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Abstract: Circular fringe projection profilometry (CFPP), as a branch of carrier fringe projection
profilometry, has attracted research interest in recent years. Circular fringe Fourier transform pro-
filometry (CFFTP) has been used to measure out-of-plane objects quickly because the absolute phase
can be obtained by employing fewer fringes. However, the existing CFFTP method needs to solve a
quadratic equation to calculate the pixel displacement amount related to the height of the object, in
which the root-seeking process may get into trouble due to the phase error and the non-uniform period
of reference fringe. In this paper, an improved CFFTP method based on a non-telecentric model is
presented. The calculation of displacement amount is performed by solving a linear equation instead
of a quadratic equation after introducing an extra projection of circular fringe with circular center
translation. In addition, Gerchberg iteration is employed to eliminate phase error of the region close to
the circular center, and the plane calibration technique is used to eliminate system error by establishing
a displacement-to-height look-up table. The mathematical model and theoretical analysis are presented.
Simulations and experiments have demonstrated the effectiveness of the proposed method.

Keywords: 3D surface measurement; circular fringe projection; co-ordinate transformation; Fourier
transform profilometry

1. Introduction

Fringe projection profilometry (FPP), as a common active optical three-dimensional
(3D) measurement technology, has advantages of high-precision, non-contact, and full-field
measurement [1–4]. In a fringe projection system based on a triangular configuration frame,
the structured fringe patterns are projected onto the object by a projector, then the distorted
images will be captured by a camera from another view angle. The height of the measured
object will change the phase distribution of the fringe, which can be obtained by different
demodulation algorithms based on the number of fringes. The straight fringe and oblique
fringe are popular [5,6]. Saw-tooth fringe [7], triangular fringe [8], hexagonal fringe [9],
circular fringe [10,11], etc. have been used in fringe projection profilometry as well. To
reconstruct phase information from these patterns, algorithms based on phase shifting [2],
Fourier transform [3,12–15], wavelet transform [16,17], or windowed Fourier transform
have been developed [18]. The comparative analysis of different carrier fringe pattern
techniques has been given in references [19,20].

Fourier fringe analysis is one of the most popular methods aimed at calculating the
phase value from a single spatial carrier pattern or at most two spatial carrier patterns
through Fourier transform, filtering operation and inverse Fourier transform. In traditional
Fourier transform profilometry (FTP), the popularly projected fringe pattern is a sinusoidal
straight or oblique fringe for the ease of extraction of the fundamental spectrum lobe
carrying surface information of the measured object. However, one disadvantage of
linear fringe projection is that the unwrapped phase map obtained by spatial unwrapping
algorithms [21,22] has 2π ambiguity because the value of the continuous phase depends
on the unwrapping starting point. For eliminating this ambiguity, a common method is
embedding a marker point into fringe patterns or adding a marker on the surface of the
object. The marker provides a reference for unwrapping the phase. Certainly, temporal phase
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unwrapping methods such as multi-frequency and multi-wavelength approaches [23,24] can
be used to obtain the absolute phase by determining 2π discontinuous locations. However, a
series of fringe patterns with different frequencies are needed.

Circular fringe projection profilometry (CFPP) has also attracted research interest
in recent years [10,11,25,26] because the center of the circular fringe pattern provides a
reference mark. Ratnam et al. [25] measured the out-of-plane deformation of targets by
calculating the pixel displacement of the circular fringe pattern. Mandapalli et al. [26] used
the circular fringe projection method to measure the 3D profiling of high dynamic range
objects. Zhao et al. [27] achieved the 3D profile measurement via the triangular structure
between a projected divergent light ray and the optical axis of the projector in a coaxial
system. Wang et al. [28] used circular gratings to perform moiré-based misalignment
measurements combined with lithography. In addition, the conical phase image has other
applications. For example, Khonina et al. [29] analyzed the wavefront aberrations of the
interferograms using a conical reference beam and neural networks processing.

Circular fringe Fourier transform profilometry (CFFTP) based on a triangulation
system has the capability of whole out-of-plane measurement using fewer fringes. To the
best of our knowledge, the existing CFFTP [25,26] calculates the displacement amount
carrying the height information of the object by solving a quadratic equation. The theoretical
model is applicable to the telecentric system. The correct root-seeking process of the
quadratic equation may get into trouble due to the phase error and the non-uniform period
of the reference fringe. Thus, interpolation and fitting are required to deal with the error
region in the middle of the image. In addition, phase error near the center region is bigger
because of the leakage of the spectrum.

In this paper, some improvements are presented for the generality and accuracy of
CFFTP. To avoid the trouble of root-seeking, the expression of calculating the displacement
amount is degraded to a linear equation from a quadratic equation by introducing an
extra projected circular fringe with a circular center lateral shift. Compared to the existing
CFFTP, the theoretical model of our method is also suitable for a system whose projection
and imaging centers are at a finite distance. In addition, Gerchberg iteration is employed
to eliminate error close to the circular center region, and an established look-up table
describing the relationship between displacement and height is used to eliminate system
error of the CFFTP. Results of simulations and experiments illustrate that our improved
CFFTP offers the capability of measuring out-of-plane deformation with higher accuracy
and robustness.

The rest of this paper is organized as follows. Section 2 describes the principles of the
improved CFFTP, including mathematical model and displacement amount calculation, co-
ordinate transformation, conical phase calculation by FTP, and the displacement-to-height
look-up table. Sections 3 and 4, respectively, present some simulations and experiments to
validate the proposed method. Section 5 summarizes the paper.

2. Principle
2.1. Geometric Model and Calculation of Lateral Displacement of CFFTP

The schematic diagram of the geometric model of CFFTP is the same as that of
traditional FPP based on the triangulation principle, as shown in Figure 1. On the top-left of
this figure, an orthogonal co-ordinate system is determined for exhibiting spatial directions,
where d and l are structural parameters of the measurement system. The optical axis of
the projector and the camera intersects the point Or on the reference plane. The plane in
which two optical axes lie is parallel to the X–Z plane. Several planes Ri(i = 1, 2, . . . , N) are
drawn to exhibit out-of-plane height. The lateral shift of the fringe pattern caused by the
measured object will be along the X-axis direction when a circular pattern is projected onto
the object and captured by the camera. This lateral shift is related to the phase information,
which is thereby used to restore the surface of the object. For clarity, taking an emitting ray
from a pixel of the projector as an example, the intersections of the ray and each plane are
Pi(i = 0, 1, . . . , N), which have the same phases. These points are captured by different
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pixels on the camera. Pi relates to a set of data pairs (δi, hi) which means that different
heights hi correspond to different lateral shift δi. The lateral shift can be obtained by
calculating the phase difference of homologous points. For instance, point P1 on the plane
R and point C on the reference plane are “seen” by the same pixel on the camera, but they
have different encoding phase values. The phase difference between P1 and C describes the
displacement amount between P0 and C, which is used to calculate the lateral shift amount
∆δ1. That is, ∆δ1 = δ1 − δ0 denotes the lateral shift caused by height h1.
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Figure 1. Schematic diagram of the measurement system.

To accurately calculate the lateral shift amount, an improved CFFTP method is proposed.
Two circular fringes with the same period and different circular centers (k pixels lateral shift
in the x direction) are generated. The encoded circular fringes can be expressed as:

I1
(

xp, yp
)
= a + b cos(

2π
√
(xp − xp0)

2 + (yp − yp0)
2

p
), (1)

I2
(

xp, yp
)
= a + b cos(

2π
√
(xp − xp0 + k)2 + (yp − yp0)

2

p
), (2)

where (xp, yp) is the pixel co-ordinate of an LCD/DLP plane, p is the encoded fringe
period, (xp0, yp0) and (xp0 − k, yp0) are the centers of two circular fringes respectively.
They are projected on the reference plane and the measured object. In the non-telecentric
measurement system, the reference fringes and the deformed fringes captured by the
camera can be expressed as:

Ic1(xc, yc) = ac(xc, yc) + bc(xc, yc) cos(
2π

√
(xc − xc0 + δx0)

2 + (yc − yc0)
2

pc
), (3)

Ic2(xc, yc) = ac(xc, yc) + bc(xc, yc) cos(
2π

√
(xc − xc0 + δx0 + kc)

2 + (yc − yc0)
2

pc
), (4)

Ic3(xc, yc) = ac(xc, yc) + bc(xc, yc) cos(
2π

√
(xc − xc0 + δx)

2 + (yc − yc0)
2

pc
), (5)

Ic4(xc, yc) = ac(xc, yc) + bc(xc, yc) cos(
2π

√
(xc − xc0 + δx + kc)

2 + (yc − yc0)
2

pc
), (6)

where subscript c indicates the camera, and (xc, yc) is the camera pixel co-ordinate; δx0 is
the original lateral shift amount of the reference fringe caused by the triangular relationship
of the measurement system, while δx0 equals zero in the telecentric measurement system;
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δx is the lateral shift amount in the deformed fringe; kc is the offset of the two circular
centers of fringes; Hence, ∆δx = δx − δx0 is the lateral shift amount caused by the measured
object, which is also a function of pixel co-ordinate (xc, yc). The terms in brackets of the
cosine functions in Equations (3)–(6) are the phases of the fringes, which can be abbreviated
as ϕ1, ϕ2, ϕ3, and ϕ4 respectively. If these phases are extracted (see Section 2.3), ∆δx can be
calculated by solving a linear equation in our work instead of a quadratic equation in the
existing CFFTP. A simple deduction is given in the following.

Calculating the difference of the square of the phase terms of Equations (3) and (5), we
obtain the following equation:

δ2
x − δ2

x0 + 2(xc − xc0)(δx − δx0) = (
pc

2π
)

2
(ϕ2

3 − ϕ2
1). (7)

Similarly, from Equations (4) and (6), we obtain:

δ2
x − δ2

x0 + 2(xc − xc0 + kc)(δx − δx0) = (
pc

2π
)

2
(ϕ2

4 − ϕ2
2). (8)

From Equations (7) and (8), the lateral displacement caused by the height of the
measured object is expressed as:

∆δx = δx − δx0 =
p2

c
8kcπ2 (ϕ2

4 − ϕ2
2 − ϕ2

3 + ϕ2
1). (9)

Equation (9) is more general compared with the formula of displacement in the
existing CFFTP, like Equation (7). The value of ∆δx cannot be calculated by simply solving
the quadratic equation because δx0 is unknown in the non-telecentric system. Even if
δx0 is ignored, seeking the correct root is not easy because solving the quadratic equation
may become inaccurate around the middle region. Therefore, interpolation and fitting
operations are required in the existing CFFTP. The proposed linear equation can well avoid
this problem.

2.2. Coordinate Transformation of CFFTP

As Fourier transform profilometry cannot directly process closed fringes, co-ordinate
transformation from a Cartesian to Polar co-ordinate must be performed in CFFTP. The
resulting fringes in Polar co-ordinate are expressed as:

I′n(rn, θn) = a′(rn, θn) + b′(rn, θn) cos(
2πrn

p′ ), n = 1, 2, 3, 4, (10)

where rn, θn, and p’ are the radial variables, the angle variables, and the period of fringe in
a Polar co-ordinate respectively. a’(rn, θn) and b’(rn, θn) are the background intensity and
modulation intensity. The circular centers correspond to the origin of the Polar co-ordinate
images. The range of θn is [0, 360◦), rn and θn are shown in Equations (11)–(14).

r1 =

√
(xc − xc0 + δx0)

2 + (yc − yc0)
2, θ1 = arctan(

yc − yc0

xc − xc0 + δx0
), (11)

r2 =

√
(xc − xc0 + δx0 + kc)

2 + (yc − yc0)
2, θ2 = arctan(

yc − yc0

xc − xc0 + δx0 + kc
), (12)

r3 =

√
(xc − xc0 + δx)

2 + (yc − yc0)
2, θ3 = arctan(

yc − yc0

xc − xc0 + δx
), (13)

r4 =

√
(xc − xc0 + δx + kc)

2 + (yc − yc0)
2, θ4 = arctan(

yc − yc0

xc − xc0 + δx + kc
). (14)

To obtain fringes in a Polar co-ordinate, a gridded sampling operation has to be worked
on rn and θn. Those are expressed as rn(i, j) and θn(i, j), i = 1, 2, . . . , K1, j = 1, 2, . . . , K2.
The resolution of polar images is K1 × K2. The denser the sampling points are, the less



Sensors 2022, 22, 6048 5 of 14

the error caused by the co-ordinate transformation operation. But an over high-resolution
ratio costs more computing time. In this paper, K1 is obtained by sampling θ(i, j) by
0.25 degrees as an interval, and K2 is obtained by sampling rn(i, j) by 0.5 pixels as an
interval. In practice, each pixel of circular fringes may not fall on the corresponding
gridded point after being transferred to the Polar co-ordinate, so interpolation calculation
is necessary. Figure 2 shows a schematic diagram of co-ordinate transformation. Figure 2a
shows the interpolation procedure. For example, white points denote corresponding polar
points calculated by Equation (11) directly, and black points are the gridded points. The
intensity of each white point is equal to that of the corresponding point in the circular fringe.
The intensity of each black point is calculated by an interpolation operation employing its
neighborhood white points. There are many interpolation algorithms [30–32]. The cubic
interpolation algorithm is used in our simulations and experiments. Figure 2b is a reference
circular fringe and Figure 2c is its corresponding fringe in a Polar co-ordinate, which can
be processed by Fourier transform profilometry.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 15 
 

 




= + + =
+

2 2

3 0 0
0

3

0

-
arctan( ),

-
( - ) ( - ) ,

x
c c

c c x

c c c c
r

x x
x

y
x y y

y
 (13) 

 
+

=
+

=+ + +2 2

0

0
0

0 44

-
arctan( ).

-
( - ) ( - ) , c c

c c x c c c

cc c x

y y

x x
r x x k y y

k
 (14) 

To obtain fringes in a Polar co-ordinate, a gridded sampling operation has to be 

worked on r
 

n and θ
 

n. Those are expressed as r
 

n(i, j) and θ
 

n(i, j), i = 1, 2, …, K
 

1, j = 1, 2, …, K
 

2. 

The resolution of polar images is K
 

1 × K
 

2. The denser the sampling points are, the less the 

error caused by the co-ordinate transformation operation. But an over high-resolution ra-

tio costs more computing time. In this paper, K
 

1 is obtained by sampling θ
 

n(i, j) by 0.25 

degrees as an interval, and K
 

2 is obtained by sampling r
 

n(i, j) by 0.5 pixels as an interval. 

In practice, each pixel of circular fringes may not fall on the corresponding gridded point 

after being transferred to the Polar co-ordinate, so interpolation calculation is necessary. 

Figure 2 shows a schematic diagram of co-ordinate transformation. Figure 2a shows the 

interpolation procedure. For example, white points denote corresponding polar points 

calculated by Equation (11) directly, and black points are the gridded points. The intensity 

of each white point is equal to that of the corresponding point in the circular fringe. The 

intensity of each black point is calculated by an interpolation operation employing its 

neighborhood white points. There are many interpolation algorithms [30–32]. The cubic 

interpolation algorithm is used in our simulations and experiments. Figure 2b is a refer-

ence circular fringe and Figure 2c is its corresponding fringe in a Polar co-ordinate, which 

can be processed by Fourier transform profilometry. 

 

Figure 2. Diagram of co-ordinate transformation. (a) Interpolation schematic diagram; (b) Original 

circular fringe; (c) Linear fringe in Polar co-ordinate. 

2.3. Calculation of Conical Phase by FTP 

To calculate phases, Fourier transform, filtering operation, and inverse Fourier trans-

form are performed to deal with the fringes described by Equation (10). The Fourier spec-

tra of the four fringes are expressed as: 

' *

0 0

1 1
{ ( , )} ( , ) ( , ) ( , ), 1,2,3,4,

2 2n n n n n n n nn n n n r n r n r
F I r A f f B f f f B f f f n

  
 = + − + + =  (15) 

where * denotes complex conjugate. frn and fθn are the variables in the frequency domain, 

f0n is the carrier frequency of each linear fringe. A
 

n(frn, fθn) is zero frequency component, B
 

n

(frn − f0n, fθn) and B
* 

n(frn + f0n, fθn) are fundamental frequency components. One of the funda-

mental frequency components can be selected by applying a band-pass filter and the in-

verse Fourier transform is performed on it to calculate the wrapped phase ranging from 

−π to π with 2π modus. Thus, a suitable spatial phase unwrapping algorithm is used to 

obtain the absolute phase by selecting a point within the first linear pitch as the 

Figure 2. Diagram of co-ordinate transformation. (a) Interpolation schematic diagram; (b) Original
circular fringe; (c) Linear fringe in Polar co-ordinate.

2.3. Calculation of Conical Phase by FTP

To calculate phases, Fourier transform, filtering operation, and inverse Fourier trans-
form are performed to deal with the fringes described by Equation (10). The Fourier spectra
of the four fringes are expressed as:

F{I′n(rn, θn)} = An( frn , fθn) +
1
2

Bn( frn − f0n , fθn) +
1
2

B∗n( frn + f0n , fθn), n = 1, 2, 3, 4, (15)

where * denotes complex conjugate. frn and fθn are the variables in the frequency domain,
f 0n is the carrier frequency of each linear fringe. An(frn, fθn) is zero frequency component,
Bn(frn − f 0n, fθn) and B∗n(frn + f 0n, fθn) are fundamental frequency components. One of the
fundamental frequency components can be selected by applying a band-pass filter and
the inverse Fourier transform is performed on it to calculate the wrapped phase ranging
from −π to π with 2π modus. Thus, a suitable spatial phase unwrapping algorithm is
used to obtain the absolute phase by selecting a point within the first linear pitch as
the unwrapping starting point. As mentioned above, the obtained four conical phases
ϕ1, ϕ2, ϕ3, and ϕ4 are used to calculate the lateral displacement.

It is worth noting that the circular center of each circular fringe in the Cartesian co-
ordinate corresponds to the left edge of the resulting images in the Polar co-ordinate. When
Fourier transform works on these fringes directly, phase accuracy in the edge regions
is influenced by spectral leakage. After the phases are converted back to the Cartesian
co-ordinate, the corresponding areas of the conical phase maps have bigger errors. To solve
this problem, an extrapolation operation is required to extend the boundary of fringes. The
Gerchberg algorithm [33] is an effective solution to eliminate edge leakage error. We will
use it to reduce phase error in our simulations and experiments.
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2.4. Establishment of the Displacement-to-Height Mapping

According to the geometric model of the measurement system shown in Figure 1,
theoretically, the relationship between displacement ∆δ(xc, yc) and height h(xc, yc) can be
expressed as:

h(xc, yc) =
∆δx(xc, yc)l

∆δx(xc, yc) + d
. (16)

Since the system parameters, d and l are difficult to measure accurately, and fringe
period pc of the reference fringes is not a constant for a non-telecentric system, it is necessary
to establish a look-up table between ∆δx(xc, yc) and h(xc, yc) by the plane calibration
method [34]. To set up the relationship, the reference plane is moved along the Z-axis, and
fringes at known positions hi (on plane R1 to RN) are captured by the camera. At each
position, the phases of the fringes are calculated by our method. The phase differences are
used to calculate lateral displacement ∆δx. Linear fitting method, quadratic fitting method,
cubic fitting method, or higher-order polynomial fitting can be used to set up a look-up
table according to the number of calibration planes [35]. Considering the balance between
time-consumption and accuracy, the cubic polynomial fitting method is selected to set up
the look-up table in our experiment, which can be expressed as:

h(xc, yc) = a0(xc, yc) + a1(xc, yc)∆δx(xc, yc) + a2(xc, yc)[∆δx(xc, yc)]
2

+a3(xc, yc)[∆δx(xc, yc)]
3,

(17)

where a0(xc, yc), a1(xc, yc), a2(xc, yc), and a3(xc, yc) are the mapping coefficients of the cubic
curve fitting.

As two reference phases have been calculated and saved during system calibration,
our method only needs to capture two deformed circular fringes to reconstruct the height
of the measured object. A brief flow of the improved CFFTP is shown in Figure 3.
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3. Simulations

To verify the performance of our method, computer simulations are carried out for
a telecentric system and non-telecentric system. For non-telecentric system simulation, a
virtual fringe projection system based on the pinhole model is adopted for displaying the
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projection and imaging procedure, as shown in Figure 4a, where the subscript w denotes
the world co-ordinate system, c denotes the camera image co-ordinate system and p denotes
the projector co-ordinate system. The relationship between the camera co-ordinate system
and the projector co-ordinate system can be rewritten as:

Pc = Hc
pPp, (18)

where Pc and Pp denote the corresponding homogeneous pixel co-ordinates in the camera
co-ordinate system and the projector co-ordinate system, respectively. Hc

p = Hw
p Hc

w is
the homography matrix from the projector pixel co-ordinate system to the camera pixel
co-ordinate system, where Hw

p and Hc
w represent the homography matrix from the projector

pixel co-ordinate system to the world co-ordinate system and the world co-ordinate system
to the camera pixel co-ordinate system, respectively. The detailed description was given in
reference [34]. For a telecentric system, it is easy to generate the reference fringe and the
deformed fringe by Equations (3)–(6) when δx0 = 0.
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Figure 4. (a) Mathematical model of the virtual fringe projection system; (b)The simulated object
when H(x, y) = 20 mm.

First, assuming a telecentric system, a measured object mounted on a moving plane
is simulated. The object z(x, y) is given as a peaks function multiplied by S, which can be
expressed as:

z(x, y) = S{3(1− x)2 exp[−x2 − (y + 1)2]− 10(
x
5
− x3 − y5) exp(−x2 − y2)

−1
3

exp[−(x + 1)2 − y2]}+ H(x, y),
(19)

where S is a scalar factor, and H(x, y) denotes the corresponding height of the moving plane.
In the simulation, we set S = 2, H(x, y) = 20, 30, 40 mm, respectively. Figure 4b shows the
height distribution of the case of H(x, y) = 20 mm. The simulated radial period of fringes is
8 pixels, the lateral shift amount of circular centers of two reference fringes is 50 pixels, and
the size of the fringe patterns is 512 × 512 pixels. Without loss of generality, Gaussian noise
with 40 signal-to-noise ratio (SNR) is added to the simulated fringes.

Figure 5 is the procedure of the conical phase calculation when H(x, y) = 20 mm.
The first column of Figure 5a–d shows two reference circular fringe patterns and two
deformed fringe patterns, respectively. The second column shows the corresponding
linear fringes in the Polar co-ordinate. The third column shows the resulting fringes after
Gerchberg iteration. The Fourier transform method is carried out on these extrapolated
Polar co-ordinate fringes to calculate the corresponding wrapped phases. A spatial phase
unwrapping algorithm [36] is utilized to obtain the continuous phase maps. Cutting the
extrapolated areas, the phase maps of the four original fringes can be obtained. Then the
phase maps are converted back to the original Cartesian co-ordinate system, as shown in
the last column of Figure 5.
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calculation from deformed fringe corresponding to (b).

Figure 6 shows the reconstruction of our improved CFFTP and that of the existing
CFFTP. Figure 6a,b show the reconstructed 3D results and the cross sections along the
330th row by using the existing CFFTP. The corresponding results by using the improved
CFFTP are shown in Figure 6c,d. It can be seen that both methods can correctly reconstruct
the height range because the 2π ambiguity of unwrapping phases is avoided. However,
there are obvious errors in the middle area by the existing CFFTP without fitting oper-
ation, while errors are eliminated by the improved CFFTP. To quantitatively evaluate
the accuracy of the two methods, the root-mean-square error (RMSE) of reconstructions
when H(x, y) = 20 mm, 30 mm, and 40 mm are exhibited in Table 1. The values of RMSE
demonstrate that the proposed method provides much higher accuracy compared with the
existing CFFTP.

In the non-telecentric system, the period of the captured reference fringe is no longer
a constant value. The larger the included angle of the optical axis, the bigger the period
change of the reference fringe. To analyze the effect of the change of fringe period on
reconstruction accuracy, the object in Figure 4b was measured multiple times by setting the
angle of the optical axes at values of 10, 15, 20, 25, and 30 degrees, respectively. Figure 7
shows the simulation at the included angle of 20 degrees. Figure 7a is one of the deformed
circular fringes. Compared with the circular fringe in Figure 5c, its period has changed
due to the triangular relationship even in the region outside of the object. Figure 7b is
its corresponding linear fringe in the Polar co-ordinate. Figure 7c,d show the enlarged
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reconstructed surface by the existing CFFTP and that by the improved CFFTP, respectively.
The error in the middle area of the existing CFFTP is large without the fitting operation.
In contrast, our method still can restore the object completely when the average period of
the fringe is used to calculate ∆δx. The RMSE distributions of the reconstructed result by
our method at different included angles are shown in Figure 8. A bigger angle will cause a
bigger error. Therefore, in the experiment, the included angle between the camera optical
axis and the projector optical axis is set at an appropriate value (10–20 degrees).
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Figure 6. Reconstructed results by existing CFFTP and improved CFFTP when H(x, y) = 20 mm,
30 mm, and 40 mm, respectively. (a,b) Reconstructed surfaces and cross sections along the 330th row
using existing CFFTP; (c,d) Reconstructed surfaces and cross sections along the 330th row using
improved CFFTP.

Table 1. RMSE of the reconstructed object at three positions by two methods. (Unit: mm).

Method
Position

20 30 40

Existing CFFTP 0.1875 0.2038 0.2198
Improved CFFTP 0.0623 0.0746 0.0874
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Figure 8. The RMSE distributions at different angles with improved CFFTP.

It is noted that, in CFFTP, the period of the encoded fringe should be set to avoid
frequency overlapping, like the traditional FTP. We find that as long as the fringe frequency
is high enough to separate the fundamental component from other frequency components,
the reconstruction accuracy will not be significantly affected when pc is approximated to
the average value of the period of the captured reference fringe. A reasonable explanation
is that the error caused by the period is regarded as a systematic error, which can be
eliminated to a certain extent by the plane calibration.

4. Experiments

To further test the performance of the proposed method, we developed a measuring
system and conducted a series of experiments. The experimental setup, shown in Figure 9,
was mainly composed of a CCD camera (model: Vieworks VQ-5MG-M16) which uses
an imaging lens with a focal length of 12 mm, a digital light processing projector (model:
LightCrafter 4500), a flat white board (as reference plane) located on a translation stage
(model: GCD-203300, repositioning precision is less than 5 µm), and a computer for
controlling and calculating. The resolutions of the camera and the projector are, respectively,
2448 × 2048 pixels and 912 × 1120 pixels. The angle between the camera and the projector
was set to 15 degrees approximately. In the following experiments, two circular fringe
patterns with a radial period of 10 pixels were generated, and the lateral shift amount of
their circular centers was 50 pixels.
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Figure 9. Experimental setup.

Before the measurement, the plane calibration was performed to establish the
displacement-to-height mapping table. During the calibration procedure, the reference
plane mounted on the translation stage was moved from 0 to 60 mm with 10 mm as an
interval. At each position, the lateral displacement of the whole image was calculated
according to Equation (9). Then the coefficients of Equation (17) were estimated to make a
look-up table and stored in the computer.
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In the first experiment, three out-of-plane heights located at the positions of 15.0000 mm,
25.0000 mm, and 35.0000 mm were respectively measured to examine the precision of the
calibration. The measurement results and RMSE for each flat plane are listed in Table 2.
Figure 10a shows the 3D reconstruction results of three planes, and Figure 10b displays the
cross sections of the results.

Table 2. Measurement results for the out-of-plane height. (Unit: mm).

Height Mean RMSE

15.0000 14.9683 0.1183
25.0000 25.0570 0.1227
35.0000 35.0328 0.1443

Figure 10. Experimental results of the planes at different heights. (a) 3D reconstruction; (b) Corre-
sponding cross section.

It can be seen that our method can restore the height of planes correctly since the
unwrapping phases have no 2π ambiguity. However, the measurement error of CFFTP
might be bigger than that of linear fringe projection FTP with marker points because this
method includes additional co-ordinate transformation operations.

To further demonstrate the validity of the proposed method in out-of-plane measure-
ment, a gourd-shaped object mounted on a moving plane was measured. We chose three
positions with heights of 5.0000 mm, 10.0000 mm, and 15.0000 mm as the measurement sam-
ples. Taking the height of 5 mm as an example, Figure 11a,b display the process of obtaining
the conical phase from two captured fringes without and with lateral shift, respectively.
From left to right, the captured fringes, the resulting fringes in the Polar co-ordinate system
before and after Gerchberg iteration, as well as the final conical phases are shown. To
eliminate the non-uniform background intensity caused by illumination and reflection, FTP
with background homogenization was used to process these fringes [37]. The reconstructed
height of the object at different positions are shown in Figure 12a–c, respectively, where
color bars display the range of the reconstruction results in color. Figure 12d–f are the cross
sections along the 720th column of the 3D shapes shown in Figure 12a–c.

In another experiment, a mask was measured by our method. The mask was placed
on the reference plane which was moved forward 12.0000 mm. The captured deformed
fringe is shown in Figure 13a, and the 3D shape of the object is shown in Figure 13b.
These measurements show that the proposed CFFTP can reconstruct the 3D shape of the
out-of-plane object correctly.
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5. Conclusions

In this paper, an improved CFFTP method has been proposed for out-of-plane mea-
surement with higher accuracy. By projecting an additional circular fringe pattern with a
center shift, the method retrieves the pixel displacement from a linear equation instead of a
quadratic equation. Therefore, the calculation process is simpler and more reliable compared
with the existing CFFTP. Subsequently, the influence of non-uniform period in non-telecentric
triangulation system is discussed in the theoretical analysis. The plane calibration method is
used to create a look-up table between displacement and height to eliminate the systematic
error of the improved CFFTP. In addition, Gerchberg iteration is employed to eliminate
phase error in the middle region. The simulation results and experiments on different objects
demonstrate the validity and feasibility of the proposed method. We will further explore
error compensation methods to improve accuracy, such as eliminating the error caused by
the non-uniform reference fringe period in a non-telecentric system and insufficient sampling
rate in some areas during the co-ordinate transformation operation.
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