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Abstract: Ergonomic risk assessment is vital for identifying work-related human postures that can be
detrimental to the health of a worker. Traditionally, ergonomic risks are reported by human experts
through time-consuming and error-prone procedures; however, automatic algorithmic methods
have recently started to emerge. To further facilitate the automatic ergonomic risk assessment, this
paper proposes a novel variational deep learning architecture to estimate the ergonomic risk of any
work-related task by utilizing the Rapid Entire Body Assessment (REBA) framework. The proposed
method relies on the processing of RGB images and the extraction of 3D skeletal information that
is then fed to a novel deep network for accurate and robust estimation of REBA scores for both
individual body parts and the entire body. Through a variational approach, the proposed method
processes the skeletal information to construct a descriptive skeletal latent space that can accurately
model human postures. Moreover, the proposed method distills knowledge from ground truth
ergonomic risk scores and leverages it to further enhance the discrimination ability of the skeletal
latent space, leading to improved accuracy. Experiments on two well-known datasets (i.e., University
of Washington Indoor Object Manipulation (UW-IOM) and Technische Universität München (TUM)
Kitchen) validate the ability of the proposed method to achieve accurate results, overcoming current
state-of-the-art methods.

Keywords: computer vision; deep learning; ergonomic risk assessment; work-related
musculoskeletal disorders

1. Introduction

Work-related musculoskeletal disorders (WMSDs) have been ranked among the most
reported jobsite injuries affecting muscles, nerves, tendons, and joints [1]. WMSDs have
been associated with several occupational risk factors, such as excessive force, awkward
work postures, and prolonged sitting and standing [2,3]. Consequently, detecting the
above factors is of vital significance in order to alleviate the painful and long-term effects
of WMSDs.

To prevent WMSDs, it is essential to quantify exposure risk levels and develop tools to
reduce the load to reasonable standards for workers [4]. To this end, observational meth-
ods, such as Rapid Upper Limb Assessment (RULA) [5], Rapid Entire Body Assessment
(REBA) [6], and Ergonomic Assessment Worksheet (EAWS) [7], have recently emerged for
use by ergonomists who are abandoning traditional direct measurement approaches [8].
This is due to the fact that observational techniques are inexpensive, convenient, and do not
meddle with workers’ tasks [9]. RULA provides an ergonomic risk assessment of the upper
body after considering the location of the neck, trunk, and upper limbs, along with the
external loads applied to the body [5], while REBA extends RULA by taking into account
the lower body (i.e., position of legs) as well [10]. EAWS is used to identify postures of the
entire body, as well as their duration, and assigns risk scores to them.

In the literature, there are distinct categories of ergonomic risk assessment method-
ologies with different levels of precision [11]. Traditionally, ergonomic risk assessment is
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carried either by workers’ self-reports or by experts that observe and evaluate postures.
However, such methods are time-consuming, cannot be applied in real-time, and are prone
to errors [12]. In recent years, great advancements have been made on automatic ergonomic
risk assessment [13], mainly due to the availability of wearable sensors [14,15] and the
efficiency of deep learning models [16–18]. Nevertheless, the ideal sensors should fulfill
certain unique characteristics, such as being easy to wear, unobtrusive, affordable, and wire-
less [19]. Furthermore, there is limited research work on methods that deal with ergonomic
risk assessment in real-time or requiring only a single RGB image. Both of these factors are
of crucial importance in order to substantially assist workers, preventing or relieving of
WMSD symptoms and effects [20].

In this work, we introduce a novel deep learning-based method in order to decisively
address the aforementioned challenging factors. We design a robust and generic framework
that can regress total, as well as partial, REBA scores, given a single RGB image. The pro-
posed approach extracts 3D pose information from images, computes a descriptive skeletal
latent space through a multi-stream encoder and a multi-layer Transformer encoder, aligns
the skeletal latent space with the ground truth REBA scores to improve the discrimination
ability of the network, and provides accurate ergonomic risk assessment results in-real-time.
The main contributions of this paper are:

• We propose a novel deep learning methodology that processes RGB images in real-
time to assess ergonomic risk scores for the entire body and individual body parts
unobtrusively, identifying which body parts are affected the most during a task;

• We introduce a novel variational framework that can effectively model and combine
joint interactions with ergonomic risk information through the alignment of the 3D
skeletal pose and the ground truth REBA scores, leading to the accurate estimation of
ergonomic risks;

• We conduct thorough experiments on two well-known publicly available RGB datasets,
UW-IOM [16], and TUM Kitchen [21], showcasing the superiority of the proposed
methodology against other state-of-the-art methods.

2. Related Work

Methods that assess the ergonomic risk of work-related tasks can be classified into:
(i) Traditional, (ii) Marker-based, and (iii) Marker-less ones. Works that fall under the first
category rely upon either manual on-site observations or recorded videos and they are
conducted by experts. Thus, these methods are time-consuming, may lead to subjective
results due to observer bias and weariness and more importantly they cannot be employed
in real-time.

On the other hand, Marker-based methods employ wearable equipment to acquire
accurate information regarding human posture. Yan et al. [22] introduced a real-time
motion warning personal protective equipment (PPE), using wearable Inertial Measurement
Units (WIMUs) in order to detect predefined hazardous ergonomic postures and warn
workers. Malaise et al. [23] utilized a wearable motion tracking suit and a sensorized
glove to automatically recognize and classify different activities using a Hidden Markov
Model. The same authors extended their previous work [24] by introducing a taxonomy
of postures and actions, as well as proposing a system with a motion suit for automatic
ergonomic risk assessment based on activity recognition, performed by a Hidden Markov
Model. Mudiyanselage et al. [19] employed the surface electromyogram (sEMG) in order to
automatically detect harmful lifting activities. Afterwards, the authors used the sEMG data
to train four machine learning algorithms (i.e., SVM, KNN, Decision Tree, and Random
Forest) to classify the level of ergonomic risk. Due to the inherent dynamic nature of work-
related activities, not all sensors can be utilized for personalized safety monitoring [25].
Furthermore, signal artifacts and noise in wearable-sensors’ field measurements can be
a challenging factor [26]. Consequently, such methods require expensive, cumbersome,
and dedicated equipment, while also being sensitive to the surrounding environment and
obtrusive to the actions of a worker.
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Marker-less methods leverage deep learning techniques and most often incorporate the
task of ergonomic risk assessment while performing action recognition. Abobakr et al. [27]
introduced a deep learning-based framework in order to regress body joint angles from
a single depth image, utilizing a deep residual network. Parsa et al. [16] utilized a CNN
to learn spatial features from an input video that were then fed into a temporal CNN
for real-time segmentation into meaningful actions. The same authors employed a pose
extraction network to compute sequences of skeletons, which were then processed by
a Spatio-Temporal Pyramid Graph Convolutional Network in order to perform action
recognition and ergonomic risk assessment [28]. In a latter work, Parsa et al. [29] utilized a
graph CNN alongside a temporal encoder–decoder for activity segmentation as well as an
LSTM to simultaneously predict the total REBA score.

In a similar fashion, Li et al. [30] employed a deep learning-based method to extract
2D skeleton information from an RGB image. Afterwards, they used a regression net-
work to predict the corresponding 3D pose and compute the total RULA score. The same
authors [31] extended their previous work omitting the intermediate 3D skeletal represen-
tation, since it is more computationally expensive. Moreover, they fed the predicted 2D
pose into a RULA estimator to predict RULA action levels instead of total scores, as the
former ones are less susceptible to slight variations in rotation. Li et al. [32] performed
motion analysis using images captured from two surveillance cameras. First, they ex-
tracted 2D joint coordinates and afterwards they reconstructed the corresponding 3D pose.
Plantard et al. [33] used occlusion-resistant Kinect skeleton data correction to accurately
compute joint angles and RULA scores. Mehrizi et al. [34] proposed a multi-view based
deep perceptron approach. The authors extracted 2D shape and texture information from
different views and then they employed a second module in order to predict 3D pose
by synthesizing information from all available views. Konstantinidis et al. [17] extracted
3D skeletal poses from RGB images and then they regressed REBA scores using a multi-
stream deep network that processed individually and then fused the pose information from
different body parts.

On the other hand, modeling structured information, e.g., skeletal data, has become
increasingly popular for various tasks, such as Human Action Recognition. The authors
in [35] proposed a context aware graph convolutional network for the task of action recog-
nition. The network considered a context term for each vertex by integrating information
from all other vertices, thus modeling long range dependencies and removing the need
of stacking multiple layers to enlarge the receptive field. Shi et al. [36] combined a multi-
stream graph CNN that integrates the motion modality for both joints and the bones, with a
spatial-temporal-channel (STC) attention module in order to perform skeleton-based action
recognition. Plizzari et al. [37] proposed a Spatial-Temporal Transformer network to model
dependencies between joints using the Transformer self-attention operator. The Spatial
Self-Attention module captured intra-frame interactions between different body parts,
while the Temporal Self-Attention module modelled inter-frame correlations.

Despite the satisfactory performance of the Marker-less methods, most of them are not
capable of implementing real-time ergonomic risk assessment, since they usually perform
action classification or segmentation in parallel, introducing additional computational
burden. Furthermore, some of them either require explicitly a video as input or they are
trained on specific actions, limiting their generalization capabilities. In this paper, we
propose a novel deep learning-based framework that is able to perform ergonomic risk
assessment irrespective of the work-related task performed. In addition, the proposed
approach can regress total and partial REBA scores from a single RGB image, providing
vital information to workers for potential harmful postures.

3. Methodology

The aim of the proposed deep learning framework is to assess with high accuracy
and robustness work-related ergonomic risks in the form of partial and total REBA scores
through the processing of RGB images. The proposed framework constitutes a marker-less
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and cost-effective solution to the ergonomic risk assessment task, and it consists of the
following three important modules with distinct functionalities. Firstly, the skeletal feature
extraction and representation module are responsible for extracting 3D pose information
from the RGB images. Subsequently, two variational networks, namely Skel-to-REBA
and REBA-to-REBA, are employed to process the skeletal and ground truth REBA score
information, respectively, derive discriminative latent spaces and accurately estimate partial
and total REBA scores. Finally, the variational aligning process module is responsible for
effectively aligning the two different latent spaces by bringing them close to each other
so that the accuracy of the proposed ergonomic risk assessment framework is greatly
improved. Figure 1 presents an overview of the proposed methodology. Next, the different
modules of the proposed framework are described in detail.

Legs Stream

Arms Stream

Trunk Stream
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Figure 1. An overview of the proposed variational framework. Given an input image, 3D pose
information is extracted from any human pose estimation algorithm and fed into a multi-stream
encoder and a multi-layer Transformer encoder to model local and global joint interactions and
generate the skeletal latent space. A second variational branch is employed to derive the true
posterior distribution of REBA scores. Finally, the variational aligning process aims to bring the
computed skeletal latent space closer to the one related to the ground truth REBA scores, enhancing
the discrimination ability of the skeletal latent space and improving the ergonomic risk assessment
results. The operator ⊗ denotes concatenation.

3.1. Skeletal Feature Extraction and Representation

This module is responsible for the extraction of 3D skeletal information from a single
RGB image, since skeletal information can limit the effect of irrelevant RGB context and
improve the performance of the proposed ergonomic risk assessment method. To this end,
we extract and employ 3D joint coordinates from a set of 14 widely used joints, as shown
in Table 1, thus allowing any state-of-the-art human pose estimation network, such as
VIBE [38] and METRO [39], to be successfully used for the joint coordinate computation.

Apart from the 3D joint coordinates, joint-line distances that measure the distances
from each joint to the line shaped by the remaining joint pairs are also employed [40]. In
the literature, several works [40–43] successfully adopted joint-line distances concluding
that this alternative representation can better capture the relationship between joints and
even require fewer training samples compared to raw joint coordinates. More specifically,
the joint-line distance between the joint J1 and the line formed by the joint pair {J2, J3},
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denoted by LJ2,J3 , is equal to the length of the perpendicular line between J1 and LJ2,J3 and
its computation can be accelerated using Heron’s formula:

S∆(J1, LJ2,J3) = 2

√
s(s− dJ1,J2)(s− dJ1,J3)(s− dJ2,J3)

dJ2,J3

, (1)

where dJ1,J2 , dJ1,J3 , dJ2,J3 are the Euclidean distances between J1, J2, J3 and s = 0.5(dJ1,J2 +
dJ1,J3 + dJ2,J3).

We choose to utilize joint-line distances alongside 3D joint coordinates, since their
combination is a more powerful and robust representation, leading to more accurate
ergonomic risk assessment score predictions. Thus, we concatenate each 3D joint coordinate
and the joint-line distances of this joint to the remaining ones to form a stream of 3D pose
information for further processing.

Table 1. The selected joints employed in the proposed methodology.

Selected Joints

Head Left Wrist

Neck Right Hip

Right Shoulder Left Hip

Left Shoulder Right Knee

Right Elbow Right Elbow

Left Elbow Right Ankle

Right Wrist Left Ankle

3.2. Variational Encoders for Ergonomic Risk Assessment

The second module of our framework comprises two variational encoders (VAEs),
namely Skel-to-REBA and REBA-to-REBA. The Skel-to-REBA VAE is responsible for pro-
cessing joint information and modelling the interactions among joints to accurately predict
ergonomic risk scores. At the core of its encoder, Eskel , lies a novel deep network archi-
tecture, consisting of a multi-stream joint encoder EMS and a multi-layer Transformer
encoder ET that takes as input a group of joints, depicted in Table 2, and computes a highly
descriptive latent space representation.

Table 2. The proposed network employs three streams that contain: trunk joints, arms joints, and
legs joints.

Trunk Stream Arms Stream Legs Stream

Head Head Head

Neck Neck Neck

Right Shoulder Right Hip Right Shoulder

Left Shoulder Left Hip Left Shoulder

Right Hip Right Knee Right Elbow

Left Hip

Left Knee Right Elbow

Right Ankle Right Wrist

Left Ankle Right Wrist

More specifically, the joint encoder EMS aims to model local spatial relationships
among the different human body joints. The joint encoder EMS consists of a series of
feedforward layers, as shown in Figure 2a, that process joint information split in three
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different data streams based on the location of the joints in the human body and inspired
by the manual REBA computation procedure. Subsequently, the outputs from the different
data streams of the joint encoder EMS are concatenated to form the input for the Transformer
encoder ET . The purpose of the Transformer encoder ET is to identify and model the
global relationship among the human body joints to further enhance the discrimination
ability of the computed skeletal latent space. To this end, the architecture of the proposed
Transformer encoder (shown in Figure 2b) is inspired by [39] that uses feed-forward layers
to reduce the dimensionality of the hidden embedding after each encoder layer. The output
of the encoder ESkel is fixed-size vectors µSkel and σSkel that constitute the skeletal latent
distribution (zskel), with dimensionality dSkel , which parametrize a Gaussian distribution
N (µSkel , ΣSkel), where ΣSkel = diag(σSkel(1)2, . . . , σSkel(dSkel)

2).

Figure 2. An overview of (a) the multi-stream encoder EMS and (b) the multi-layer Transformer
encoder ET . The multi-stream encoder EMS performs feature vector upsampling to each input stream
of dimensionality K with the purpose to model the joint local relationships. The Transformer encoder
ET performs self-attention through three encoder blocks and dimensionality reduction using linear
projections. The final output is a pair of vectors (µ,σ) that composes the skeletal latent distribution.
Each encoder block has N layers and H attention heads. P denotes the dimension of the concatenated
input skeletal feature vector.
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Afterwards, we stochastically draw a sample from the skeletal latent space, us-
ing the DSkel decoder, to regress the partial and total REBA scores, S = {sneck, strunk,
slower_arms, supper_arms, stotal}. Since our framework is variational, we need to incorporate
the regularization scheme. Thus, we aim to use the Kullback–Leibler divergence to bring
the skeletal latent distribution as close as possible to a standard multivariate normal distri-
bution. The second objective aims to minimize the MSE loss between the ground truth (y)
and the predicted (ŷ) REBA scores. Consequently the weights of the Skel-to-REBA VAE are
optimized according to the following objective:

LSkel
VAE = βLSkel

KL + LSkel
MSE =

= β
1
2

dSkel

∑
j=1

(
σ2

Skel(j) + µ2
Skel(j)− ln σ2

Skel(j)− 1
)
+

1
K

K

∑
j=1

(y(j)− ŷi(j))2,
(2)

where K is the dimensionality of the target/REBA score modality.
On the other hand, the REBA-to-REBA VAE aims to create a well-structured latent

space that contains significant information related to ergonomic scores, by reconstructing
the true posterior distribution. To achieve this, we employ the reconstruction encoder,
EREBA, to encode the ground truth scores S ∈ R6 into (µtrue

REBA, σtrue
REBA), thus generating the

true posterior distribution of the REBA scores, ztrue
REBA. Then, we similarly draw a sample

from this latent space and decode it using the DREBA decoder, to infer the REBA scores.
The objective of this branch can be modelled as:

LREBA
VAE = βLREBA

KL + LREBA
MSE =

= β
1
2

dREBA

∑
j=1

(
σ2

REBA(j) + µ2
REBA(j)− ln σ2

REBA(j)− 1
)
+

1
K

K

∑
j=1

(x(j)− x̂i(j))2,
(3)

where x denotes the ground truth and x̂ the predicted REBA scores from the REBA-to-
REBA VAE.

3.3. Variational Aligning Process

The purpose of the proposed variational aligning process is to effectively bring closer
the skeletal latent space zskel with the latent space of the ground truth REBA scores ztrue

REBA.
The reason behind this is that the REBA-to-REBA VAE is able to create a latent space repre-
sentation that can more accurately model the ergonomic risk information. In this context,
the REBA-to-REBA VAE is employed as a teacher network to guide the Skel-to-REBA VAE
towards predicting more robust REBA scores. To achieve this, we employ two variational
alignment components, MSkel and MREBA, that aim to project the skeletal and ergonomic
risk latent distributions into new ones that can be more easily aligned to each other. Subse-
quently, we use the pretrained Skel-to-REBA decoder, DSkel , in order to alternatively decode
samples drawn from the above latent spaces. The common decoding scheme of DSkel aims
to bring closer these latent distributions through a training to correctly classify both of
them, thus contributing to the creation of a more meaningful and informative skeletal
latent space. More specifically, MSkel gets as input the vectors of mean and variance that
are generated by ESkel , (µSkel , σSkel) and outputs a new latent distribution, with mean µSkel

align

and variance σSkel
align. In a similar way, MREBA takes the pair (µREBA, σREBA) and produces a

new latent space that can be described as (µREBA
align , σREBA

align ).
In order to train our network, we optimize the common VAE loss for both the new

generated latent distributions and the MSE loss. Consequently, the objective can be
formulated as:

Lalign = LSkel
align + γLREBA

align , (4)
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where γ denotes the weight of the REBA-to-REBA loss and:

LSkel
align = βL

Skelalign
KL + L

Skelalign
MSE =

= β
1
2

dSkel

∑
j=1

(
σSkel

align
2
(j) + µSkel

align
2
(j)− ln σSkel

align
2
(j)− 1

)
+

1
K

K

∑
j=1

(y(j)− ŷalign
i (j))2

(5)

and

LREBA
align = βL

REBAalign
KL + L

REBAalign
MSE =

= β
1
2

dREBA

∑
j=1

(
σREBA

align
2
(j) + µREBA

align
2
(j)− ln σREBA

align
2
(j)− 1

)
+

1
K

K

∑
j=1

(x(j)− x̂align
i (j))2,

(6)

where ŷalign, x̂align denote the predicted REBA scores regressed from the Skel-to-REBA and
REBA-to-REBA VAE, correspondingly.

It should be noted that, during this process, a fine-tuning of the pre-trained encoders
ESkel and EREBA is performed.

4. Experiments
4.1. Datasets and Metrics

The proposed method is tested on two publicly available datasets, namely Univer-
sity of Washington Indoor Object Manipulation (UW-IOM) and Technische Universität
München (TUM) Kitchen.

The UW-IOM dataset contains videos of 20 individuals picking up and placing objects
of varying weights from and to cabinets and tables located at various heights. This dataset
consists of 17 action classes, each following a four-tier hierarchy denoting the object manip-
ulation, human motion, type of object manipulation and the relative height of the surface
on which the activity is taking place (low, medium, and high).

The TUM Kitchen dataset consists of 20 videos captured by four static monocular cam-
eras with overlapping views. Each video depicts daily actions performed by an individual
in a kitchen, involving walking, picking up, and placing objects from and to drawers, tables
and cabinets. The average duration of the videos are about two minutes. The actions are
manually labeled and provided separately for the left hand, the right hand, and the trunk
of the person.

Following previous works, we employ a cross-validation approach by splitting both
datasets into four subsets and using three subsets for training and 1 for evaluation, each
time. Additionally, we utilize the provided annotations in order to temporally crop the
videos. Finally, we report on the most common metrics, being the mean squared error
(MSE), the root mean squared error (RMSE), and the mean absolute error (MAE), in order
to compare the ground truth and the predicted partial and total REBA scores.

4.2. Implementation Details

In order to acquire the ground truth REBA scores for both datasets, we follow a similar
scheme to previous works [17,29]. More specifically, the VIBE 3D pose estimation algorithm
is employed to extract the 3D joint coordinates of the human body. The extraction of
3D pose information is essential for the accurate computation of joint angles due to the
distortion the angles suffer from, when they are projected into the 2D image plane [44].
Next, the joint angles (e.g., flexion, abduction, etc.) among all body parts are computed,
and the REBA framework with its proposed calculations is followed to compute partial
and total ground truth REBA scores.

Since REBA scores are discrete integers from 1 to 15, the minimum and maximum risk
level; correspondingly, the computed ground truth REBA scores are sequences of piece-wise
constants. Nevertheless, training the REBA decoder on such sequences is difficult and thus
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we opt to smooth the REBA scores using a Savitzky–Golay filter with a kernel of size 12
for the UW-IOM and 25 for the Kitchen dataset, based on their average fps. Regarding the
joint coordinates that VIBE estimates, we translate them to the neck before we feed them
into the rest of the network, in order to make the skeletal features invariant to the absolute
position of the subject in the image, thus enhancing the performance capabilities of the
proposed method.

The first module of the Skel-to-REBA VAE, i.e., the multi-stream encoder EMS, consists
of four fully connected layers per stream as shown in Figure 2a and upsamples the input
feature vectors, leading to an output vector of 2048 dimensionality. On the other hand,
the Transformer encoder ET consists of three encoder blocks with four layers and four
attention heads each, as shown in Figure 2b. The output of the Transformer encoder
constitutes a pair of vectors (µ, σ) of 128 dimensionality. As far as REBA-to-REBA encoder
and decoder, EREBA and DREBA, and the Skel-to-REBA decoder, DSkel , are concerned, we
use six fully connected layers. The architecture of the VAE alignment components is similar
to [45]. The dimensions of the latent space are set to 128 for the Skel-to-REBA VAE and 64
for the REBA-to-REBA VAE. We use the Adam optimizer [46] with learning rate 1−4 and
batch size of 128. We set the weight of the Kullback–Leibler divergence β to 1−4 and the
weight of the REBA-to-REBA VAE during the final Variational Aligning Process γ to 1−2.
All the aforementioned hyperparameters were chosen empirically since they provided the
optimal results during our experiments.

The network training takes place in two phases. During the first phase, the two VAE
branches are trained independently of each other. Subsequently, after they converge, we
employ the variational aligning components in order to bring the skeletal information
closer to the ground truth REBA information.

For the experiments, we use the PyTorch [47] Deep Learning framework and a PC
with Intel 8700 K (4.7 GHz) CPU, Nvidia GTX 1080Ti (11GB VRAM) GPU, and 32 GB
RAM. Finally, the most computationally expensive part of our method is the skeletal
feature extraction. The VIBE algorithm has a runtime speed of 15–20 fps, while the joint-
line distances computation and the REBA scores regression introduce a small additional
computational burden. Thus, the proposed deep network architecture is able to achieve a
processing speed of 9–14 fps, making it suitable for real-time applications.

4.3. Experimental Results

We compare the performance of our proposed method against [17,29], since these are
the only methods that carry out the task of ergonomic risk assessment in real-time, using
the REBA framework. Parsa et al. [29] perform action segmentation and incorporate the
predicted action, by fusing activity embedding with spatial features (MTL-emb), in order
to predict more accurate REBA scores. Thus, they present two results based on whether
or not they use these embeddings. Although the results in which the action embedding is
incorporated produce more accurate REBA scores, the authors used a supervised learning
framework that constrained the usability of their method only to the trained activities.
Moreover, it should be noted that this work requires a video sequence as input, while
our approach is capable of regressing REBA scores given either a single RGB image or a
video sequence. On the other hand, Konstantinidis et al., in their work [17] that we name
MSDN for short notation, is able to regress both partial and total REBA scores using a multi-
stream deep network architecture and intermediate guidance for partial score regression.
The proposed work takes as input the same skeletal information and produces the same
type of output as the MSDN method. However, the two methods differ in the deep network
architecture that is used to process the skeletal information and predict the REBA scores,
as well as the fact that the proposed method employs the ground truth ergonomic risk
scores as input through a variational framework to further improve the ergonomic risk
assessment results.

Table 3 summarizes the performance of our proposed methodology against the above
state-of-the-art approaches. Our proposed variational framework outperforms all state-of-
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the-art methods, yielding 0.297 and 0.265 MSE in the UW-IOM and TUM Kitchen datasets,
respectively. Regarding [29], it can be deduced that our method produces considerably
more accurate ergonomic risk scores despite the fact that we do not enhance the network
performance by utilizing action classes. Consequently, our framework can be used as
a generalized risk assessment framework for any work-related task. This deduction is
further amplified by the flexible input requirements of the proposed methodology (i.e.,
processing of images irrespective of the task) combined with the effectiveness shown in
the two datasets, in which the workers perform highly different tasks (i.e., moving and
placing heavy objects in cabinets in UW-IOM against moving and placing plates and
kitchen utensils in a kitchen environment in TUM-Kitchen). As far as [17] is concerned,
the proposed methodology provides a relative decrease in MSE of 4% and 5% in the UW-
IOM and the TUM Kitchen datasets, respectively. In addition, Tables 4 and 5 present a
comparison of partial and total ergonomic risk scores in terms of MSE, MAE, and RMSE
on both datasets. It can be noted that our framework produces more accurate predictions
for each individual body part as well as the entire body, compared to the method of [17],
verifying the importance of utilizing a variational approach for improved generalization
and employing the ground truth REBA scores to guide the network towards improved
ergonomic risk assessment performance. In addition, the accurate estimation of partial
REBA scores can provide valuable feedback regarding which body parts receive the most
strain during a work-related task.

Table 3. Comparison against state-of-the-art approaches in the UW-IOM and TUM Kitchen datasets.

Method UW-IOM TUM Kitchen

MTL-base 0.89 ± 0.24 1.18 ± 0.68
MTL-emb 0.61 ± 0.36 1.11 ± 0.38

MSDN 0.31 ± 0.04 0.28 ± 0.03
Proposed 0.297 ± 0.03 0.265 ± 0.04

Table 4. Performance of the proposed method in terms of partial and total REBA scores in the
UW-IOM dataset.

REBA Scores

UW-IOM

Proposed MSDN

MSE MAE RMSE MSE MAE RMSE

Neck 0.024 ± 0.002 0.113 ± 0.02 0.168 ± 0.04 0.03 ± 0.003 0.117 ± 0.03 0.171 ± 0.03

Trunk 0.075 ± 0.061 0.211 ± 0.03 0.278 ± 0.03 0.079 ± 0.065 0.217 ± 0.02 0.281 ± 0.04

Legs 0.071 ± 0.082 0.186 ± 0.03 0.261 ± 0.05 0.075 ± 0.077 0.192 ± 0.04 0.265 ± 0.05

Upper arms 0.095 ± 0.029 0.221 ± 0.04 0.301 ± 0.04 0.098 ± 0.023 0.226 ± 0.05 0.306 ± 0.03

Lower arms 0.015 ± 0.002 0.076 ± 0.03 0.119 ± 0.03 0.017 ± 0.001 0.079 ± 0.03 0.121 ± 0.04

Total 0.297 ± 0.032 0.377 ± 0.04 0.531 ± 0.06 0.31 ± 0.04 0.395 ± 0.05 0.557 ± 0.07
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Table 5. Performance of the proposed method in terms of partial and total REBA scores in the TUM
Kitchen dataset.

REBA Scores

TUM-Kitchen

Proposed MSDN

MSE MAE RMSE MSE MAE RMSE

Neck 0.018 ± 0.002 0.090 ± 0.02 0.135 ± 0.04 0.02 ± 0.003 0.093 ± 0.02 0.139 ± 0.03

Trunk 0.053 ± 0.009 0.159 ± 0.03 0.228 ± 0.03 0.055 ± 0.008 0.161 ± 0.03 0.236 ± 0.04

Legs 0.085 ± 0.005 0.213 ± 0.04 0.276 ± 0.05 0.088 ± 0.002 0.221 ± 0.05 0.286 ± 0.04

Upper arms 0.061 ± 0.018 0.186 ± 0.03 0.242 ± 0.03 0.065 ± 0.016 0.194 ± 0.04 0.251 ± 0.03

Lower arms 0.012 ± 0.002 0.067 ± 0.02 0.109 ± 0.02 0.013 ± 0.002 0.069 ± 0.02 0.114 ± 0.02

Total 0.265 ± 0.042 0.364 ± 0.04 0.499 ± 0.05 0.28 ± 0.03 0.389 ± 0.05 0.529 ± 0.06

Table 6 displays the distribution of the ground truth and predicted REBA risk levels
for both datasets. The REBA framework defines the following risk levels: Negligible (REBA
score < 2), Low (2 ≤ REBA score < 4), Medium (4 ≤ REBA score < 8), High (8 ≤ REBA
score < 11) and Very High (REBA score ≥ 11). As we can see, the percentage of the frames
predicted as at a Very High risk level is very close to the corresponding ground truth ones,
regardless of the fact that there is a limited number of such instances on both datasets
(i.e., 0.02% and 0.07%, in the UW-IOM and TUM Kitchen datasets, respectively). On the
other hand, a few discrepancies with regard to ground truth risk levels can be detected
on postures that fall under Low risk levels category, which are assessed as Medium ones,
probably due to the fact that both datasets consists of imbalanced risk level classes. In
addition, it can be noticed that the predicted risk scores for certain body parts, such as
neck and lower arms, are very close to ground truth scores, while the estimated total REBA
scores present the largest deviations.

Table 6. Ground truth and predicted REBA risk level distribution on the UW-IOM and TUM
Kitchen datasets.

UW-IOM TUM Kitchen
REBA Risk Level Ground Truth Predicted Ground Truth Predicted

Negligible 0% 0% 0% 0%
Low 12.32% 3.84% 12.07% 6.24%

Medium 79.34% 89.23% 76.44% 83.79%
High 8.32% 6.91% 11.42% 9.89%

Very High 0.02% 0.02% 0.07% 0.08%

Furthermore, Figure 3 demonstrates the ground truth and the predicted REBA scores
for each individual body part, as well as the whole body, for a video sample from the
UW-IOM dataset. A visualization of the results verify the effectiveness of the proposed
method to accurately predict both partial and total REBA scores for different postures.
For instance, in Figure 3c, the worker is in an upright position with an extended arm and
the predicted REBA scores for the neck and legs are low (<2), while for the upper arms
is high (>5). On the other hand, in Figure 3e, the worker is in a sitting position leaning
forward and putting significant pressure on her trunk and legs, increasing the predicted
REBA scores for these body parts to over 3.5, while the predicted REBA scores for the
remaining body parts are lower. Similar conclusions can be drawn for other postures
as well.
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Figure 3. Visualization of ground truth (red lines) and predicted (blue lines) partial and total REBA
scores on a video sequence from the UW-IOM dataset. At the top, five frames (a–e) that correspond
to extreme postures with high ergonomic risks are displayed, while REBA scores for individual body
parts and the whole body follows.

From the experimental results, we can observe that the proposed methodology sur-
passes all state-of-the-art methods using the MSE metric in the two tested datasets, while it
outperforms the MSDN method in terms of both partial and total ergonomic risk scores
using MSE, MAE, and RMSE. Regarding the computational cost, it should be noted that
the proposed network is slightly slower than the MSDN one, since it consists of about
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30% more parameters; however, it can achieve comparable processing speed of 9–14 fps
against the corresponding performance of MSDN, which is 10–15 fps. These comparisons
demonstrate the effectiveness of combining local and global joint modelling, as well as
taking into consideration the ground truth REBA scores to create a more discriminative
skeletal latent space. More importantly, we can observe that, in the more challenging
TUM Kitchen dataset that includes occlusions due to the camera position, our method
significantly improves on previous works, proving its high generalization capabilities.

5. Conclusions

This paper introduces a novel generic approach for automatic ergonomic risk assess-
ment without resorting to obtrusive wearable sensors and irrespective of the nature of the
work task. The proposed method provides ergonomic risks scores, according to the REBA
framework, for different body parts and the entire body with high accuracy and robustness
using 3D skeletal information (i.e., joint coordinates and joint-line distances) extracted from
RGB images. Through a variational approach, the proposed method processes the skeletal
information to accurately model the local and global interactions among different joints
and form a descriptive skeletal latent space that can robustly represent human postures.
In addition, a second network stream processes the ground truth ergonomic risk scores to
extract important knowledge that is then embedded in the skeletal latent space in order
to improve its discrimination ability and guide the network towards improved results.
Experimental results in two challenging datasets, namely UW-IOM and TUM Kitchen,
demonstrate the ability of the proposed method to achieve high accuracy and robustness
(MSE < 0.3), overcoming the performance of state-of-the-art approaches. Additionally,
the proposed method can predict very accurately ergonomic risk scores for different body
parts, providing important feedback to workers regarding which body parts receive the
most strain during a work-related task. Finally, the results on the classification of human
actions in REBA risk levels show that the proposed method can successfully classify actions
and, especially, identify very high risk actions despite being a small portion of the total
number of actions in the datasets.
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