP decreased by 0.3%. This shows
that the RSSE-YOLOv3 model is lower than YOLOv5 model in detection accuracy, but has
a slight advantage in detection speed.
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In order to further prove the effectiveness of different algorithms, according to the
experimental values of the four algorithms, we draw two important performance indicators
P and R curves. The curves of P and R are shown in Figure 7a,b. The horizontal axis
in Figure 7a,b represents the training time, while the vertical axis represents the values
of P and R, respectively. Comparing the P value curves in Figure 7a, it can be seen that
the RSSE-YOLOv3 algorithm generates the highest P value, and the YOLOv3 algorithm
generates the lowest P value. Comparing the R-value curves in Figure 7b, it can be seen that
the R-value generated by the YOLOv5 algorithm is the highest, and the R-value generated
by the YOLOv3 algorithm is the lowest. Although the R-value generated by the RSSE-
YOLOv3 algorithm is lower than that of YOLOv4 and YOLOv5, it is higher than the R-value
generated by YOLOv3. It can be obviously seen from Figure 7a,b that the RSSE-YOLOv3
algorithm is superior to the YOLOv3 algorithm.

5.3. Detection Results under Application Scenarios

In order to further verify the detection effect of the algorithm in complex scenes,
such as dense target occlusion and small targets, image detection was performed in the
“safety helmet” dataset, and the detection effects of the YOLOv3 algorithm, RSSE-YOLOv3
algorithm, YOLOv4 algorithm, and YOLOv5 algorithm were compared. The comparison
of the detection effects of the four algorithms is shown in Figure 8. In Figure 8, the left
side shows the densely occluded target detection effect, and the right side shows the
long-distance small target detection effect. It can be seen from the effect of the test images
that the YOLOv3 algorithm has missed detection targets, and the accuracy is not high,
especially for occluded targets and small targets. With the YOLOv3 algorithm, the detection
target is less missed, and the accuracy is high. Compared with the YOLOv4 algorithm
and the YOLOv5 algorithm, the RSSE-YOLOv3 algorithm has the same performance in
the detection of dense targets and occluded targets. Although the accuracy rate is lower
than the YOLOv4 algorithm and YOLOv5 algorithm, the detection effect of small targets
is better. The detection results of four algorithms show that the RSSE-YOLOv3 algorithm
significantly improves the detection performance of the model for dense targets, occluded
targets, and small targets.
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Table 5. Comparison of different algorithms for object detection.

Author Model Used P (%) R (%) F1 (%) mAP (%) FPS

Redmon et al. [13] YOLOv3 88.4 85.2 86.8 88.1 13.8
Benyang et al. [28] YOLOv4 91.6 90.8 91.2 91.8 27.3

Han et al. [21] YOLOv5 92.1 91.5 91.8 92.9 28.5
Proposed model RSSE-YOLOv3 92.3 90.4 91.3 92.8 28.9
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Figure 8. Comparison of detection results of different algorithms. (a) The detection result of the
YOLOv3 model; (b) the detection result of the YOLOv4 model; (c) The detection result of the YOLOv5
model; (d) the detection result of theRSSE-YOLOv3 model. The object marked by the yellow box in
the figure represents the missed detection target.

6. Conclusions

Considering the problem that the original YOLOv3 algorithm has low accuracy for
dense target occlusion and small target detection, and is prone to miss detection, this paper
proposes the RSSE-YOLOv3 algorithm. The algorithm adjusts the input size to 608 × 608,
and adopts four scale prediction methods, which can enhance the strength of the feature
points extracted by the model, thereby further improving the detection accuracy of small
targets. During the ablation experiment, several experimental schemes were designed. In
the 4Scale + CIOU scheme, based on the original YOLOv3, the CIOU loss function is used
to improve the regression accuracy of the target, so as to improve the detection accuracy of
dense targets. The 4Scale + CIOU + RSSE scheme is based on the 4Scale + CIOU scheme
and uses the parallel network RSSE module to replace the Res8 module in Darknet53.
The R-SSE module increases the network width of the model, reduces the network depth,
and further improves the network detection speed and target detection accuracy of the
model. The 4Scale + CIOU + RSSE + Res2 scheme is based on the 4Scale + CIOU + RSSE
scheme, and the residual network Res2 is used to replace the CBL×5 modules in the original
YOLOv3. The introduction of the Res2 module can avoid gradient disappearance and
enhance feature reuse, and improve the detection accuracy of target occlusion and small
target detection accuracy.

In conclusion, it can be seen from the experimental results of the test set that, compared
with the original YOLOv3 algorithm, the RSSE-YOLOv3 algorithm has an increase of P from
88.4% to 92.3%, R from 85.2% to 90.4%, F1 from 86.8% to 91.3%, mAP from 88.1% to 92.8%,
and FPS increased from 13.8 to 28.9. RSSE-YOLOv3 is inferior to YOLOv4 and YOLOv5
in detection accuracy, but it has advantages in speed. The comparison of experimental
results shows that the RSSE-YOLOv3 algorithm improves the detection accuracy and speed
of dense target occlusion and small target detection. Through the improvement of the
YOLOv3 algorithm, this paper further improves the performance of the YOLOv3 algorithm
for target detection, and provides theoretical support for the application of target detection
technology in engineering. Future research work should further study the basic theoretical
knowledge of YOLOv6/7 on the basis of YOLOv3 to improve the detection performance of
YOLOv6/7 for small targets.
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